Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 7

    Phasing of atomic velocities in the field of a traveling electromagnetic wave
[Text] : статья / I.V. Krasnov, N.Ya. Shaparev // JETP. - 1979. - Vol. 50, № 3. - p. 453-458


Полный текст на сайте журнала

Держатели документа:
ИВМ СО РАН : 660036, Красноярск, Академгородок, 50, стр.44

Доп.точки доступа:
Shaparev, N.Ya.; Шапарев, Николай Якимович; Краснов, Игорь Васильевич

    Manifestation of the gas translational nonequilibrium in a resonance electromagnetic field
/ I. V. Krasnov, N. Ya. Shaparev // Optics Communications. - 1980. - Vol. 34, Is. 1. - P68-70 . - ISSN 0030-4018

Кл.слова (ненормированные):
GASES

Аннотация: The translational nonequilibrium of the resonance impure gas in a field of a traveling electromagnetic wave produced by both the radiation pressure and the difference in cross-sections of elastic collisions between the excited- and ground-state atoms and a buffer gas has been studied. В© 1980.

Scopus

Держатели документа:
Computing Centre, the Siberian Branch, the USSR, Krasnoyarsk, USSR 660049, Russian Federation
ИВМ СО РАН

Доп.точки доступа:
Krasnov, I.V.; Краснов, Игорь Васильевич; Shaparev, N.Ya.; Шапарев, Николай Якимович

    Computational algorithm for modeling viscoelastic waves in the Kelvin-Voigt medium
/ V. M. Sadovskii // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) . - 2015. - Vol. 9045: 6th International Conference on Finite Difference Methods, FDM 2014; Lozenetz; Bulgaria; 18 June 2014 through 23 June 2014; Code 156479. - P348-355, DOI 10.1007/978-3-319-20239-6_38 . -
Аннотация: Numerical algorithm for solving dynamic problems of the theory of viscoelastic medium of Kelvin-Voigt is worked out on the basis of Ivanov’s method of constructing finite difference schemes with prescribed dissipative properties. In one-dimensional problem the results of computations are compared with the exact solution, describing the propagation of plane monochromatic waves. When solving two-dimensional problems, the total approximation method based on the splitting of the system with respect to the spatial variables is applied. The algorithm is tested on solving the problem of traveling surface waves. For illustration of the method, the numerical solution of Lamb’s problem about instantaneous action of concentrated force on the boundary of a half-plane is represented in viscoelastic formulation. © Springer International Publishing Switzerland 2015.

Scopus,
WOS

Держатели документа:
Institute of Computational Modeling SB RAS, Akademgorodok 50/44, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Садовский, Владимир Михайлович
539.374
А640

    Анализ веерных волн в лабораторной модели, имитирующей распространение сдвиговых трещин в горных породах
[Текст] : статья / Борис Григорьевич Тарасов, Владимир Михайлович Садовский, Оксана Викторовна Садовская // Вычислительная механика сплошных сред. - 2016. - Т. 9, № 1. - С. 38-51, DOI 10.7242/1999-6691/2016.9.1.4 . - ISSN 1999-6691
   Перевод заглавия: Analysis of fan waves in a laboratory model simulating the propagation of shear ruptures in rocks
УДК

Аннотация: Анализируется веерный механизм передачи вращательного движения в системе упруго связанных пластин на плоском основании, имитирующий распространение сдвиговых трещин в горной породе с аномально высокой хрупкостью. Такие трещины возникают в земной коре на глубинах сейсмической активности. Они продвигаются за счет формирования множественных наклонных микротрещин отрыва, приводящих к образованию веерной домино-структуры в головной части трещины. Создана лабораторная физическая модель, которая наглядно демонстрирует процесс распространения веерных волн. Получены уравнения динамики вращательного движения пластин как механической системы с конечным числом степеней свободы. На основе метода Мерсона решения задачи Коши для систем обыкновенных дифференциальных уравнений разработан вычислительный алгоритм, учитывающий контактное взаимодействие пластин. В рамках упрощенной математической модели динамического поведения веерной системы в приближении сплошной среды оценены зависимости длины веера от скорости движения. Показано, что в отсутствие трения веер может двигаться по инерции с любой скоростью, не превосходящей критическое значение, которое определяется размером, моментом инерции и начальным по отношению к плоскому основанию углом пластин, а также коэффициентом упругости связей. При наличии трения веер останавливается. С помощью дискретной и непрерывной моделей исследованы основные качественные закономерности поведения веера, движущегося под действием приложенных касательных усилий, величина которых в лабораторной физической модели регулируется изменением угла наклона основания. Установлено, что результаты расчетов хорошо согласуются с наблюдениями и данными измерений по лабораторной модели.
The fan-shaped mechanism of rotational motion transmission in the system of elastically connected plates on a plane base is analyzed. This mechanism governs the propagation of shear ruptures in super brittle rocks of the Earth’s crust at seismogenic depths. A laboratory physical model was created which demonstrates the process of fan wave propagation. Equations of the dynamics of a fan system as a mechanical system with a finite number of degrees of freedom are obtained. A computational algorithm taking into account contact interaction between plates is worked out. Within the framework of a simplified continuous model, the approximate estimates of the length of a fan depending on the velocity of its propagation are obtained. It is shown that in the absence of friction a stationary fan can move with any velocity that does not exceed the critical value, which depends on the size, the moment of inertia of plates, the initial angle and the coefficient of elasticity of connection, and that the length of a fan decreases with increasing velocity. In the absence of distributed shear stress, when the system of plates is in a horizontal position, the fan stops due to the friction forces. The action of distributed shear stress leads to the incomplete disclosure of a fan, and besides the angle of opening decreases with increasing friction. In a system with friction the velocity of a traveling fan is uniquely determined by the opening angle, and in the case of neglecting friction it can take any value within an allowable range. On the basis of a discrete model, the computations demonstrating the incomplete disclosure of fans with different opening angles due to rapid or slow change in the velocity of rotation of the first plate are performed. Comparison of the results of computations of the length and velocity of the fan by means of a discrete model with computations based on analytical formulas and laboratory observations showed a good correspondence between the results.

РИНЦ

Держатели документа:
University of Western Australia
Институт вычислительного моделирования СО РАН

Доп.точки доступа:
Садовский, Владимир Михайлович; Sadovskii V.M.; Садовская, Оксана Викторовна; Sadovskaya O.V.; Tarasov Boris Grigorievich

    Large-scale energy budget of impulsive magnetic reconnection: Theory and simulation
/ S. A. Kiehas [et al.] // J. Geophys. Res-Space Phys. - 2017. - Vol. 122, Is. 3. - P3212-3231, DOI 10.1002/2016JA023169. - Cited References:48. - This work is supported by the Austrian Science Fund (FWF) J3041-N16 and P27012-N27 and by grants 16-05-00470, and 15-05-00879-a from the Russian Foundation of Basic Research. No data were used. . - ISSN 2169-9380. - ISSN 2169-9402
РУБ Astronomy & Astrophysics

Аннотация: We evaluate the large-scale energy budget of magnetic reconnection utilizing an analytical time-dependent impulsive reconnection model and a numerical 2-D MHD simulation. With the generalization to compressible plasma, we can investigate changes in the thermal, kinetic, and magnetic energies. We study these changes in three different regions: (a) the region defined by the outflowing plasma (outflow region, OR), (b) the region of compressed magnetic fields above/below the OR (traveling compression region, TCR), and (c) the region trailing the OR and TCR (wake). For incompressible plasma, we find that the decrease inside the OR is compensated by the increase in kinetic energy. However, for the general compressible case, the decrease in magnetic energy inside the OR is not sufficient to explain the increase in thermal and kinetic energy. Hence, energy from other regions needs to be considered. We find that the decrease in thermal and magnetic energy in the wake, together with the decrease in magnetic energy inside the OR, is sufficient to feed the increase in kinetic and thermal energies in the OR and the increase in magnetic and thermal energies inside the TCR. That way, the energy budget is balanced, but consequently, not all magnetic energy is converted into kinetic and thermal energies of the OR. Instead, a certain fraction gets transfered into the TCR. As an upper limit of the efficiency of reconnection (magnetic energy kinetic energy) we find eta(eff)=1/2. A numerical simulation is used to include a finite thickness of the current sheet, which shows the importance of the pressure gradient inside the OR for the conversion of kinetic energy into thermal energy.

WOS,
Смотреть статью,
Полный текст (доступен только в ЛВС)

Держатели документа:
Austrian Acad Sci, Space Res Inst, Graz, Austria.
St Petersburg State Univ, Inst Phys, St Petersburg, Russia.
Russian Acad Sci, Inst Computat Modelling, Siberian Branch, Krasnoyarsk, Russia.
Siberian Fed Univ, Dept Computat Phys, Krasnoyarsk, Russia.

Доп.точки доступа:
Kiehas, S. A.; Volkonskaya, N. N.; Semenov, V. S.; Erkaev, N.V.; Бекежанова, Виктория Бахытовна; Kubyshkin, I. V.; Zaitsev, I. V.; Austrian Science Fund (FWF) [J3041-N16, P27012-N27]; Russian Foundation of Basic Research [16-05-00470, 15-05-00879-a]

    Mathematical modeling of fan-structure shear ruptures generated in hard rocks
/ B. G. Tarasov, V. M. Sadovskii // (15 June 2016 through 22 June 2016 : Springer Verlag, 2017. - Vol. 10187 LNCS. - P648-656, DOI 10.1007/978-3-319-57099-0_74 . -
Аннотация: The main goal of this paper is to analyze the fan-mechanism of rotational motion transmission in a system of elastically bonded slabs on flat surface, simulating growth of shear ruptures in super brittle rocks. A physical model recently designed demonstrates that the fan-structure formation can be stable at the absence of distributed shear stress applied. The action of distributed shear stress causes the fan propagation as a wave representing the rupture head. The developed mathematical model of a fan-structure as a continuous system establishes the relation between the fan velocity and the fan length. It is shown that in the absence of friction the fan velocity may be arbitrary, but not greater than the limit velocity which is determined by the moment of inertia of slabs, the initial angle of their orientation and the elastic coefficient of bonds. In a system with friction the velocity of traveling fan is solely determined by the opening angle. The action of distributed shear stress leads to the instability start before the fan-structure completion. The fan length decreases with increasing velocity. © Springer International Publishing AG 2017.

Scopus,
Смотреть статью,
WOS

Держатели документа:
University of Western Australia, Stirling Highway 35, Perth, WA, Australia
Institute of Computational Modeling SB RAS, Akademgorodok 50/44, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Sadovskii, V.M.; Садовский, Владимир Михайлович

    Analysis of Fan Waves in a Laboratory Model Simulating the Propagation of Shear Ruptures in Rocks
/ B. G. Tarasov, V. M. Sadovskii, O. V. Sadovskaya // J. Appl. Mech. Tech. Phys. - 2017. - Vol. 58, Is. 7. - P1139-1152, DOI 10.1134/S0021894417070100. - Cited References:23. - This research was partially supported by the Centre for Offshore Foundation Systems (the University of Western Australia) and the Complex Fundamental Research Program no. II.2P "Integration and Development" of Siberian Branch of the Russian Academy of Sciences (grant no. 0356-2016-0728). . - ISSN 0021-8944. - ISSN 1573-8620
РУБ Mechanics + Physics, Applied

Аннотация: The fan-shaped mechanism of rotational motion transmission in a system of elastically bonded slabs on flat surface, simulating the propagation of shear ruptures in super brittle rocks, is analyzed. Such ruptures appear in the Earth's crust at seismogenic depths. They propagate due to the nucleation of oblique tensile microcracks, leading to the formation of a fan domino-structure in the rupture head. A laboratory physical model was created which demonstrates the process of fan-structure wave propagation. Equations of the dynamics of rotational motion of slabs as a mechanical system with a finite number of degrees of freedom are obtained. Based on the Merson method of solving the Cauchy problem for systems of ordinary differential equations, the computational algorithm taking into account contact interaction of slabs is developed. Within the framework of a simplified mathematical model of dynamic behavior of a fan-shaped system in the approximation of a continuous medium, the approximate estimates of the length of a fan depending on the velocity of its motion are obtained. It is shown that in the absence of friction a fan can move with any velocity that does not exceed the critical value, which depends on the size, the moment of inertia of slabs, the initial angle and the elasticity coefficient of bonds. In the presence of friction a fan stops. On the basis of discrete and continuous models, the main qualitative features of the behavior of a fan-structure moving under the action of applied tangential forces, whose values in a laboratory physical model are regulated by a change in the inclination angle of the rupture plane, are analyzed. Comparison of computations and laboratory measurements and observations shows good correspondence between the results.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Univ Western Australia, Ctr Offshore Fdn Syst, Perth, WA 6009, Australia.
Inst Computat Modeling SB RAS, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Tarasov, B. G.; Sadovskii, V. M.; Sadovskaya, O. V.; Centre for Offshore Foundation Systems (the University of Western Australia); Complex Fundamental Research Program [II.2P, 0356-2016-0728]