Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 4

    The role of the magnetic barrier in the solar wind-magneto sphere interaction
[Text] / N. V. Erkaev, C. J. Farrugia, H. K. Biernat // Planet Space Sci. - 2003. - Vol. 51, Is. 12. - P745-755, DOI 10.1016/S0032-0633(03)00111-9. - Cited References: 36 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: The magnetized solar wind carries a large amount of energy but only a small fraction of it enters the magnetosphere and powers its dynamics. Numerous observations show that the interplanetary magnetic field (IMF) is a key parameter regulating the solar wind-magnetosphere interaction. The main factor determining the amount of energy extracted from the solar wind flow by the magnetosphere is the plasma flow structure in the region adjacent to the sunward side of the magnetopause. While compared to the energy of the solar wind flow the IMF magnetic energy is relatively weak, it is considerably enhanced in a thin layer next to the dayside magnetopause variously called the plasma depletion layer or magnetic barrier. Important features of this barrier/layer are (i) a pile-up of the magnetic field with (ii) a concurrent decrease of density, (iii) enhancement of proton temperature anisotropy, (iv) asymmetry of plasma flow caused by magnetic field tension. and (v) characteristic wave emissions (ion cyclotron waves). Importantly, the magnetic barrier can be considered as an energy source for magnetic reconnection. While the steady-state magnetic barrier has been extensively examined, non-steady processes therein have only been addressed by a few authors. We discuss here two non-steady aspects related to variations of the magnetic barrier caused by (i) a north-to-south rotation of the IMF, and (ii) by pulses of magnetic field reconnection at the magnetopause. When the IMF rotates smoothly from north-to-south, a transition layer is shown to appear in the magnetosheath which evolves into a thin layer bounded by sharp gradients in the magnetic field and plasma quantities. For a given reconnection rate and calculated parameters of the magnetic barrier, we estimate the duration and length scale of a reconnection pulse as a function of the solar wind parameters. Considering a sudden decrease of the magnetic field near the magnetopause caused by the reconnection pulse, we study the relaxation process of the magnetic barrier. We find that the relaxation time is longer than the duration of the reconnection pulse for large Alfved-Mach numbers. (C) 2003 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Farrugia, C.J.; Biernat, H.K.

    Ionospheric conductivity effects on electrostatic field penetration into the ionosphere
[Text] / V. V. Denisenko [et al.] // Nat. Hazards Earth Syst. Sci. - 2008. - Vol. 8, Is. 5. - P1009-1017. - Cited References: 60. - This work is supported by grant 07-05-00135 from the Russian Foundation for Basic Research and by the Programs 16.3 and 2.16 of the Russian Academy of Sciences. Further support is due to the Austrian "Fonds zur Forderung der wissenschaftlichen Forschung" under project P20145-N16. We acknowledge support by the Austrian Academy of Sciences, "Verwaltungstelle fur Auslandsbeziehungen", and the Russian Academy of Sciences. Part of this research was done during academic visits of V. V. 'Denisenko to the Space Research Institute of the Austrian Academy of Sciences in Graz as well as during an academic visit of H. K. Biernat to the Institute of Computational Modelling of the Russian Academy of Sciences in Krasnoyarsk. . - ISSN 1561-8633
РУБ Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences + Water Resources

Аннотация: The classic approach to calculate the electrostatic field penetration, from the Earth's surface into the ionosphere, is to consider the following equation del. ((sigma) over cap del Phi) =0 where (sigma) over cap and Phi are the electric conductivity and the potential of the electric field, respectively. The penetration characteristics strongly depend on the conductivities of atmosphere and ionosphere. To estimate the electrostatic field penetration up to the orbital height of DEMETER satellite (about 700 km) the role of the ionosphere must be analyzed. It is done with help of a special upper boundary condition for the atmospheric electric field. In this paper, we investigate the influence of the ionospheric conductivity on the electrostatic field penetration from the Earth's surface into the ionosphere. We show that the magnitude of the ionospheric electric field penetrated from the ground is inverse proportional to the value of the ionospheric Pedersen conductance. So its typical value in day-time is about hundred times less than in night-time.


Доп.точки доступа:
Denisenko, V.V.; Денисенко, Валерий Васильевич; Boudjada, M.Y.; Horn, M.; Pomozov, E.V.; Помозов, Егор Владимирович; Biernat, H.K.; Schwingenschuh, K.; Lammer, H.; Prattes, G.; Cristea, E.

    Model of the ionospheric electric field induced by streams in the plasma layer
[Текст] / V. V. Denisenko, A. V. Kitaev // Geomagn. Aeron. - 2000. - Vol. 40, Is. 1. - С. 49-55. - Cited References: 15 . - ISSN 0016-7940
РУБ Geochemistry & Geophysics



Доп.точки доступа:
Kitaev, A.V.; Денисенко, Валерий Васильевич

    Optodynamic phenomena in aggregates of polydisperse plasmonic nanoparticles
[Text] / A. E. Ershov [et al.] // Appl. Phys. B-Lasers Opt. - 2014. - Vol. 115, Is. 4. - P. 547-560, DOI 10.1007/s00340-013-5636-6. - Cited References: 48. - Authors are thankful to Prof. V. A. Markel (University of Pennsylvania) for supplying program codes for realization of the coupled dipole method for polydisperse metal nanoparticle aggregates. This research was supported by the Russian Academy of Sciences under the Grants 24.29, 24.31, III.9.5, 43, SB RAS-SFU (101); Ministry of Education and Science of Russian Federation under Contract 14.B37.21.0457. . - ISSN 0946-2171. - ISSN 1432-0649
РУБ Optics + Physics, Applied

Аннотация: We propose an optodynamical model of interaction of pulsed laser radiation with aggregates of spherical metallic nanoparticles embedded into host media. The model takes into account polydispersity of particles, pair interactions between the particles, dissipation of absorbed energy, heating and melting of the metallic core of particles and of their polymer adsorption layers, and heat exchange between electron and ion components of the particle material as well as heat exchange with the interparticle medium. Temperature dependence of the electron relaxation constant of the particle material and the effect of this dependence on interaction of nanoparticles with laser radiation are first taken into consideration. We study in detail light-induced processes in the simplest resonant domains of multiparticle aggregates consisting of two particles of an arbitrary size in aqueous medium. Optical interparticle forces are realized due to the light-induced dipole interaction. The dipole moment of each particle is calculated by the coupled dipole method (with correction for the effect of higher multipoles). We determined the role of various interrelated factors leading to photomodification of resonant domains and found an essential difference in the photomodification mechanisms between polydisperse and monodisperse nanostructures.

WOS,
Scopus

Держатели документа:
[Ershov, A. E.
Karpov, S. V.
Semina, P. N.] Russian Acad Sci, LV Kirenski Inst Phys, Krasnoyarsk 660036, Russia
[Gavrilyuk, A. P.] Russian Acad Sci, Inst Computat Modeling, Krasnoyarsk 660036, Russia
[Gavrilyuk, A. P.
Karpov, S. V.] Siberian Fed Univ, Krasnoyarsk 660028, Russia
ИФ СО РАН
ИВМ СО РАН

Доп.точки доступа:
Ershov, A.E.; Gavrilyuk, A.P.; Гаврилюк, Анатолий Петрович; Karpov, S.V.; Semina, P.N.; Russian Academy of Sciences [24.29, 24.31, III.9.5, 43, SB RAS-SFU (101)]; Ministry of Education and Science of Russian Federation [14.B37.21.0457]