Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 5

    Roche lobe effects on the atmospheric loss from "Hot Jupiters"
[Text] / N. V. Erkaev [et al.] // Astron. Astrophys. - 2007. - Vol. 472, Is. 1. - P329-334, DOI 10.1051/0004-6361:20066929. - Cited References: 26 . - ISSN 0004-6361
РУБ Astronomy & Astrophysics

Аннотация: Context. A study of the mass loss enhancement for very close "Hot Jupiters" due to the gravitational field of the host star is presented. Aims. The influence of the proximity to a planet of the Roche lobe boundary on the critical temperature for blow-off conditions for estimating the increase of the mass loss rate through hydrodynamic blow-off for close-in exoplanets is investigated. Methods. We consider the gravitational potential for a star and a planet along the line that joins their mass centers and the energy balance equation for an evaporating planetary atmosphere including the effect of the stellar tidal force on atmospheric escape. Results. By studying the effect of the Roche lobe on the atmospheric loss from short-periodic gas giants we derived reasonably accurate approximate formulas to estimate atmospheric loss enhancement due to the action of tidal forces on a "Hot Jupiter" and to calculate the critical temperature for the onset of "geometrical blow-off", which are valid for any physical values of the Roche lobe radial distance. Using these formulas, we found that the stellar tidal forces can enhance the hydrodynamic evaporation rate from TreS-1 and OGLE-TR-56b by about 2 fold, while for HD 209458b we found an enhancement of about 50%. For similar exoplanets which are closer to their host star than OGLE-TR-56b, the mass loss enhancement can be even larger. Moreover, we showed that the effect of the Roche lobe allows "Hot Jupiters" to reach blow-off conditions at temperatures which are less than expected due to the stellar X-ray and EUV heating.


Доп.точки доступа:
Erkaev, N.V.; Еркаев, Николай Васильевич; Kulikov, Y.N.; Lammer, H.; Selsis, F.; Langmayr, D.; Jaritz, G.F.; Biernat, H.K.

    Planetary ENA imaging: Venus and a comparison with Mars
[Text] / H. Gunell [et al.] // Planet Space Sci. - 2005. - Vol. 53, Is. 4. - P433-441, DOI 10.1016/j.pss.2004.07.021. - Cited References: 21 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: We present simulated images of energetic neutral atoms (ENAs) produced in charge exchange collisions between solar wind protons and neutral atoms in the exosphere of Venus, and make a comparison with earlier results for Mars. The images are found to be dominated by two local maxima. One produced by charge exchange collisions in the solar wind, upstream of the bow shock, and the other close to the dayside ionopause. The simulated ENA fluxes at Venus are lower than those obtained in similar simulations of ENA images at Mars at solar minimum conditions, and close to the fluxes at Mars at solar maximum. Our numerical study shows that the ENA flux decreases with an increasing ionopause altitude. The influence of the Venus nighttime hydrogen bulge on the ENA emission is small. (C) 2004 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Gunell, H.; Holmstrom, M.; Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич

    Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations?
[Text] / H. . Lammer [et al.] // Astron. Astrophys. - 2009. - Vol. 506, Is. 1. - P399-410, DOI 10.1051/0004-6361/200911922. - Cited References: 46. - The authors thank the anonymous referee for constructive comments and suggestions which helped to improve the paper. H. Lammer, P. Odert, M. Leitzinger, M. L. Khodachenko and A. Hanslmeier gratefully acknowledge the Austrian Fonds zur Forderung der wissenschaftlichen Forschung (FWF grant P19446) for supporting this project. M. Panchenko and M. L. Khodachenko acknowledge also the Austrian Fonds zur Forderung der wissenschaftlichen Forschung (project P20680-N16). H. Lammer, H. I. M. Lichtenegger, H. K. Biernat, Yu. N. Kulikov and N. V. Erkaev thank the AAS "Verwaltungsstelle fur Auslandsbeziehungen" and the RAS. H. Lammer, H. I. M. Lichtenegger, M. L. Khodachenko and Yu. N. Kulikov acknowledge support from the Helmholtz-Gemeinschaft as this research has been supported by the Helmholtz Association through the research alliance "Planetary Evolution and Life". H. Lammer, M. L. Khodachenko, T. Penz, and Yu. N. Kulikov also acknowledge the International Space Science Institute (ISSI; Bern, Switzerland) and the ISSI teams "Evolution of Habitable Planets" and "Evolution of Exoplanet Atmospheres and their Characterization". H. K. Biernat acknowledges additional support due to the Austrian Science Fund under project P20145-N16. The authors also acknowledge fruitful discussions during various meetings related to the Europlanet N2 activities as well as within the N2 Exoplanet discipline working group DWG 7. T. Penz and G. Micela acknowledge support by the Marie Curie Fellowship Contract No. MTKD-CT-2004-002769 of the project "The influence of stellar high radiation on planetary atmospheres". The authors also thank the Austrian Ministry bm:bwk and ASA for funding the CoRoT project. . - ISSN 0004-6361
РУБ Astronomy & Astrophysics

Аннотация: Aims. We study the possible atmospheric mass loss from 57 known transiting exoplanets around F, G, K, and M-type stars over evolutionary timescales. For stellar wind induced mass loss studies, we estimate the position of the pressure balance boundary between Coronal Mass Ejection (CME) and stellar wind ram pressures and the planetary ionosphere pressure for non- or weakly magnetized gas giants at close orbits. Methods. The thermal mass loss of atomic hydrogen is calculated by a mass loss equation where we consider a realistic heating efficiency, a radius-scaling law and a mass loss enhancement factor due to stellar tidal forces. The model takes into account the temporal evolution of the stellar EUV flux by applying power laws for F, G, K, and M-type stars. The planetary ionopause obstacle, which is an important factor for ion pick-up escape from non- or weakly magnetized gas giants is estimated by applying empirical power-laws. Results. By assuming a realistic heating efficiency of about 10-25% we found that WASP-12b may have lost about 6-12% of its mass during its lifetime. A few transiting low density gas giants at similar orbital location, like WASP-13b, WASP-15b, CoRoT-1b or CoRoT-5b may have lost up to 1-4% of their initial mass. All other transiting exoplanets in our sample experience negligible thermal loss (<= 1%) during their lifetime. We found that the ionospheric pressure can balance the impinging dense stellar wind and average CME plasma flows at distances which are above the visual radius of "Hot Jupiters", resulting in mass losses <2% over evolutionary timescales. The ram pressure of fast CMEs cannot be balanced by the ionospheric plasma pressure for orbital distances between 0.02-0.1 AU. Therefore, collisions of fast CMEs with hot gas giants should result in large atmospheric losses which may influence the mass evolution of gas giants with masses
Scopus,
Смотреть статью


Доп.точки доступа:
Lammer, H.; Odert, P.; Leitzinger, M.; Khodachenko, M.L.; Panchenko, M.; Kulikov, Y.N.; Zhang, T.L.; Lichtenegger, H.I.M.; Erkaev, N.V.; Еркаев, Николай Васильевич; Wuchterl, G.; Micela, G.; Penz, T.; Biernat, H.K.; Weingrill, J.; Steller, M.; Ottacher, H.; Hasiba, J.; Hanslmeier, A.; Austrian Fonds zur Forderung der wissenschaftlichen Forschung [P19446, P20680-N16]; Helmholtz Association; Austrian Science Fund [P20145-N16]; "The influence of stellar high radiation on planetary atmospheres" [MTKD-CT-2004-002769]

    Stellar wind interaction and pick-up ion escape of the Kepler-11 "super-Earths"
[Text] / K. G. Kislyakova [et al.] // Astron. Astrophys. - 2014. - Vol. 562. - Ст. A116, DOI 10.1051/0004-6361/201322933. - Cited References: 45. - K.G. Kislyakova, C.P. Johnstone, M.L. Khodachenko, H. Lammer, T. Luftinger and M. Gudel acknowledge the support by the FWF NFN project S116601-N16 "Pathways to Habitability: From Disks to Active Stars, Planets and Life", and the related EWE NFN subprojects, S116 604-N16 "Radiation & Wind Evolution from T Tauri Phase to ZAMS and Beyond". 5116 606-N16 "Magnetospheric Electrodynamics of Exoplanets", and S116607-N16 "Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions". T. Luftinger acknowledges also the support by the FWF project P19962-N16. K. G. Kislyakova, H. Lammer, and P. Odert thank also the Helmholtz Alliance project "Planetary Evolution and Life". P. Odert acknowledges support from the EWE project P22950-N16. The authors also acknowledge support from the EU FP7 project IMPEx (No.262863) and the EUROPLANET-RI projects, JRA3/EMDAF and the Na2 science WG5. N. V. Erkaev acknowledges support by the RFBR grant No 12-05-00152-a. Finally, the authors thank the International Space Science Institute (ISSI) in Bern, and the ISSI team "Characterizing stellar- and exoplanetary environments". This research was conducted using resources provided by the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N). The authors thank also the anonymous referee for his useful comments. . - ISSN 0004-6361. - ISSN 1432-0746
РУБ Astronomy & Astrophysics

Аннотация: Aims. We study the interactions between stellar winds and the extended hydrogen-dominated upper atmospheres of planets. We estimate the resulting escape of planetary pick-up ions from the five "super-Earths" in the compact Kepler-11 system and compare the escape rates with the efficiency of the thermal escape of neutral hydrogen atoms. Methods. Assuming the stellar wind of Kepler-11 is similar to the solar wind, we use a polytropic ID hydrodynamic wind model to estimate the wind properties at the planetary orbits. We apply a direct simulation Monte Carlo model to model the hydrogen coronae and the stellar wind plasma interaction around Kepler-11b-f within a realistic expected heating efficiency range of 15-40%. The same model is used to estimate the ion pick-up escape from the XUV heated and hydrodynamically extended upper atmospheres of Kepler-11b-f. From the interaction model, we study the influence of possible magnetic moments, calculate the charge exchange and photoionization production rates of planetary ions, and estimate the loss rates of pick-up H+ ions for all five planets. We compare the results between the five "super-Earths" and the thermal escape rates of the neutral planetary hydrogen atoms. Results. Our results show that a huge neutral hydrogen corona is formed around the planet for all Kepler-11b-f exoplanets. The non-symmetric form of the corona changes from planet to planet and is defined mostly by radiation pressure and gravitational effects. Non-thermal escape rates of pick-up ionized hydrogen atoms for Kepler-11 "super-Earths" vary between similar to.6.4x10(30) s(-1) and similar to 4.1 x10(31) s(-1), depending on the planet's orbital location and assumed heating efficiency. These values correspond to non-thermal mass loss rates of similar to 1.07 x 10(7) g s(-1) and similar to 6.8 x 10(2) g s(-1) respectively, which is a few percent of the thermal escape rates.

Полный текст (доступен только в локальной сети)

Держатели документа:
ИВМ СО РАН

Доп.точки доступа:
Kislyakova, K.G.; Johnstone, C.P.; Odert, P.; Erkaev, N.V.; Еркаев, Николай Васильевич; Lammer, H.; Luftinger, T.; Holmstrom, M.; Khodachenko, M.L.; Guedel, M.; FWF NFN project [S116601-N16]; EWE NFN subprojects T Tauri Phase [S116 604-N16]; "Magnetospheric Electrodynamics of Exoplanets" [5116 606-N16]; "Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions" [S116607-N16]; FWF project [P19962-N16]; EWE project [P22950-N16]; EU [262863]; EUROPLANET-RI projects [JRA3/EMDAF, Na2 science WG5]; RFBR [12-05-00152-a]

    Transit Lyman-alpha signatures of terrestrial planets in the habitable zones of M dwarfs
/ K. G. Kislyakova [et al.] // Astron. Astrophys. - 2019. - Vol. 623. - Ст. A131, DOI 10.1051/0004-6361/201833941. - Cited References:89. - We acknowledge the support by the Austria Science Fund (FWF) NFN project S116-N16 and the subprojects S11607-N16, S11606-N16 and S11604-N16. P.O., H.L., and N.V.E. acknowledge support from the Austrian Science Fund (FWF) project P25256-N27 "Characterizing Stellar and Exoplanetary Environments via Modeling of Lyman-alpha Transit Observations of Hot Jupiters". N.V.E. also acknowledges support by the RFBR grant No 16-52-14006. M.L.K. also acknowledges FWF projects I2939-N27 and the partial support by the Ministry of Education and Science of Russian federation (Grant No. RFMEFI61617X0084). I.F.S. acknowleges support of Russian Science Foundation project 18-12-00080. The software used in this work was in part developed by the DOE NNSA-ASC OASCR Flash Center at the University of Chicago. This research was conducted using resources provided by the Swedish National Infrastructure for Computing (SNIC) at the High Performance Computing Center North (HPC2N), Umea University, Sweden. The authors are very thankful to Dr. David Ehrenreich for providing the Ly-alpha spectra of GJ 436b, which were used in this article. We would also like to sincerely thank Dr. Vincent Bourrier and Baptiste Lavie for original processing of these spectra. . - ISSN 1432-0746
РУБ Astronomy & Astrophysics

Аннотация: Aims. We modeled the transit signatures in the Lyman-alpha (Ly-alpha) line of a putative Earth-sized planet orbiting in the habitable zone (HZ) of the M dwarf GJ 436. We estimated the transit depth in the Ly-alpha line for an exo-Earth with three types of atmospheres: a hydrogen-dominated atmosphere, a nitrogen-dominated atmosphere, and a nitrogen-dominated atmosphere with an amount of hydrogen equal to that of the Earth. For all types of atmospheres, we calculated in-transit absorption they would produce in the stellar Ly-alpha line. We applied it to the out-of-transit Ly-alpha observations of GJ 436 obtained by the Hubble Space Telescope (HST) and compared the calculated in-transit absorption with observational uncertainties to determine if it would be detectable. To validate the model, we also used our method to simulate the deep absorption signature observed during the transit of GJ 436b and showed that our model is capable of reproducing the observations. Methods. We used a direct simulation Monte Carlo (DSMC) code to model the planetary exospheres. The code includes several species and traces neutral particles and ions. It includes several ionization mechanisms, such as charge exchange with the stellar wind, photo- and electron impact ionization, and allows to trace particles collisions. At the lower boundary of the DSMC model we assumed an atmosphere density, temperature, and velocity obtained with a hydrodynamic model for the lower atmosphere. Results. We showed that for a small rocky Earth-like planet orbiting in the HZ of GJ 436 only the hydrogen-dominated atmosphere is marginally detectable with the Space Telescope Imaging Spectrograph (STIS) on board the HST. Neither a pure nitrogen atmosphere nor a nitrogen-dominated atmosphere with an Earth-like hydrogen concentration in the upper atmosphere are detectable. We also showed that the Ly-alpha observations of GJ 436b can be reproduced reasonably well assuming a hydrogen-dominated atmosphere, both in the blue and red wings of the Ly-alpha line, which indicates that warm Neptune-like planets are a suitable target for Ly-alpha observations. Terrestrial planets, on the other hand, can be observed in the Ly-alpha line if they orbit very nearby stars, or if several observational visits are available.

WOS,
Смотреть статью,
Scopus,
РИНЦ

Держатели документа:
Univ Vienna, Dept Astrophys, Turkenschanzstr 17, A-1180 Vienna, Austria.
Austrian Acad Sci, Space Res Inst, Schmiedlstr 6, A-8042 Graz, Austria.
Swedish Inst Space Phys, POB 812, S-98128 Kiruna, Sweden.
Russian Acad Sci, Inst Computat Modelling, Siberian Div, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
Inst Laser Phys SB RAS, Novosibirsk, Russia.

Доп.точки доступа:
Kislyakova, K. G.; Holmstrom, M.; Odert, P.; Lammer, H.; Erkaev, N., V; Khodachenko, M. L.; Shaikhislamov, I. F.; Dorfi, E.; Gudel, M.; Guedel, Manuel; Kislyakova, Kristina; Austria Science Fund (FWF) NFN project [S116-N16, S11606-N16, S11604-N16, S11607-N16]; Austrian Science Fund (FWF) [P25256-N27]; RFBR [16-52-14006]; FWF [I2939-N27]; Ministry of Education and Science of Russian federation [RFMEFI61617X0084]; Russian Science Foundation [18-12-00080]