Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 1

    How to distinguish between kink and sausage modes in flapping oscillations?
[Text] / D. I. Kubyshkina [et al.] // J. Geophys. Res-Space Phys. - 2014. - Vol. 119, Is. 4. - P. 3002-3015, DOI 10.1002/2013JA019477. - Cited References: 32. - We thank C. W. Carlson and J. P. McFadden for use of THEMIS ESA data; K. H. Glassmeier, U. Auster, and W. Baumjohann for the use of FGM data provided under the lead of the Technical University of Braunschweig and with financial support through the German Ministry for Economy and Technology and the German Center for Aviation and Space (DLR) under contract 50 OC 0302. The work was partly supported by SPbU grant 11.38.84.12, by RFBR grants 12-05-00152-a and 12-05-00918-a, and by the grant for support of leading Scientific schools 2836.2014.5. The work of S. Dubyagin and N. Ganushkina was partly supported by the Academy of Finland. This work was supported by the Austrian Science Fund (FWF): I193-N16. N. V. E acknowledges the support by the International Space Science Institute (ISSI, Switzerland) and discussions within the ISSI Team 214 on Flow-Driven Instabilities of the Sun-Earth System. The research has received funding also from the European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement 269198-Geoplasmas (Marie Curie International Research Staff Exchange Scheme) and 218816 (SOTERIA project). . - ISSN 2169-9380. - ISSN 2169-9402
РУБ Astronomy & Astrophysics

Аннотация: Flapping waves are most noticeable large-scale perturbations of the magnetotail current sheet, whose nature is still under discussion. They represent rather slow (an order of magnitude less than typical Alfven speed) waves propagating from the center of the sheet to its flanks with a typical speed of 20-60 km/s, amplitude of 1-2 R-e and quasiperiod of 2-10 min. The double-gradient MHD model, which was elaborated in Erkaev et al. (2007) predicts two (kink and sausage) modes of the flapping waves with differences in their geometry and propagation velocity, but the mode structure is hard to resolve observationally. We investigate the possibility of mode identification by observing the rotation of magnetic field and plasma velocity vectors from a single spacecraft. We test theoretical results by analyzing the flapping oscillations observed by Time History of Events and Macroscale Interactions during Substorms spacecraft and confirm that character of observed rotation is consistent with kink mode determination made by using multispacecraft methods. Also, we checked how the existence of some obstructive conditions, such as noise, combined modes, and multiple sources of the flapping oscillations, can affect on the possibility of the modes separation with suggested method.

Полный текст (доступен только в локальной сети)

Держатели документа:
ИВМ СО РАН

Доп.точки доступа:
Kubyshkina, D.I.; Sormakov, D.A.; Sergeev, V.A.; Semenov, V.S.; Erkaev, N.V.; Еркаев, Николай Васильевич; Kubyshkin, I.V.; Ganushkina, N.Y.; Dubyagin, S.V.; German Ministry for Economy and Technology; German Center for Aviation and Space (DLR) [50 OC 0302]; SPbU [11.38.84.12]; RFBR [12-05-00152-a, 12-05-00918-a]; grant for support of leading Scientific schools [2836.2014.5]; Academy of Finland; Austrian Science Fund (FWF) [I193-N16]; International Space Science Institute (ISSI, Switzerland); European Union [269198, 218816]