Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 7

    MHD modeling of the double-gradient (kink) magnetic instability
/ D.B. Korovinskiy [et al.] // J. Geophys. Res-Space Phys. - 2013. - Vol. 118, Is. 3. - P1146-1158, DOI 10.1002/jgra.50206. - Cited References: 39. - This work is supported by the Austrian Science Fund (FWF): I193-N16, by the Onderzoekfonds KU Leuven (Research Fund KU Leuven), by RFBR Grants 12-05-00918-a and 12-05-00152-a, and by SPSU Grants 11.38.47.2011 and 11.38.84.2012. The research has received funding also from the European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement 269198-Geoplasmas (Marie Curie International Research Staff Exchange Scheme) and 218816 (SOTERIA project). The simulations were conducted on the resources of the Vlaams Supercomputer Centrum (VSC) at the Katholieke Universiteit Leuven. N.V.E., V.S.S. and D.B.K. thank also ISSI for hospitality and financial support. The authors thank reviewers for their comments, which gave us the substantial aid in preparing of this manuscript. . - 13. - ISSN 2169-9380
РУБ Astronomy & Astrophysics

Аннотация: The paper presents the detailed numerical investigation of the "double-gradient mode," which is believed to be responsible for the magnetotail flapping oscillations-the fast vertical (normal to the layer) oscillations of the Earth's magnetotail plasma sheet with a quasiperiod similar to 100-200 s. The instability is studied using the magnetotail near-equilibrium configuration. For the first time, linear three-dimensional numerical analysis is complemented with full 3-D MHD simulations. It is known that the "double-gradient mode" has unstable solutions in the region of the tailward growth of the magnetic field component, normal to the current sheet. The unstable kink branch of the mode is the focus of our study. Linear MHD code results agree with the theory, and the growth rate is found to be close to the peak value, provided by the analytical estimates. Full 3-D simulations are initialized with the numerically relaxed magnetotail equilibrium, similar to the linear code initial condition. The calculations show that current layer with tailward gradient of the normal component of the magnetic field is unstable to wavelengths longer than the curvature radius of the field line. The segment of the current sheet with the earthward gradient of the normal component makes some stabilizing effect (the same effect is registered in the linearized MHD simulations) due to the minimum of the total pressure localized in the center of the sheet. The overall growth rate is close to the theoretical double-gradient estimate averaged over the computational domain.

Полный текст на сайте правообладателя


Доп.точки доступа:
Korovinskiy, D.B.; Divin, A.; Erkaev, N.V.; Еркаев, Николай Васильевич; Ivanova, V.V.; Ivanov, I.B.; Semenov, V.S.; Lapenta, G.; Markidis, S.; Biernat, H.K.; Zellinger, M.

    On Kelvin-Helmholtz instability due to the solar wind interaction with unmagnetized planets
[Text] / U. V. Amerstorfer [et al.] // Planet Space Sci. - 2007. - Vol. 55, Is. 12. - P1811-1816, DOI 10.1016/j.pss.2007.01.015. - Cited References: 20 . - ISSN 0032-0633
РУБ Astronomy & Astrophysics

Аннотация: In this paper, the Kelvin-Helmholtz instability is studied by solving the ideal MHD equations for a compressible plasma. A transition layer of finite thickness between two plasmas, across which the magnitude of the velocity and the density change, is assumed. Growth rates are presented for the transverse case, i.e., the flow velocity is perpendicular to the magnetic field. If only the velocity changes across the boundary layer and the density is kept constant, an important quantity affecting the growth of the Kelvin-Helmholtz instability is the magnetosonic Mach number, which characterizes compressibility. The growth rates for the case when both, the velocity and the density, change are very sensitive to the ratio of the upper plasma density to the lower plasma density: a decrease of the density ratio yields a decrease of the growth rate. Including a density profile is very important for the application of the Kelvin-Helmholtz instability to the solar wind flow around unmagnetized planets, e.g., Venus, where the plasma density increases from the magnetosheath to the ionosphere. (C) 2007 Elsevier Ltd. All rights reserved.


Доп.точки доступа:
Amerstorfer, U.V.; Erkaev, N.V.; Еркаев, Николай Васильевич; Langmayr, D.; Biernat, H.K.

    The Kelvin-Helmholtz instability at Venus: What is the unstable boundary?
[Text] / U. V. Mostl [et al.] // Icarus. - 2011. - Vol. 216, Is. 2. - P476-484, DOI 10.1016/j.icarus.2011.09.012. - Cited References: 27. - This work is supported by the Austrian Science Fund Project P21051-N16 and also by RFBR Grant No. 09-05-91000-ANF_a. H.L. and H.G. are supported by the Helmholtz Association through the research alliance "Planetary Evolution and Life" and by the Austrian Science Fund Project I199-N16. M.Z. and D.K. are supported by the Austrian Science Fund Project I193-N16. . - ISSN 0019-1035
РУБ Astronomy & Astrophysics

Аннотация: The Kelvin-Helmholtz instability gained scientific attention after observations at Venus by the spacecraft Pioneer Venus Orbiter gave rise to speculations that the instability contributes to the loss of planetary ions through the formation of plasma clouds. Since then, a handful of studies were devoted to the Kelvin-Helmholtz instability at the ionopause and its implications for Venus. The aim of this study is to investigate the stability of the two instability-relevant boundary layers around Venus: the induced magnetopause and the ionopause. We solve the 2D magnetohydrodynamic equations with the total variation diminishing Lax-Friedrichs algorithm and perform simulation runs with different initial conditions representing the situation at the boundary layers around Venus. Our results show that the Kelvin-Helmholtz instability does not seem to be able to reach its nonlinear vortex phase at the ionopause due to the very effective stabilizing effect of a large density jump across this boundary layer. This seems also to be true for the induced magnetopause for low solar activity. During high solar activity, however, there could occur conditions at the induced magnetopause which are in favour of the nonlinear evolution of the instability. For this situation, we estimated roughly a growth rate for planetary oxygen ions of about 7.6 x 10(25) s(-1), which should be regarded as an upper limit for loss due to the Kelvin-Helmholtz instability. (C) 2011 Elsevier Inc. All rights reserved.


Доп.точки доступа:
Mostl, U.V.; Erkaev, N.V.; Еркаев, Николай Васильевич; Zellinger, M.; Lammer, H.; Groller, H.; Biernat, H.K.; Korovinskiy, D.

    How to distinguish between kink and sausage modes in flapping oscillations?
[Text] / D. I. Kubyshkina [et al.] // J. Geophys. Res-Space Phys. - 2014. - Vol. 119, Is. 4. - P. 3002-3015, DOI 10.1002/2013JA019477. - Cited References: 32. - We thank C. W. Carlson and J. P. McFadden for use of THEMIS ESA data; K. H. Glassmeier, U. Auster, and W. Baumjohann for the use of FGM data provided under the lead of the Technical University of Braunschweig and with financial support through the German Ministry for Economy and Technology and the German Center for Aviation and Space (DLR) under contract 50 OC 0302. The work was partly supported by SPbU grant 11.38.84.12, by RFBR grants 12-05-00152-a and 12-05-00918-a, and by the grant for support of leading Scientific schools 2836.2014.5. The work of S. Dubyagin and N. Ganushkina was partly supported by the Academy of Finland. This work was supported by the Austrian Science Fund (FWF): I193-N16. N. V. E acknowledges the support by the International Space Science Institute (ISSI, Switzerland) and discussions within the ISSI Team 214 on Flow-Driven Instabilities of the Sun-Earth System. The research has received funding also from the European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement 269198-Geoplasmas (Marie Curie International Research Staff Exchange Scheme) and 218816 (SOTERIA project). . - ISSN 2169-9380. - ISSN 2169-9402
РУБ Astronomy & Astrophysics

Аннотация: Flapping waves are most noticeable large-scale perturbations of the magnetotail current sheet, whose nature is still under discussion. They represent rather slow (an order of magnitude less than typical Alfven speed) waves propagating from the center of the sheet to its flanks with a typical speed of 20-60 km/s, amplitude of 1-2 R-e and quasiperiod of 2-10 min. The double-gradient MHD model, which was elaborated in Erkaev et al. (2007) predicts two (kink and sausage) modes of the flapping waves with differences in their geometry and propagation velocity, but the mode structure is hard to resolve observationally. We investigate the possibility of mode identification by observing the rotation of magnetic field and plasma velocity vectors from a single spacecraft. We test theoretical results by analyzing the flapping oscillations observed by Time History of Events and Macroscale Interactions during Substorms spacecraft and confirm that character of observed rotation is consistent with kink mode determination made by using multispacecraft methods. Also, we checked how the existence of some obstructive conditions, such as noise, combined modes, and multiple sources of the flapping oscillations, can affect on the possibility of the modes separation with suggested method.

Полный текст (доступен только в локальной сети)

Держатели документа:
ИВМ СО РАН

Доп.точки доступа:
Kubyshkina, D.I.; Sormakov, D.A.; Sergeev, V.A.; Semenov, V.S.; Erkaev, N.V.; Еркаев, Николай Васильевич; Kubyshkin, I.V.; Ganushkina, N.Y.; Dubyagin, S.V.; German Ministry for Economy and Technology; German Center for Aviation and Space (DLR) [50 OC 0302]; SPbU [11.38.84.12]; RFBR [12-05-00152-a, 12-05-00918-a]; grant for support of leading Scientific schools [2836.2014.5]; Academy of Finland; Austrian Science Fund (FWF) [I193-N16]; International Space Science Institute (ISSI, Switzerland); European Union [269198, 218816]

    Roll waves in two-layer Hele-Shaw flows
[Text] / I. V. Stepanova, A. A. Chesnokov, V. Y. Liapidevskii // ALL-RUSSIAN CONFERENCE ON NONLINEAR WAVES: THEORY AND NEW APPLICATIONS : IOP PUBLISHING LTD, 2016. - Vol. 722: All-Russian Conference on Nonlinear Waves - Theory and New Applications (FEB 29-MAR 02, 2016, Novosibirsk, RUSSIA). - Ст. UNSP 012036. - (Journal of Physics Conference Series), DOI 10.1088/1742-6596/722/1/012036. - Cited References:13 . -
РУБ Physics, Applied + Physics, Multidisciplinary
Рубрики:
STABILITY
   CELL

Аннотация: In this paper we study the emergence and development of roll waves in two-layer fluid flow in a Hele-Shaw cell. We propose the mathematical model of such flow and define the conditions of transition from stable state to instability in the form of the roll waves. We find out the physical parameters of flows at which the roll waves exist. A linear stability analysis and the Whitham criterion of roll waves existence are used for solving the problem and arrive to identical conclusions on depths of upper and lower layers at which violation of flow stability occurs. The numerical calculations for the obtained mathematical model at found ratios of densities, viscosities and depths of layers are performed. They confirm development of the roll waves of finite amplitude from small oscillations of the interface.

WOS,
Смотреть статью

Держатели документа:
Novosibirsk State Univ, Novosibirsk, Russia.
Inst Computat Modelling SB RAS, Krasnoyarsk, Russia.
Lavrentyev Inst Hydrodynam SB RAS, Novosibirsk, Russia.

Доп.точки доступа:
Stepanova, I. V.; Chesnokov, A. A.; Liapidevskii, V. Yu

    Convection regimes induced by local boundary heating in a liquid-gas system
/ V. B. Bekezhanova, A. S. Ovcharova // J. Fluid Mech. - 2019. - Vol. 873. - Ст. PII S0022112019004336. - P441-458, DOI 10.1017/jfm.2019.433. - Cited References:21. - The authors declare that they have no conflict of interests. The authors express gratitude to Professor O. N. Goncharova for useful discussions, as well as to I. A. Shefer for assistance in the image processing. The authors are very grateful to the anonymous reviewers for extremely interesting and constructive comments and remarks. This work was partially supported by the Russian Foundation for Basic Research (project no. 17-08-00291). . - ISSN 0022-1120. - ISSN 1469-7645
РУБ Mechanics + Physics, Fluids & Plasmas
Рубрики:
STABILITY
   FILMS

   FLOWS

Кл.слова (ненормированные):
instability control -- Marangoni convection

Аннотация: In the framework of the complete formulation of the conjugate problem, the liquid-gas flow structure arising upon local heating using thermal sources is investigated numerically. The two-layer system is confined by solid impermeable walls. The Navier-Stokes equations in the Boussinesq approximation in the 'streamfunction-vorticity' variables are used to describe the media motion. The dynamic conditions at the interface are formulated in terms of the tangential and normal velocities, while the temperature conditions at the external boundaries of the system take into account the presence of local heaters. The influence of the number of heaters and heating modes on the dynamics and character of the appearing convective regimes is analysed. The steady and commutated heating modes for one and two heaters arranged at the lower boundary are investigated. The heating initiates convective and thermocapillary mechanisms causing the fluid motion. Transient regimes with the successive formation of two-vortex, quadruple-vortex and two-vortex flows are observed before the stabilization of the system in the uniform heating mode. A stable thermocapillary deflection appears at the interface above the heater. The commutated mode of heating entails oscillations of the interface with a change in the deflection form and the formation of travelling vortices in the fluids. The impact of particular mechanisms on the flow patterns is analysed. The paper presents typical distributions of the velocity and temperature fields in the system and the position of the interface for the considered cases.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Inst Computat Modeling SB RAS, Dept Differential Equat Mech, 50-44 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Math & Comp Sci, 79 Svobodny St, Krasnoyarsk 660041, Russia.
Lavrentyev Inst Hydrodynam SE RAS, Dept Appl Hydrodynam, 15 Acad Lavrentyev Ave, Novosibirsk 630090, Russia.

Доп.точки доступа:
Bekezhanova, Victoria B.; Ovcharova, A. S.; Bekezhanova, Victoria; Russian Foundation for Basic Research [17-08-00291]

    Thermocapillary Convection with Phase Transition in the 3D Channel in a Weak Gravity Field
/ V. B. Bekezhanova, O. N. Goncharova // Microgravity Sci. Technol. - 2019. - Vol. 31, Is. 4. - P357-376, DOI 10.1007/s12217-019-9691-4. - Cited References:38. - This work was partially supported by the Russian Foundation for Basic Research and the government of Krasnoyarsk region (project No. 18-41-242005). . - ISSN 0938-0108. - ISSN 1875-0494
РУБ Engineering, Aerospace + Thermodynamics + Mechanics

Аннотация: The regimes of joint flows of the evaporating liquid and vapor-gas mixture in a 3D rectangular channel are studied with the help of a partially invariant solution for the convection equations. The effects of thermodiffusion and diffusive thermal conductivity in the gas-vapor phase are additionally taken into account in the governing equations and under interface conditions. A numerical simulation of the 3D fluid flows is carried out for the liquid-gas system like ethanol-nitrogen and HFE-7100-nitrogen under microgravity conditions. The influence of the thermal load, liquid layer thickness and heat-transfer liquid type on the structure of the fluid flows and evaporation characteristics is investigated. The solution allows one to describe the formation of longitudinal thermocapillary rolls observed in the experiments. The evaporative mass flow rate depends essentially on the thermophysical properties of the working liquid. Spatial size and a shape of thermal patterns are determined by the applied thermal load and they can be varied with the change in the liquid layer thickness. Topological structure of the flows (double or quadruple vortex composition) is defined by the combined influence of the thermocapillary and convective mechanisms and phase transition effects. The results discussed in the paper provide motivation for the development of a classification of the 3D flow regimes similar to the Napolitano's classification for 2D flows.

WOS,
Смотреть статью,
Scopus

Держатели документа:
RAS, Inst Computat Modelling SB, Dept Differential Equat Mech, Akademgorodok 50-44, Krasnoyarsk 660036, Russia.
Altai State Univ, Pr Lenina 61, Barnaul 656049, Russia.

Доп.точки доступа:
Bekezhanova, V. B.; Goncharova, O. N.; Russian Foundation for Basic Research; government of Krasnoyarsk region [18-41-242005]