Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 5

    Stellar-planetary relations: Atmospheric stability as a prerequisite for planetary habitability
[Text] / H. Lammer [et al.] // Celest. Mech. Dyn. Astron. - 2005. - Vol. 92, Is. 01.03.2013. - P273-285, DOI 10.1007/s10569-005-0004-4. - Cited References: 27 . - ISSN 0923-2958
РУБ Astronomy & Astrophysics + Mathematics, Interdisciplinary Applications

Аннотация: The region around a star where a life-supporting biosphere can evolve is the so-called Habitable Zone (HZ). The current definition of the HZ is based only on the mass-luminosity relation of the star and climatological and meteorological considerations of Earth-like planets, but neglects atmospheric loss processes due to the interaction with the stellar radiation and particle environment. From the knowledge of the planets in the Solar System, we know that planets can only evolve into a habitable world if they have a stable orbit around its host star and if they keep the atmosphere and water inventory during: (i) the period of heavy bombardment by asteroids and comets and (ii) during the host stars' active X-ray and extreme ultraviolet (XUV) and stellar wind periods. Impacts play a minor role for planets with the size and mass like Earth, while high XUV fluxes and strong stellar winds during the active periods of the young host star can destroy the atmospheres and water inventories. We show that XUV produced temperatures in the upper atmospheres of Earth-like planets can lead to hydrodynamic "blow off", resulting in the total loss of the planets water inventory and atmosphere, even if their orbits lie inside the HZ. Further, our study indicates that Earth-like planets inside the HZ of low mass stars may not develop an atmosphere, because at orbital distances closer than 0.3 AU, their atmospheres are highly affected by strong stellar winds and coronal mass ejections (CME's). Our study suggests that planetary magnetospheres will not protect the atmosphere of such planets, because the strong stellar wind of the young star can compress the magnetopause to the atmospheric obstacle. Moreover, planets inside close-in HZ's are tidally locked, therefore, their magnetic moments are weaker than those of an Earth-like planet at 1 AU. Our results indicate that Earth-like planets in orbits of low mass stars may not develop stable biospheres. From this point of view, a HZ, where higher life forms like on Earth may evolve is possibly restricted to higher mass K stars and G stars.


Доп.точки доступа:
Lammer, H.; Kulikov, Y.N.; Penz, T.; Leitner, M.; Biernat, H.K.; Erkaev, N.V.; Еркаев, Николай Васильевич

    The effect of nanoparticle diffusion and thermophoresis on convective heat transfer of nanofluid in a circular tube
[Text] / I. I. Ryzhkov, A. V. Minakov // Int. J. Heat Mass Transf. - 2014. - Vol. 77. - P956-969, DOI 10.1016/j.ijheatmasstransfer.2014.05.045. - Cited References: 44. - This work is supported the Krasnoyarsk Regional Foundation of Scientific and Technical Activity (Grant No. 02/13) and the Russian President Grant No. MK-6296.2013.8. . - ISSN 0017-9310. - ISSN 1879-2189
РУБ Thermodynamics + Engineering, Mechanical + Mechanics

Аннотация: Laminar convective heat transfer of water-alumina nanofluid in a circular tube with uniform heat flux is investigated numerically on the basis of two-component model, which takes into account nanoparticle transport by diffusion and thermophoresis. A new expression for thermophoretic mobility is suggested on the basis of existing experimental results and theoretical concepts. It is shown that thermophoresis leads to a significant reduction of nanoparticle volume fraction in the boundary layer near the wall. The corresponding viscosity reduction causes the velocity increase near the wall and flattening of velocity profile near the tube axis to keep the mass flow rate constant. The decrease of wall shear stress leads to the decrease of the required pressure drop. The calculations for two-component model provide higher values of the local and average heat transfer coefficients in comparison with the one-component model. The difference does not exceed 10% and decreases with increasing the thermal Peclet number. The calculations for one-component model show the independence of local and average Nusselt numbers on the nanoparticle volume fraction. The results for two-component model predict the increase of Nusselt number when the thermophoretic effect becomes stronger. The effectiveness of water-alumina nanofluid is analyzed by plotting the average heat transfer coefficient against the required pumping power. It is shown that the nanofluid shows better performance than the base fluid in the range of low pumping power and, correspondingly, low inlet velocity. (C) 2014 Elsevier Ltd. All rights reserved.

WOS

Держатели документа:
[Ryzhkov, Ilya I.] SB RAS, Inst Computat Modelling, Krasnoyarsk 660036, Russia
[Minakov, Andrey V.] Siberian Fed Univ, Inst Engn Phys & Radio Elect, Krasnoyarsk 660041, Russia
ИВМ СО РАН

Доп.точки доступа:
Ryzhkov, I.I.; Рыжков, Илья Игоревич; Minakov, A.V.; Минаков, Андрей Викторович; Krasnoyarsk Regional Foundation of Scientific and Technical Activity [02/13]; Russian President Grant [MK-6296.2013.8]

    On the instability of convective flow in cylinder and possible secondary regimes
[Text] / V. B. Bekezhanova, V. K. Andreev // Fluid Dyn. Res. - 2014. - Vol. 46, Is. 4. - Ст. 41417, DOI 10.1088/0169-5983/46/4/041417. - Cited References: 28. - This work was supported financially in part by the Russian Foundation for Basic Research (project No. 14-01-00067) and in part by the Siberian Branch of the Russian Academy of Sciences (complex integration project No. 38). The authors gratefully acknowledge the above-mentioned sponsorships. . - ISSN 0169-5983. - ISSN 1873-7005
РУБ Mechanics + Physics, Fluids & Plasmas

Аннотация: A new exact solution of equations of free convection is constructed in the framework of the Oberbeck-Boussinesq approximation. The solution contains an independent parameter and describes the flow of a viscous heat-conducting liquid in the vertical cylinder with large radius. Complex rheology and radiative heating are taken into account. The considered problem reduces to the operator equation with strongly nonlinear operator. The solvability of the operator problem is proved. The iterative procedure for finding the free parameter is suggested. Three different classes of solution are obtained with the help of the procedure. The linear stability of all classes of solutions is studied numerically. Critical thermal mode is isolated. Evolution of oscillatory mode depending on Prandtl number is investigated. It is shown that under small Prandtl numbers oscillatory modes decay. If Prandtl numbers are not small a new instability type appears. This instability is connected with growing thermal disturbances. Another instability mechanism is discovered in the short waves domain. In this case the crisis is attributed to growing hydrodynamical disturbances. Secondary regimes arising in the hydrodynamical mechanism of the stability loss are calculated.

WOS

Держатели документа:
[Bekezhanova, V. B.] Inst Computat Modelling SB RAS, Krasnoyarsk, Russia
Siberian Fed Univ, Inst Math & Fundamental Informat, Krasnoyarsk 660041, Russia
ИВМ СО РАН

Доп.точки доступа:
Bekezhanova, V.B.; Бекежанова, Виктория Бахытовна; Andreev, V.K.; Андреев, Виктор Константинович; Russian Foundation for Basic Research [14-01-00067]; Siberian Branch of the Russian Academy of Sciences [38]

    The influence of nanoparticle migration on forced convective heat transfer of nanofluid under heating and cooling regimes
[Text] / S. V. Kozlova, I. I. Ryzhkov // Eur. Phys. J. E. - 2014. - Vol. 37, Is. 9. - Ст. 87, DOI 10.1140/epje/i2014-14087-0. - Cited References: 44. - The authors are grateful to Dr. A. V. Minakov for assistance in ANSYS Fluent numerical calculations. This work is supported the Krasnoyarsk Regional Foundation of Scientific and Technical Activity (Grant 02/13). . - ISSN 1292-8941. - ISSN 1292-895X
РУБ Chemistry, Physical + Materials Science, Multidisciplinary + Physics, Applied + Polymer Science

Аннотация: In this paper, laminar convective heat transfer of water-alumina nanofluid in a circular tube with uniform heat flux at the tube wall is investigated. The investigation is performed numerically on the basis of two-component model, which takes into account nanoparticle transport by diffusion and thermophoresis. Two thermal regimes at the tube wall, heating and cooling, are considered and the influence of nanoparticle migration on the heat transfer is analyzed comparatively. The intensity of thermophoresis is characterized by a new empirical model for thermophoretic mobility. It is shown that the nanoparticle volume fraction decreases (increases) in the boundary layer near the wall under heating (cooling) due to thermophoresis. The corresponding variations of nanofluid properties and flow characteristics are presented and discussed. The intensity of heat transfer for the model with thermophoresis in comparison to the model without thermophoresis is studied by plotting the dependence of the heat transfer coefficient on the Peclet number. The effectiveness of water-alumina nanofluid is analyzed by plotting the average heat transfer coefficient against the required pumping power. The analysis of the results reveals that the water-alumina nanofluid shows better performance in the heating regime than in the cooling regime due to thermophoretic effect.

WOS

Держатели документа:
[Kozlova, Sofya V.
Ryzhkov, Ilya I.] Inst Computat Modelling SB RAS, Krasnoyarsk 660036, Russia
ИВМ СО РАН

Доп.точки доступа:
Kozlova, S.V.; Ryzhkov, I.I.; Рыжков, Илья Игоревич; Krasnoyarsk Regional Foundation of Scientific and Technical Activity [02/13]

    Effect of Electric Field on Ion Transport in Nanoporous Membranes with Conductive Surface
/ D. V. Lebedev [et al.] // Pet. Chem. - 2018. - Vol. 58, Is. 6. - P474-481, DOI 10.1134/S0965544118060075. - Cited References:32. - This work was supported by the Russian Science Foundation, project no. 15-19-10017. The instrumental analysis of the materials was conducted at the Center for collective use of the Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences. . - ISSN 0965-5441. - ISSN 1555-6239
РУБ Chemistry, Organic + Chemistry, Physical + Energy & Fuels + Engineering,

Аннотация: The effect of an external electric field on the ionic conductivity and selective properties of ceramic membranes based on alumina nanofibers coated with a conductive carbon layer has been studied. It has been shown that the membranes are ideally polarizable in the polarizing voltage range of -500 to +500 mV and, therefore, can be used for implementing switchable ionic selectivity. Experiments have revealed that the membrane resistance decreases with a change in the applied potential from 0 to +/- 500 mV. It has been shown that the membrane selectivity can be switched from anion to cation by varying the external potential. The surface charge density of the membranes has been determined in terms of the Teorell-Meyer-Sievers model according to the experimental measurements of the membrane potential.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Inst Computat Modeling, Krasnoyarsk 660036, Russia.
St Petersburg State Univ, Inst Chem, St Petersburg 198504, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Lebedev, D. V.; Solodovnichenko, V. S.; Simunin, M. M.; Ryzhkov, I. I.; Russian Science Foundation [15-19-10017]