Труды сотрудников ИВМ СО РАН

w10=
Найдено документов в текущей БД: 29
   В19
   Б435

    Математическое моделирование в задачах охраны окружающей среды
[Текст] : монография / В.М. Белолипецкий, Ю.И.Шокин; РАН; Сиб. отд-ние; Ин-т вычислительных технологий; Вычисл. центр (г.Красноярск); Отв. ред. Г.А.Сапожников. - Новосибирск : ИНФОЛИО-пресс, 1997. - 239 с. : ил + табл. - Библиогр.: с.234-235. - ISBN 5-89590-004-6 : Б. ц.
УДК
ББК Б1в641 + В19

Кл.слова (ненормированные):
математика -- гидрология -- экология

Аннотация: Книга посвящена математическому моделированию задач, связанных с охраной окружающей среды. В ней излагаются примеры математического моделирования в этих задачах. Описываются задачи математической технологии, методологии системного анализа. Рассматриваются примеры математических моделей в экологии, математические модели для проблем охраны водных ресурсов и оптимального размещения промышленных предприятий. Приводятся модели водных экосистем, модели глобального развития. Книга рассчитана на математиков, экологов, биологов, гидрологов, географов, а также на студентов и аспирантов соответствующих специальностей.


Доп.точки доступа:
Шокин, Юрий Иванович
Экземпляры всего: 3
Фонд (3)
Свободны: Фонд (3)
   В25
   А67

    Численное решение задач динамики упругих тел
[Текст] : монография / С.А. Анисимов, И.О.Богульский ; РАН. Сиб. отд-ние; Ин-т гидродинамики им. М.А.Лаврентьева; Вычисл. центр (г.Красноярск); Краснояр. гос. ун-т. - Новосибирск : Новосибирский государственный университет, 1995. - 152 с. : ил. - Библиогр.: с.148-151. - ISBN 5-7615-0387-5 : Б. ц.
УДК
ББК В193.2

Кл.слова (ненормированные):
механика сплошной среды -- численные методы

Аннотация: В монографии излагаются теоретические основы эффективного метода численного интегрирования систем дифференциальных уранвений гиперболического типа, к которым сводятся задачи, описывающие нестационарные процессы в твердых телах, приводятся примеры решения задач. Основное внимание уделяется изучению возможностей применения метода для расчета разрывных решений. Предлагаются схемы решения двумерных задач динамики упругих тел, имеющие высокую точность, но лишенные недостатков, связанных с наличием у численного решения нефизических эффектов. Книга предназначена для широкого круга научных работников, аспирантов и студентов математических специальностей вузов, специализирующихся в области численных методов механики сплошной среды.


Доп.точки доступа:
Богульский, Игорь Олегович
Экземпляры всего: 1
Фонд (1)
Свободны: Фонд (1)
   Н54
   Б916

    Моделирование разрушения и трещиностойкость волокнистых металлокомпозитов
[Текст] : монография / А.Е. Буров; Отв. ред. Н.А. Махутов ; Рос. акад. наук. Сиб. отд-ние. Ин-т вычисл. моделирования. - Новосибирск : Наука, 2003. - 173 с. : ил, табл. - (Прочность. Механика разрушения. Ресурс. Безопасность технических систем). - Библиогр.: с. 161-170. - ISBN 5-02-031742-X : Б. ц.
УДК
ББК Н543.2-028.013в641



Доп.точки доступа:
Кокшаров, Игорь Ильич; Москвичев, Владимир Викторович; Burov A.E.
Экземпляры всего: 1
Фонд (1)
Свободны: Фонд (1)
   К20
   Т668

    Трещиностойкость и механические свойства конструкционных материалов технических систем
[Текст] : монография / В.В. Москвичев; Рос. акад. наук, Сиб. отд-ние, Ин-т вычисл. моделирования и др. ; Отв. ред. Ю. И. Шокин. - Новосибирск : Наука, 2002. - 334 с. : ил., табл. - (Прочность. Механика разрушения. Ресурс. Безопасность технических систем). - Библиогр.: с. 308-330. - ISBN 5-02-031990-2 : Б. ц.
УДК
ББК К206.22 + К415



Доп.точки доступа:
Махутов, Николай Андреевич; Черняев, Анатолий Петрович; Chernyaev A.P.; Букаемский, А.А.; Буров, Андрей Ефимович; Burov A.E.; Зырянов, И.А.; Козлов, А.Г.; Кокшаров, Игорь Ильич; Крушенко, Генрих Гаврилович; Krushenko G.G.; Лепихин, Анатолий Михайлович; Мишин, А.С.; Москвичева, Л.Ф.; Федорова, Е.Н.; Цыплюк, А.Н.; Шокин, Юрий Иванович \ред.\; Институт вычислительного моделирования СО РАН (Красноярск)
Экземпляры всего: 1
Фонд (1)
Свободны: Фонд (1)
   В25
   В26

    Оптимизация реогазодинамических систем
[Текст] : монография / Ю.А. Ведерников, В.А.Щепановский; РАН, Сиб. отд-ние, Вычисл. центр г. Красноярска, Госком по высшему образованию РФ, Новосиб. гос. техн. ун-т; Отв. ред. И.Е. Хорев. - Новосибирск : Наука, 1995. - 238 с. : ил + табл. - Библиогр.: с.218-235. - ISBN 5-02-029715-1 : Б. ц.
УДК
ББК В253



Доп.точки доступа:
Щепановский, Владимир Александрович
Экземпляры всего: 1
Фонд (1)
Свободны: Фонд (1)
   В25
   Б17

    Численное моделирование колебаний диссипативно однородных и неоднородных механических систем
[Текст] : монография / Базаров М.Б., Сафаров И.И., Шокин Ю.И. ; Отв. ред. Голушко С.К.; Рос. акад. наук. Сиб. Отд-ние. Ин-т вычисл. технологий. - Новосибирск : Сибирское отделение РАН ; Новосибирск : Студия Дизайн ИНФОЛИО, 1996. - 187 с. : ил + табл. - Библиогр.: с.175-185. - ISBN 5-7692-0023-5 : 10000.00 р.
УДК

Кл.слова (ненормированные):
прикладная математика -- механика



Доп.точки доступа:
Шокин, Юрий Иванович; Сафаров, И.И.
Экземпляры всего: 3
Фонд (3)
Свободны: Фонд (3)
539.3
К 65

    Контроль точности решения при анализе напряженно-деформированного состояния высокоответственных технических объектов
[Текст] : статья / А. Н. Рогалев, С. В. Доронин, А. А. Рогалев // Системы. Методы. Технологии. - 2015. - № 3. - С. 32-38 . - ISSN 2077-5415
   Перевод заглавия: Solution accuracy control for analysis of stress-strain state of critical technical objects
УДК

Аннотация: В статье рассматриваются подходы к оценке вычислительной ошибки при решении системы линейных алгебраических уравнений, в качестве матрицы коэффициентов которой рассматривается матрица жесткости конечно-элементной модели технического объекта. Предлагаемый подход предполагает, что уровень вычислительной ошибки определяется структурой и значениями матрицы коэффициентов, и заключается в численном решении системы линейных уравнений с матрицей жесткости и такой специально подобранной правой частью, для которой известно точное решение. Сравнение численного и точного решений позволяет получить оценку вычислительной ошибки, позволяющую судить о приемлемости построенной конечно-элементной модели. Получение указанной оценки является дополнительной процедурой контроля точности численного решения при анализе его сходимости путем последовательного уменьшения шага конечных элементов. Развиваемый подход весьма актуален для конструкций ответственных технических объектов, где цена ошибки при проектных расчетах оказывается неприемлемо высокой. Для реализации предлагаемого подхода организован интерфейс между пакетом конечно-элементного моделирования ANSYS и вычислительным пакетом компьютерной алгебры Wolfram Mathematica. В качестве примера приводится получение оценки вычислительной ошибки численного решения системы линейных алгебраических уравнений с матрицей жесткости силовой конструкции бака высокого давления для перспективных электрореактивных двигателей космических аппаратов. Силовая конструкция представляет собой оболочку давления, подвешенную на системе вантов с регулируемым уровнем натяжения, закрепленных, в свою очередь, на пространственной стержневой системе - силовой структуре корпуса космического аппарата. Для рассматриваемой конструкции найден уровень конечно-элементной дискретизации, обеспечивающий сходимость численного решения.
The paper is devoted to approaches to a problem of numerical error evaluation when solving the system of linear equations. The stiffness matrix of a finite-element model of a technical object is a coefficient matrix of the system of linear equations. The approach proposed supposes that the level of numerical error is determined by a structure and magnitude of coefficient matrix. The approach consists of numerical solving system of linear equations with stiffness matrix and special right-hand member with exact solution known. Comparison of numerical and exact solutions allows evaluating numerical error and making decision on the quality of finite-element model. Evaluation numerical error is a supplementary procedure for checking accuracy of numerical solution within solution convergence analysis by means of cascade reduction mesh spacing. The approach is of great actuality for structures of critical technical objects with great worth of design calculations error. To implement the approach, data interface between the finite-element analysis package ANSYS and computer algebra package Wolfram Mathematica has been created. Evaluated numerical error has been given as an example for numerical solution system of linear equations with stiffness matrix for load-bearing unit of high pressure tank for perspective spacecraft electrojet engines. The load-bearing unit consists of pressure shell suspended by means of cable system with controlled tension. The cable system is attached to spatial bar system - load-bearing frame structure of spacecraft. For the structures considered the level of finite-element discretization has been determined to provide numerical solution convergence.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН
Институт космических и информационных технологий Сибирского федерального университета
Специальное конструкторско-технологическое бюро «Наука» Красноярского научного центра СО РАН

Доп.точки доступа:
Доронин, С.В.; Doronin S.V.; Рогалев, А.А.; Rogalyov A.A.; Rogalyov A.N.
539.3
Р 24

    Расчет композитных пластин и балок с учетом их структуры с применением сложных многосеточных конечных элементов
[Текст] : статья / А. Д. Матвеев // Вестник Красноярского государственного аграрного университета. - 2015. - № 9. - С. 100-107 . - ISSN 1819-4036
   Перевод заглавия: CALCULATION OFCOMPOSITE PLATESAND BEAMSTAKING INTO ACCOUNT THEIRSTRUCTURE USINGCOMPLEXMULTIGRID FINITE ELEMENTS
УДК

Аннотация: Как известно, базовые дискретные модели композитных пластин и балок, учитывающие их неоднородную (микронеоднородную) структуру, имеют очень высокую размерность. В данной работе показаны процедуры построения сложных многосеточных конечных элементов (МнКЭ) n-го типа формы прямоугольного параллелепипеда для расчета упругих композитных пластин и балок. При построении сложного МнКЭп-го типа используются сложные МнКЭ (n -1 )-го типа, n ? 2, а сложные МнКЭ 1-го типа проектируются с применением двухсеточных конечных элементов (ДвКЭ). При построении ДвКЭ используются две вложенные узловые сетки, мелкая и крупная. Мелкая сетка порождена базовым разбиением ДвКЭ, которое учитывает его неоднородную (микронеоднородную) структуру. Крупная сетка используется для понижения размерности базового разбиения ДвКЭ. Предлагаемые сложные МнКЭ в композитных пластинах и балках описывают трехмерное напряженное состояние, учитывают неоднородную (микронеоднородную) структуру и образуют многосеточные дискретные модели малой размерности, причем сложные МнКЭ n-го типа порождают дискретные модели пластин, балок меньшей размерности, чем сложные МнКЭ (п - 1)-го типа. Напряжения определяются в любом компоненте композитных пластин и балок.
The basic discrete models of composite beams and plates, taking into account their heterogeneity(micro-heterogeneous) structure are known to have a very high dimensionality. Constructing complex multigrid finite elements(MgFE) of cuboid n - type to calculate the elastic composite plates and beams is given. When constructing complex MgFE of n - type, complex MgFE of (n -1 )-type are used, and complex MgFE of type 1are design ed with double-grid finite elements(DgFE). When building Dg FE, two nested grid nodes, both fine and large, are used. Fine grid is generated by base partition of DgFE taking into account its heterogeneity (microheterogeneous) structure. Large grid is used to reduce the dimension base partition of DgFE. The proposed complex MgFE in composite plates and beams describe a three-dimensional stress state, take into account the heterogeneous (micro-heterogeneous) multigrid structure and form the discrete models of small dimension. Moreover, the complex MgFE of n - type generate the discrete models of plates, beams of smaller dimension than do the complex MgFE of (n -1 )-type. Stresses are determined in any component of composite plates and beams.

РИНЦ,
Полный текст

Держатели документа:
Институт вычислительного моделирования СО РАН

Доп.точки доступа:
Matveev A.D.
539.3
М333

    Расчет композитных цилиндрических панелей и оболочек с учетом их структуры на основе свыше миллиарда уравнений МКЭ с малыми временными затратами
[Текст] : статья / А. Д. Матвеев, А. Н. Гришанов // Численные методы решения задач теории упругости и пластичности : материалы XXIV Всероссийской конференции. - Омск, 2015. - С. 141-149 . - ISBN 978-5-8149-2019-5
УДК

Аннотация: Предложена процедура расчета трехмерных упругих композитных цилиндрических панелей и оболочек, краткая суть которой состоит в следующем. Панель (оболочку) представляем базовым разбиением высокой размерности, которое учитывают ее неоднородную (микронеоднородную) структуру. На базовом разбиении строим последовательность многосеточных дискретных моделей малой размерности, которые учитывают неоднородную (микронеоднородную) структуру панели, оболочки и состоят из криволинейных сложных многосеточных конечных элементов (МнКЭ) высокого порядка различных характерных размеров. Для многосеточных дискретных моделей находим последовательность максимальных эквивалентных напряжений, с помощью которых приближенно определяем относительную погрешность для эквивалентных напряжений. Приведен пример расчета консольной панели волокнистой структуры на основе базовой дискретной модели, имеющей свыше миллиарда уравнений метода конечных элементов (МКЭ). Многосеточные дискретные модели имеют размерность порядка 103 105 . Временные затраты реализации МКЭ на персональном моно компьютере для многосеточных дискретных моделей составляют 2,1 - 2,3 часа.

РИНЦ,
Полный текст

Держатели документа:
Институт вычислительного моделирования СО РАН
Новосибирский государственный технический университет

Доп.точки доступа:
Гришанов, А.Н.; Matveev A.D.; Численные методы решения задач теории упругости и пластичности (2015 ; 02.06 - 04.06 ; Омск)
539.3
М333

    Двухсеточное моделирование трехмерных композитных пластин и балок со сложным закреплением
[Текст] : статья / А. Д. Матвеев, О. В. Амплеева // Численные методы решения задач теории упругости и пластичности : материалы XXIV Всероссийской конференции. - Омск, 2015. - С. 138-141 . - ISBN 978-5-8149-2019-5
УДК

Аннотация: Базовые конечноэлементные модели композитных пластин и балок, которые учитывают их структуру и сложные условия закрепления, имеют высокую размерность. В данной работе для расчета упругих трехмерных композитных пластин и балок предложены двухсеточные конечные элементы, которые проектируются на основе базовых дискретных моделей. Предлагаемые двухсеточные элементы в композитных пластинах и балках описывают трехмерное напряженное состояние, учитывают неоднородную структуру, сложные условия закрепления, порождают двухсеточные дискретные модели малой размерности и сеточные решения c заданной погрешностью.

РИНЦ,
Полный текст

Держатели документа:
Институт вычислительного моделирования СО РАН

Доп.точки доступа:
Амплеева, О.В.; Matveev A.D.; Численные методы решения задач теории упругости и пластичности (2015 ; 02.06 - 04.06 ; Омск)

    Расчет композитных цилиндрических оболочек с применением многосеточных элементов
[Текст] : статья / А. Д. Матвеев, А. Н. Гришанов // Решетневские чтения. - 2015. - Т. 2, № 19. - С. 149-152 . - ISSN 1990-7702
   Перевод заглавия: Calculating composite cylindrical shells using multigrid elements
УДК

Аннотация: Предложен расчет упругих композитных цилиндрических оболочек (которые широко используются в ракетно-космической технике) с применением криволинейных многосеточных элементов. Предлагаемые элементы учитывают неоднородную структуру оболочек и порождают дискретные модели малой размерности.
Calculatingtheelasticcomposite cylindrical shellswith curvilinearmultigridelements is proposed. The proposed elements take into account the heterogeneous shell structure and generate a discrete model of small dimension.

РИНЦ,
Полный текст

Держатели документа:
Институт вычислительного моделирования СО РАН
Новосибирский государственный технический университет

Доп.точки доступа:
Гришанов, А.Н.; Grishanov A.N.; Matveev A.D.
539.3
Р248

    РАСЧЕТ КОМПОЗИТНЫХ ЦИЛИНДРИЧЕСКИХ ОБОЛОЧЕК С ПРИМЕНЕНИЕМ МНОГОСЕТОЧНЫХ ЭЛЕМЕНТОВ
[Текст] : статья / А. Д. Матвеев, А. Н. Гришанов // Вестник Сибирского государственного аэрокосмического университета им. академика М.Ф. Решетнева. - 2016. - Т. 17, № 3. - С. 587-594 . - ISSN 1816-9724
   Перевод заглавия: CALCULATION OF COMPOSITE CYLINDRICAL SHELLS USING MULTIGRID ELEMENTS
УДК

Аннотация: Предложена процедура расчета трехмерных упругих композитных цилиндрических оболочек с различными коэффициентами наполнения, которая сводится к построению дискретных моделей, состоящих из криволинейных сложных многосеточных конечных элементов. В основе построения таких элементов лежат криволинейные двухсеточные конечные элементы. Двухсеточные и сложные многосеточные элементы проектируются на основе базовых конечно-элементных моделей композитных оболочек, которые учитывают их неоднородную структуру и имеют высокую размерность. Показаны процедуры построения в локальных декартовых системах координат криволинейных двухсеточных и сложных многосеточных элементов. Поля перемещений аппроксимируются известными степенными полиномами различных порядков, напряженное состояние описывается уравнениями трехмерной задачи теории упругости (без введения упрощающих гипотез о характере распределения полей перемещений, деформаций и напряжении). Аппроксимирующие полиномы и уравнения трехмерной задачи упругости записываются в локальных декартовых системах координат. Достоинства предлагаемых элементов состоят в том, что они описывают трехмерное напряженное состояние в композитных оболочках, учитывают их неоднородные структуры, сложное закрепление и порождают многосеточные дискретные модели с малым числом узловых неизвестных. Размерности многосеточных дискретных моделей оболочек на несколько порядков меньше размерностей базовых моделей. Временные затраты реализации метода конечных элементов (МКЭ) на ЭВМ для многосеточных дискретных моделей композитных оболочек существенно меньше, чем для базовых моделей. Предложен сложный многосеточный элемент 3-го порядка для расчета композитных цилиндрических оболочек. Приведен пример расчета по МКЭ консольной трехслойной оболочки с использованием сложных многосеточных элементов 3-го порядка. Результаты расчетов оболочки показывают высокую эффективность применения предложенных сложных элементов.
Calculating the three-dimensional elastic composite cylindrical shells with different coefficients of fullness that is reduced to the construction of discrete models consisting of complex curvilinear multi-grid finite elements has been proposed. The basis of such elements construction is curvilinear double-grid finite elements. Double-grid and complex multi-grid elements are designed based on the basic finite element models of composite shells which take into account their heterogeneous structure and have high dimension. Constructing the curvilinear double-grid and complex multi-grid elements in the local Cartesian reference systems has been shown. Displacement fields are interpolated by known degree polynomials of various orders, the stress state is described by the three-dimensional elasticity problem (without introduction of the simplifying hypotheses on the nature of the displacement fields, strain and stress distribution). Approximating polynomials and the equations of three-dimensional elasticity problem are recorded in the local Cartesian reference systems. Advantages of the proposed elements are that they describe the three-dimensional stress state in composite shells, take into account their heterogeneous structures, complex fixing and generate multi-grid discrete models with a small number of nodal unknowns. The dimensions of multi-grid discrete shell models are by several orders less than the dimensions of the basic ones. Time spending of the finite element method (FEM) realization on a computer for discrete models of multi-grid composite shells is significantly less than for the basic models. A complex multi-grid element of the 3rd order to calculate the composite cylindrical shells is proposed. The FEM calculation example of cantilever sandwich shell using complex multi-grid elements of the 3rd order has been given. Shell calculation results show the high efficiency of the proposed complex elements.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН
Новосибирский государственный технический университет

Доп.точки доступа:
Гришанов, А.Н.; Grishanov A.N.; Matveev A.D.
539.3
М735

    Многосеточное моделирование трехмерных упругих цилиндрических панелей и оболочек
[Текст] : статья / А. Д. Матвеев, А. Н. Гришанов // Информационные технологии и математическое моделирование в экономике, технике, экологии, образовании, педагогике и торговле. - 2016. - № 8. - С. 85-115
   Перевод заглавия: MULTIGRID MODELING OF THREE-DIMENSIONAL ELASTIC CYLINDRICAL PANELS AND SHELLS
УДК

Аннотация: Предложено многосеточное моделирование трехмерных упругих однородных и композитных цилиндрических панелей и оболочек с различными коэффициентами наполнения, которое сводится к построению дискретных моделей, состоящих из криволинейных двухсеточных конечных элементов (ДвКЭ) и сложных многосеточных конечных элементов (МнКЭ). Показаны процедуры построения в локальных декартовых системах координат криволинейных ДвКЭ и сложных МнКЭ. Напряженное деформированное состояние (НДС) в рассматриваемых конечных элементах (КЭ) описывается уравнениями трехмерной задачи теории упругости без введения упрощающих гипотез о характере распределения полей перемещений, деформаций и напряжений. Поля перемещений в предлагаемых КЭ интерполируются многочленами в форме степенных и лагранжевых полиномов различных порядков. ДвКЭ и сложные МнКЭ проектируются на основе базовых дискретных моделей, которые учитывают неоднородные структуры панелей, оболочек и имеют высокую размерность. Предлагаемые элементы описывают трехмерное напряженное состояние в однородных и композитных панелях и оболочках, учитывают их неоднородные структуры и порождают дискретные модели с малым числом узловых неизвестных. Размерности систем линейных алгебраических уравнений (СЛАУ) для определения узловых неизвестных дискретных моделей в случае применения ДвКЭ и сложных МнКЭ в раз меньше размерностей СЛАУ базовых моделей. При этом временные затраты реализации многосеточного моделирования НДС однородных и композитных панелей, оболочек в раз меньше, чем для базовых дискретных моделей. Расчеты однородных и композитных панелей и оболочек показывают, что максимальные эквивалентные напряжения и перемещения базовых и двухсеточных (многосеточных) дискретных моделей отличаются на 1-8 %, т. е. проведенные расчеты демонстрируют высокую эффективность применения предлагаемого многосеточного моделирования при анализе НДС однородных и композитных оболочечных конструкций.
Multigrid modeling of three-dimensional elastic homogeneous and composite cylindrical shells and panels with different filling factors, reduced to constructing the discrete models consisting of curvilinear double-grid finite elements (DgFE) and complex multi-grid finite elements (MgFE), has been proposed. Constructing the curvilinear DgFE and complex MGFE in the local Cartesian reference system has been shown. Stress strain state (SSS) of the constructions considered is described by three-dimensional elasticity equation without introducing simplifying hypotheses about the nature of the distribution of the displacement fields, strains and stresses. Displacement fields in the proposed finite elements (FEs) are interpolated by polynomials in the form of power and Lagrange ones of various orders. The proposed FEs are designed on the basis of basic discrete models considering heterogeneous structure of the panels and shells and having high dimension. DgFE and complex MgFE describe three-dimensional stress state in homogeneous and composite panels and shells, taking into account the heterogeneous structure and giving rise to the discrete models with a small number of unknowns. When used DgFE and complex MgFE, the dimensions of the linear equation systems (LES) to determine the nodal unknown discrete models are in times lower than those of LES of basic models. Moreover, the time required to realize the proposed modification of discrete simulation of SSS of homogeneous and composite shells, panels is in times less than for the basic discrete models. Calculations of homogeneous panels and shells as well as with a fibrous or multi-layered structure have shown that the maximum equivalent stresses and displacements of base and double-grid (multi-grid) discrete models of panels and shells are different by 1-8 %. Thus, the calculations carried out demonstrate the high efficiency of the proposed multi-grid modeling to analyze SSS of homogeneous and composite shells and panels.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН
Новосибирский государственный технический университет

Доп.точки доступа:
Гришанов, А.Н.; Grishanov A.N.; Matveev A.D.
539.3
И118

    Использование критериев обусловленности при численных расчетах напряженного состояния силовых конструкций
[Текст] : статья / А. Н. Рогалев, С. В. Доронин // Системы. Методы. Технологии. - 2016. - № 2. - С. 91-99, DOI 10.18324/2077-5415-2016-2-91-99 . - ISSN 2077-5415
   Перевод заглавия: Conditioning criteria in numerical computation of the stress state of load-bearing structures
УДК

Аннотация: Одним из основных вопросов при конечно-элементном моделировании высокоответственных технических систем является анализ точности полученных результатов. Решение этого вопроса позволяет обосновать надежность характеристик технических объектов. На точность результатов влияют ошибки округления и погрешность приближенных методов линейной алгебры, применяемых в конечно-элементном анализе, а также ошибки, имеющие непосредственное отношение к методу конечных элементов при выборе (построении) сетки конечных элементов, что прямо отражается в свойствах обусловленности матрицы жесткости и величине ошибки решения системы линейных уравнений с матрицей жесткости. Для численных решений, полученных методом конечных элементов, характеристика точности вычислительной ошибки может определяться как величина ошибки решения системы линейных уравнений с матрицей жесткости. Для анализа точности реализован апостериорный анализ ошибок численных вычислений путем двукратного решения системы линейных уравнений с матрицей жесткости, имеющей специально подобранную правую часть. Для полноты анализа результатов конечно-элементного моделирования изучаются числа обусловленности матрицы коэффициентов системы, что позволяет в первом приближении выявлять степень вырожденности матрицы коэффициентов и определять степень чувствительности численных решений к ошибкам. Применение этих процедур позволяет контролировать точность численного решения и анализировать сходимость. Развиваемый подход весьма актуален для конструкций ответственных технических объектов, так как ошибки при проектных расчетах здесь приводят к серьезным последствиям. Оценки вычислительной ошибки численного решения системы линейных алгебраических уравнений с матрицей жесткости применяются в статье для контроля точности в задачах расчета коэффициента концентрации напряжений в круговой пластине с эксцентричным круговым разрезом. Результаты вычислений подтверждают теоретические рассуждения.
One of the main problems in the finite element modeling of highly responsible technical systems is analysis of the accuracy of the results obtained. The solution of this problem allows to prove reliability of technical objects. Rounding errors and errors of approximate methods of linear algebra, used in the finite element analysis, influent the accuracy of the results as well as errors that are directly related to the method of finite elements in the selection (construction) of the finite element grid. This influence is reflected directly in the properties of a stiffness matrix and the size of the error while solving a system of linear equations with the stiffness matrix. For numerical solutions, obtained by finite element method, the characteristics for the accuracy of the computation error can be defined as the value of the error of the solution of linear equations with the stiffness matrix. To analyze the accuracy, a posteriori analysis of numerical computation errors has been realized by solving doubly the systems of linear equations with the stiffness matrix, having specially selected right side. To complete the analysis of the results of the finite element modeling, the condition number of the coefficients matrix of system has been studying which allows to identify the degree of degeneracy of the coefficient matrix at a first approximation and to determine the degree of sensitivity of numerical solutions to the errors. The use of these procedures allows to control the accuracy of the numerical solution and analyze the convergence. The approach proposed is very important for structuring the important technical objects, as errors in the design constructions lead to serious consequences. Estimates of computational error of the numerical solution of a system of linear algebraic equations with the stiffness matrix used in the article for accuracy control in problems of calculation of stress concentration factor in a circular plate with an eccentric circular cutting. The results confirm the theoretical reasoning.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН
Специальное конструкторско-технологическое бюро «Наука» Института вычислительных технологий СО РАН

Доп.точки доступа:
Доронин, С.В.; Doronin S.V.; Rogalev A.N.
539.3
М 54

    Метод многосеточных конечных элементов в расчетах трехмерных однородных и композитных тел
[Текст] : научное издание / Александр Данилович Матвеев // Ученые записки Казанского университета. Серия: Физико-математические науки. - 2016. - Т. 158, № 4. - С. 530-543 . - ISSN 2541-7746
   Перевод заглавия: Multigrid Finite Element Method in Calculation of 3D Homogeneous and Composite Solids
УДК

Аннотация: В работе предложен метод многосеточных конечных элементов для расчета упругих трехмерных однородных и композитных тел при статическом нагружении. Предлагаемый метод построен на основе алгоритмов метода конечных элементов с применением однородных и композитных трехмерных многосеточных конечных элементов (МнКЭ). Рассмотрены процедуры построения МнКЭ. имеющего форму прямоугольного параллелепипеда и сложную форму. Достоинства МнКЭ состоят в том, что они учитывают по правилам микроподхода неоднородную и микронеоднородную структуры тел, описывают трехмерное напряженно-деформированное состояние (без упрощающих гипотез) в однородных и композитных телах, порождают дискретные модели малой размерности и позволяют получать численные решения с малой погрешностью.
In the present paper, a method of multigrid finite elements to calculate elastic three-dimensional homogeneous and composite solids under static loading has been suggested. The method has been developed based on the finite element method algorithms using homogeneous and composite three-dimensional multigrid finite elements (MFE). The procedures for construction of MFE of both rectangular parallelepiped and complex shapes have been shown. The advantages of MFE are that they take into account, following the rules of the microapproach, heterogeneous and microhomogeneous structures of the bodies, describe the three-dimensional stress-strain state (without any simplifying hypotheses) in homogeneous and composite solids, as well as generate small dimensional discrete models and numerical solutions with a high accuracy.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН

Доп.точки доступа:
Матвеев, Александр Данилович
539.3
М 54

    Метод многосеточных конечных элементов в расчетах композитных пластин и балок
[Текст] : научное издание / А. Д. Матвеев // Вестник Красноярского государственного аграрного университета. - 2016. - № 12. - С. 93-100 . - ISSN 1819-4036
УДК

Аннотация: Для расчета напряженного состояния упру-гих трехмерных композитных пластин и балок при статическом нагружении предложен ме-тод многосеточных конечных элементов, ко-торый реализуется на основе алгоритмов метода конечных элементов (МКЭ) с примене-нием трехмерных многосеточных конечных элементов (МнКЭ), имеющих неоднородную и микронеоднородную структуру. Отличие МнКЭ от существующих конечных элементов (КЭ) состоит в следующем. При построении -сеточного КЭ используются вложенных сеток. Мелкая сетка порождает разбиение, которое учитывает неоднородную структуру и форму МнКЭ, остальные крупные сет-ки применяются для понижения размерности МнКЭ, причем с увеличением размерность МнКЭ уменьшается. Особенность и достоин-ство МнКЭ состоят в том, что при построе-нии МнКЭ используются сколь угодно мелкие базовые разбиения композитных пластин, ба-лок, состоящих из односеточных КЭ 1-го по-рядка, т.е. по сути используется микроподход в конечноэлементной форме. Такие мелкие разбиения позволяют учитывать в МнКЭ, т.е. в базовых дискретных моделях композитных пластин, балок, сложную неоднородную, мик-ронеоднородную структуру и форму, сложный характер нагружения и закрепления и описы-вать сколь угодно точно напряженное дефор-мированное состояние уравнениями трехмер-ной теории упругости без введения дополни-тельных упрощающих гипотез. Краткая суть МнКЭ состоит в следующем. На базовом раз-биении (на мелкой сетке) сеточного конеч-ного элемента, определяем полную потенциальную энергию как функцию мно-гих переменных, которыми являются узловые перемещения мелкой сетки. На остальных крупных сетках (вложенных в мелкую сетку) строим по МКЭ функции перемещений, которые используем для понижения размерно-сти функции что позволяет проектиро-вать МнКЭ малой размерности. Изложены процедуры построения МнКЭ формы прямо-угольного параллелепипеда, пластинчатого и балочного типов. Достоинства МнКЭ состо-ят в том, что они порождают дискретные модели малой размерности и сеточные реше-ния c малой погрешностью. Приведен пример расчета многослойной пластины с примене-нием трехмерных 3- сеточных КЭ.
To calculate the stress state of elastic three-dimensional plates and beams under static loading a multigrid finite element method implemented on the basis of algorithms of finite element method (FEM), using three-dimensional multigrid finite ele-ments (MFE) of heterogeneous structure has been provided. The differences of MFE from currently available finite elements (FE) are as follows. When building - grid FE of nested grids is used. The fine grid generates a partition taking into ac-count inhomogeneous structure and shape of MFE, the other large grids are applied to reduce MFE dimensionality, with MFE dimension decreas-ing when is increasing. The peculiarities and advantages of MFE are to develop MFE, arbitrarily small basic partitions of composite plates and beams containing the 1st order single-grid FE can be used, i.e. in fact, the finite element micro ap-proach is applied. These partitions allow one to take into account in MFE the complex heterogene-ous and microscopically inhomogeneous structure, shape and complex loading and fixing nature and to describe the stress and stain state by the equa-tions of three-dimensional elastic theory without any additional simplifying hypotheses. The essence of MFE is as follows. At a basic partition (on the fine grid) of - grid FE, the total potential energy as a function of many variables depend-ing on the fine grid nodal displacements has been determined. On the other coarse grids (en-closed in the fine one), the displacement functions used to reduce the dimension of the function that allows one developing MFE of small dimension are found by FEM. The procedures of developing MFE of rectangular parallelepiped of plate and beam types are given. The advantages of MFE are: they produce small dimensional discrete models and high accuracy numerical solutions. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model are given, with that having 623 millions of FEM nodal unknowns.

РИНЦ

Держатели документа:
Института вычислительного моделирования СО РАН

Доп.точки доступа:
Матвеев, А.Д.; Matveev A.D.
539.3
М 54

    Метод многосеточных конечных элементов в расчетах трехмерных композитных пластин и балок сложной формы
[Текст] : статья / А. Д. Матвеев // Вестник Красноярского государственного аграрного университета. - 2017. - № 11. - С. 131-140 . - ISSN 1819-4036
   Перевод заглавия: Multigrid finite element method in the calculations of three-dimensional composite plates and beams of irregular form
УДК

Аннотация: Для расчета напряженного состояния упру-гих трехмерных композитных пластин и балок сложной формы при статическом нагружении предложен метод многосеточных конечных элементов, который реализуется на основе алгоритмов метода конечных элементов (МКЭ) с применением трехмерных многосе-точных конечных элементов (МнКЭ), имеющих неоднородную и микронеоднородную структу-ру. Отличие МнКЭ от существующих конеч-ных элементов (КЭ) состоит в следующем. При построении m-сеточного КЭ используют-ся m вложенных сеток. Мелкая сетка порож-дает разбиение, которое учитывает неодно-родную структуру и сложную форму МнКЭ, остальные m - 1 крупные сетки применяются для понижения размерности МнКЭ, причем, с увеличением m размерность МнКЭ уменьша-ется. Особенность и достоинство МнКЭ со-стоят в том, что при построении МнКЭ ис-пользуются сколь угодно мелкие базовые раз-биения композитных пластин, балок, состоя-щих из односеточных КЭ 1-го порядка, т. е. по сути используется микроподход в конечноэле-ментной форме. Такие мелкие разбиения поз-воляют учитывать в МнКЭ, т. е. в базовых дискретных моделях композитных пластин, балок, сложную неоднородную, микронеодно-родную структуру и форму, сложный характер нагружения и закрепления и описывать сколь угодно точно напряженное деформированное состояние уравнениями трехмерной теории упругости без введения дополнительных упрощающих гипотез. Краткая суть МнКЭ со-стоит в следующем. На базовом разбиении (на мелкой сетке) m-сеточного конечного эле-мента, m ? 2, определяем полную потенци-альную энергию как функцию многих пере-менных, которыми являются узловые пере-мещения мелкой сетки. На остальных m - 1 крупных сетках (вложенных в мелкую сетку) строим по МКЭ функции перемещений, кото-рые используем для понижения размерности функции, что позволяет проектировать МнКЭ малой размерности. Изложены процеду-ры построения МнКЭ пластинчатого и балоч-ного типов сложной формы. Достоинства МнКЭ состоят в том, что они порождают дискретные модели малой размерности и се-точные решения c малой погрешностью. При-веден пример расчета композитной балки с применением трехмерных двухсеточных КЭ сложной формы.
To calculate the stress and strain state of three-dimensional elastic composite plates and beams of heterogeneous structure, irregular shape and static loading the method of multigrid finite elements is provided when implemented on the basis of algo-rithms of finite element method (FEM), using three-dimensional homogeneous and composite multigrid finite elements (MFE). MFE differs from existing final elements (FE) given below. At creation of m-net FE m of enclosed grids are used. Small grid generates splitting which considers non-uniform structure and FEM difficult form the others m - 1 large grids applied to decrease the dimension of FEM and with the increase in m dimension of MFE decreases. The peculiarity and advantage of FEM are the following: at the creation of FEM as much as small basic splittings composite plates are used, the beams consisting of one-net FE of the 1-st or-der i.e. in fact microapproach in finite element form is used. Such small grids allow to consider in FEM, i.e. in basic discrete models of composite plates, beams, difficult non-uniform, micronon-uniform structure and form, difficult nature of loading and fixing and to describe as precisely as possible in-tense deformed state the equations of three-dimensional theory of elasticity without introduction of additional simplifying hypotheses. Short essence of FEM is as follows. On basic splitting (on a small grid) a net final element, m ? 2 total potential ener-gy as the function of many variables which nodal movements of a small grid is defined. On the other m - 1 large grids (enclosed in a small grid) on FEM the function of movements used for decreasing dimension of function allowing to project FEM of small dimension is built. The procedures of creation of FEM of lamellar and frame types of complex type are stated. The advantages of FEM are in generat-ing discrete models of small dimension and net de-cisions with a small error. The example of calcula-tion of a composite beam with application of three-dimensional two-net FE of difficult form is given.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН

Доп.точки доступа:
Матвеев, А.Д.; Matveev A.D.
539.3
Р 24

    Расчет упругих конструкций с применением скорректированных условий прочности
[Текст] : статья / Александр Данилович Матвеев // Известия Алтайского государственного университета. - 2017. - № 4. - С. 116-119, DOI 10.14258/izvasu(2017)4-21 . - ISSN 1561-9443
   Перевод заглавия: Calculation of Elastic Structures Using the Adjusted Strength Conditions
УДК

Аннотация: Для коэффициентов запаса некоторых упругих конструкций и деталей заданы ограничения (условия прочности), т.е. значения коэффициентов запаса таких конструкций лежат в заданном диапазоне. Ограничения задаются для коэффициентов запаса, которые отвечают аналитическим решениям задач теории упругости, сформулированных для конструкций. Построение аналитических решений для большинства конструкций, особенно сложной формы, связано с большими трудностями. Для ряда конструкций широко применяют приближенные подходы решения задач упругости, например технические теории деформирования однородных и композитных пластин, балок и оболочек. Технические теории, построенные на основе гипотез, порождают приближенные (технические) решения с неустранимой погрешностью, точное значение которой определить сложно. В статических расчетах конструкций на прочность при заданном малом диапазоне для коэффициентов запаса применение технических (сопроматовских) решений затруднительно. В данной работе для коэффициента запаса, который отвечает приближенному решению задачи упругости, предложены скорректированные условия прочности, учитывающие погрешность напряжений. Показано, что из выполнения скорректированных условий прочности для коэффициента запаса конструкции, который отвечает приближенному решению, следует выполнение заданных условий прочности для коэффициента запаса данной конструкции, который отвечает точному решению. Для предлагаемых скорректированных условий прочности определяется класс приближенных решений, с помощью которых можно выполнить заданные условия прочности.
As is known, the constraints (strength conditions) for the safety factor of elastic structures and design details of a particular class are established, i.e. the safety factor values of such structures should be within the given range. It should be noted that the constraints are set for the safety factors corresponding to analytical solutions of elasticity problems represented for the structures. Developing the analytical solutions for most structures, especially irregular shape ones, is associated with some difficulties. Approximate approaches to solve the elasticity problems, e.g. the technical deformation theories of homogeneous and composite plates, beams, and shells, are widely used for a great number of structures. Technical theories based on the hypotheses give rise to approximate (technical) solutions with an irreducible error, with the exact value being difficult to be determined. Application of technical solutions (by Theory of Strength of Materials) for the safety factors in static analysis on the structural strength at a specified small range is difficult. In this paper, the adjusted (specified) strength conditions for the structural safety factor corresponding to the approximate solution of the elasticity problem have been proposed. It has been shown that, to fulfill the specified strength conditions for the safety factor of the given structure corresponding to an exact solution, the adjusted strength conditions for the structural safety factor corresponding to an approximate solution are required. Adjusted strength conditions make it possible to determine the set of approximate solutions, whereby meeting the specified strength conditions.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН

Доп.точки доступа:
Матвеев, Александр Данилович
539.3
М 54

    Метод многосеточных конечных элементов
[Текст] : статья / А. Д. Матвеев // Вестник Красноярского государственного аграрного университета. - 2018. - № 2. - С. 90-103 . - ISSN 1819-4036
   Перевод заглавия: Multigrid finite element method
УДК

Аннотация: Для решения ряда важных физических крае-вых задач (решения уравнений которых эквива-лентны нахождению минимума соответствую-щие функционалов) предлагается метод много-сеточных конечных элементов (ММКЭ), кото-рый реализуется на основе соотношений и ал-горитмов метода конечных элементов (МКЭ) в форме метода Ритца с применением многосе-точных конечных элементов (МнКЭ). При по-строении n-сеточного конечного элемента (КЭ) используем n вложенных сеток. Мелкая сетка порождена базовым разбиением тела, которое учитывает его сложную форму и физические особенности краевой задачи (например, неодно-родную структуру упругого тела). Остальные сетки применяем для понижения размер-ности МнКЭ (причем с увеличением n размер-ность МнКЭ уменьшается). Суть МнКЭ заклю-чается в следующем. На базовом разбиении n-сеточного КЭ, которое состоит из из-вестных односеточных КЭ, определяем функ-ционал краевой задачи как функцию многих переменных, которыми являются значения ис-комой функции в узлах мелкой сетки. На ос-тальных n-1 сетках строим аппроксимирующие функции, которые используем для понижения размерности функции, что позволяет про-ектировать МнКЭ малой размерности. Проек-тирование n-сеточного КЭ проводится по еди-ной матричной процедуре. Основные отличия ММКЭ от МКЭ состоят в следующем. Во-первых, в ММКЭ можно применять сколь угодно мелкие базовые разбиения тел, что позволяет сколь угодно точно учитывать их сложную форму, неоднородную и микронеоднородную структуру упругих тел (без увеличения размер-ностей многосеточных дискретных моделей). В МКЭ невозможно использовать сколь угодно мелкие разбиения тел, так как ресурсы ЭВМ ог-раничены, т.е. ММКЭ более эффективный, чем МКЭ. Во-вторых, реализация ММКЭ на основе базовых моделей тел требует меньше памяти ЭВМ и временных затрат, чем реализация МКЭ для базовых моделей, т.е. ММКЭ более эконо-мичный, чем МКЭ. В-третьих, в ММКЭ применя-ем упругие однородные и неоднородные МнКЭ, при построении которых используем системы вложенных сеток, что расширяет область при-менения ММКЭ. В МКЭ применяют однородные односеточные КЭ. Поэтому можно считать, что ММКЭ есть обобщение МКЭ, т.е. МКЭ - ча-стный случай ММКЭ. Изложены процедуры по-строения МнКЭ различной формы. Предложена верхняя оценка погрешностей приближенных решений.
To solve a number of important physical boundary value problems (which solutions of the equations be-ing equivalent to finding the minimum of correspond-ing functional) the multigrid finite element method (MFEM) which is realized on the basis of ratios and algorithms of the method of final elements (MFE) in the form of Ritz method with application of multigrid final elements (MFEM) was proposed. To construct a -grid finite element (FE), the -nested grids were used. A finite grid is generated by basic body partition taking into account its irregular shape and physical features of the boundary value problem (e.g. the in-homogeneous structure of elastic body). Other grids were used to reduce MFE dimension, and with increasing MFE dimension decreases. The essence of MFE is as follows: at a basic partition of grid FE, consisting of known single-grid FE, the functional of boundary value problem was determined as a function of many variables, being the values of the required function at the nodes of a fine grid. On the n n 1n 2n F other grids some approximating functions were used for the decrease of the dimension of func-tion, allowing one to develop small dimensional MFE. The developing -grid FE is carried out according to a single matrix procedure There are some essential differences between MFEM and FEM. First, in regard to MFEM, some arbitrarily fine base body partitions can be applied, which makes it possible to take into account their irregular shape heterogeneous and microheterogeneous structure (without increasing the dimensions of the multigrid discrete models). As to FEM, it is impossible to use any arbitrarily fine parti-tions of the bodies, as the computer resources are limited, i.e. MFEM is more efficient than FEM. Sec-ondly, the implementation of MFEM based on the essential models of bodies takes less computer memory and span time than that of FEM for essential models, i.e. MFEM is more time and memory-saving than FEM. Thirdly, in MFEM some elastic homoge-neous and inhomogeneous MFE are applied, using the nested grids to construct, significantly expanding the scope of MFEM. Therefore, MFEM can be as-sumed to be a generalization of FEM, i.e. FEM is a special case of MFEM. The procedures of developing MFE of various shapes were presented. The top as-sessment of errors of approximate decisions is of-fered.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН

Доп.точки доступа:
Матвеев, А.Д.; Matveev A.D.
539.3
М 54

    Метод многосеточных конечных элементов в расчетах композитных оболочек вращения и двоякой кривизны
: статья / А. Д. Матвеев // Вестник Красноярского государственного аграрного университета. - 2018. - № 3. - С. 126-137 . - ISSN 1819-4036
   Перевод заглавия: Method of multigrid finite elements of the composite rotational and bi-curved shell calculations
УДК

Аннотация: Для расчета трехмерного напряженного состояния упругих композитных оболочек вращения и двоякой кри-визны при статическом нагружении предложен метод многосеточных конечных элементов (ММКЭ), который реализуется на основе алгоритмов метода конечных элементов (МКЭ) с применением трехмерных однород-ных и композитных криволинейных многосеточных ко-нечных элементов (МнКЭ). При построении МнКЭ (без увеличения их размерности) можно использовать сколь угодно мелкие (базовые) разбиения оболочек, которые позволяют в МнКЭ сколь угодно точно учитывать сложную неоднородную структуру и описывать напря-женное состояние уравнениями трехмерной задачи теории упругости. При построении n-сеточного конеч-ного элемента (КЭ) используем n вложенных сеток. Мелкая сетка порождена базовым разбиением МнКЭ, остальные n - 1 крупные сетки применяем для пониже-ния размерности МнКЭ. В ММКЭ используются одно-родные и неоднородные МнКЭ и системы вложенных сеток, что расширяет область его применения. В МКЭ применяются однородные односеточные КЭ. Так как при построении n-сеточного КЭ используется не одна, а n вложенных сеток, то ММКЭ является обобще-нием МКЭ, т. е. МКЭ - частный случай ММКЭ. Предло-жен метод образующих КЭ для проектирования трех-мерных МнКЭ сложной формы в локальных декартовых системах координат. Метод базируется на том, что область трехмерного МнКЭ получается путем пово-рота плоского односеточного (образующего) КЭ слож-ной формы вокруг некоторой оси на малый угол или параллельным перемещением образующего КЭ вдоль заданной прямой на заданное расстояние. При построе-нии МнКЭ используются полиномы Лагранжа. Такой под-ход позволяет проектировать трехмерные МнКЭ для расчета композитных оболочек вращения (двоякой кри-визны) и конструкций, один характерный размер кото-рых значительно больше других. Оболочки двоякой кри-визны представляются совокупностью оболочек вра-щения. Предлагаемые МнКЭ эффективны в расчетах круглых композитных пластин, дисков, колец и валов. Рассмотрены трехмерные МнКЭ, которые могут эф-фективно применяться при расчете крыльев, фюзеля-жей самолетов, корпусов кораблей, ракет и пролетных строений мостов. МнКЭ порождают дискретные моде-ли малой размерности и решения c малой погрешно-стью. 2n
To calculate the stress-strain state of elastic three-dimensional rotational and bi-curved shells of inhomogeneous structure, irregular shape and static loading, multigrid finite element method (MFEM) represented on the basis of finite element method (FEM) algorithms using three-dimensional (homogeneous) composite curvilinear multigrid finite elements (MFE) was proposed. At creation of MFE (without increase in their dimension) it is possible to use as much as small (basic) splittings covers allowing to consider as much as precisely in MFE difficult non-uniform structure and to describe the ten-sion the equations of a three-dimensional task of the theory of elasticity. As at creation of n-net final element (FE) n of en-closed grids is used. Small grid is generated by MFE basic splitting others n- 1 large grids are used to decrease MFE dimension. In MFEM uniform and non-uniform MFE and sys-tems of enclosed grids that expands the area of its application are used. In FEM uniform one-net FE are applied. As at crea-tion of n-net FE not one, but n of enclosed grids are used, MFEM is generalization of MFE, i.e. MFE is a special case of MFEM. The method of forming FE for the design of three-dimensional MFE of difficult form in local Cartesian systems of coordinates is offered. The method is based on the area of three-dimensional MFE turns out by turn of flat one-net (forming) FE of difficult form round some axis on a small corner or parallel movement forming FE along the set straight line. At creation of MFE Lagrangian polynomials are used. Such approach allows to project three-dimensional MFE for calculation of composite covers of rotation (double curvature) and designs, one characteristic size of which is much more others. The covers of double curvature are repre-sented by the set of covers of rotation. Offered MFE are effec-tive in calculation of round composite plates, disks, rings and shaft. Three-dimensional MFE which can effectively be ap-plied at calculation of wings, fuselages of planes and frames of the ships, rockets and flying structures of bridges are con-sidered. MFE generate discrete models of small dimension and the decision with small error.

РИНЦ

Держатели документа:
Институт вычислительного моделирования СО РАН

Доп.точки доступа:
Матвеев, А.Д.; Matveev A.D.