Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Agglomeration<.>)
Общее количество найденных документов : 3
Показаны документы с 1 по 3
1.


   
    Extraction of Nanochitin from Marine Resources and Fabrication of Polymer Nanocomposites: Recent Advances / B. Joseph, R. M. Sam, P. Balakrishnan [et al.] // Polymers. - 2020. - Vol. 12, Is. 8. - Ст. 1664, DOI 10.3390/polym12081664. - Cited References:128. - This study was financially supported by project "Agro preparations of the new generation: a strategy of construction and realization" (agreement number 074-02-2018-328) in accordance with resolution number 220 of the Government of the Russian Federation of 9 April 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning." S.C.M.F. is the recipient of an E2S UPPA Research Partnership Chair (MANTA: Marine Materials) supported by the "Investissements d'Avenir" French program managed by ANR (ANR-16-IDEX-0002), the Region Nouvelle-Aquitaine and the Communaute d'Agglomeration du Pays Basque, France. . - ISSN 2073-4360
РУБ Polymer Science
Рубрики:
NATURAL-RUBBER NANOCOMPOSITES
   ELECTROSPUN PVDF MEMBRANE

   ALPHA-CHITIN

Кл.слова (ненормированные):
nanochitin -- biodegradable -- marine -- reinforcement -- polysaccharides
Аннотация: Industrial sea food residues, mainly crab and shrimp shells, are considered to be the most promising and abundant source of chitin. In-depth understanding of the biological properties of chitin and scientific advancements in the field of nanotechnology have enabled the development of high-performance chitin nanomaterials. Nanoscale chitin is of great economic value as an efficient functional and reinforcement material for a wide range of applications ranging from water purification to tissue engineering. The use of polymers and nanochitin to produce (bio) nanocomposites offers a good opportunity to prepare bioplastic materials with enhanced functional and structural properties. Most processes for nanochitin isolation rely on the use of chemical, physical or mechanical methods. Chitin-based nanocomposites are fabricated by various methods, involving electrospinning, freeze drying, etc. This review discusses the progress and new developments in the isolation and physico-chemical characterization of chitin; it also highlights the processing of nanochitin in various composite and functional materials.

WOS
Держатели документа:
Mahatma Gandhi Univ, Int & Inter Univ Ctr Nanosci & Nanotechnol, Kottayam 686560, Kerala, India.
Bishop Moore Coll, Res & Post Grad Dept Chem, Mavelikara 690110, Kerala, India.
Plant Lipids Pvt Ltd, Cochin 682311, Kerala, India.
Siberian Fed Univ, Russian Acad Sci, Inst Biophys, Krasnoyarsk 660041, Russia.
Univ Pau & Pays Adour, Inst Interdisciplinary Res Environm & Mat IPREM, IPREM, CNRS,E2S UPPA, F-64600 Anglet, France.
Mahatma Gandhi Univ, Sch Energy Mat, Kottayam 686560, Kerala, India.

Доп.точки доступа:
Joseph, Blessy; Sam, Rubie Mavelil; Balakrishnan, Preetha; Maria, Hanna J.; Gopi, Sreeraj; Volova, Tatiana; Fernandes, Susana C. M.; Thomas, Sabu; Government of the Russian Federation [074-02-2018-328, 220]; "Investissements d'Avenir" French programFrench National Research Agency (ANR) [ANR-16-IDEX-0002]; Region Nouvelle-AquitaineRegion Nouvelle-Aquitaine; Communaute d'Agglomeration du Pays Basque, France

Найти похожие
2.


   
    Production and characterization of bioaerosols for model validation in spacecraft environment / A. Salmela [et al.] // J. Environ. Sci. - 2018. - Vol. 69. - P227-238, DOI 10.1016/j.jes.2017.10.016. - Cited References:28. - The research leading to these results has received funding from the European Union Seventh Framework Programme (FP/2007-2013) under grant agreement number 263076 within the BIOSMHARS Project (BIO contamination Specific Modeling in Habitats Related to Space). . - ISSN 1001-0742. - ISSN 1878-7320
РУБ Environmental Sciences
Рубрики:
INDOOR AIR
   MICROBIAL-CONTAMINATION

   BUILDING-MATERIALS

   FUNGAL

Кл.слова (ненормированные):
Bioaerosol -- Modeling -- CFD -- Spacecraft -- Fungi -- Bacteria
Аннотация: This study aimed to evaluate the suitability of two bioaerosol generation systems (dry and wet generation) for the aerosolization of microorganisms isolated from the International Space Station, and to calibrate the produced bioaerosols to fulfill the requirements of computational fluid dynamics model (CFD) validation. Concentration, stability, size distribution, agglomeration of generated bioaerosol and deposition of bioaerosols were analyzed. In addition, the dispersion of non-viable particles in the air was studied. Experiments proved that wet generation from microbial suspensions could be used for the production of well-calibrated and stabile bioaerosols for model validation. For the simulation of the natural release of fungal spores, a dry generation method should be used. This study showed that the used CFD model simulated the spread of non-viable particles fairly well. The mathematical deposition model by Lai and Nazaroff could be used to estimate the deposition velocities of bioaerosols on surfaces, although it somewhat underestimated the measured deposition velocities. (c) 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

WOS,
Смотреть статью
Держатели документа:
Univ Eastern Finland, Dept Environm & Biol Sci, POB 1627, FI-70211 Kuopio, Finland.
VTT Ltd, POB 1300, FI-33100 Tampere, Finland.
Belgian Nucl Res Ctr, Microbiol Unit, B-2400 Mol, Belgium.
Inst Med & Physiol Spatiales, BP 74404, F-31405 Toulouse, France.
Inst Biomed Problems, 76-A Khoroshev Skoye Shosse, RU-123007 Moscow, Russia.
RAS, Inst Biophys SB, RU-660036 Krasnoyarsk, Russia.

Доп.точки доступа:
Salmela, Anniina; Kokkonen, Eero; Kulmala, Ilpo; Veijalainen, Anna-Maria; van Houdt, Rob; Leys, Natalie; Berthier, Audrey; Viacheslav, Ilyin; Kharin, Sergey; Morozova, Julia; Tikhomirov, Alexander; Pasanen, Pertti; Van, Rob; European Union [263076]

Найти похожие
3.


   
    Agglomeration behavior of lipid-capped gold nanoparticles / R. Ranjan [et al.] // J. Nanopart. Res. - 2018. - Vol. 20, Is. 4. - Ст. 107, DOI 10.1007/s11051-018-4215-5. - Cited References:35. - The research was supported by the Russian Foundation for Basic Research [project no. 16-34-60100] and the state budget allocated to the fundamental research (project no. 0356-2017-0017). The authors thank Prof. Tatiana Volova, Prof. Evgenia Slyusareva, and Ms. Nina Slyusarenko of the Siberian Federal University for their assistance in the zeta potential and zeta-average analysis. . - ISSN 1388-0764. - ISSN 1572-896X
РУБ Chemistry, Multidisciplinary + Nanoscience & Nanotechnology + Materials
Рубрики:
COLORIMETRIC SENSOR ARRAY
   OPTICAL-PROPERTIES

   AGGREGATION

   CANCER

Кл.слова (ненормированные):
Gold nanoparticles -- Ionic interference -- Agglomeration -- Stabilization -- Lipid capping -- Nanobiotechnology applications
Аннотация: The current investigation deciphers aggregation pattern of gold nanoparticles (AuNPs) and lipid-treated AuNPs when subjected to aqueous sodium chloride solution with increasing ionic strengths (100-400 nM). AuNPs were synthesized using 0.29 mM chloroauric acid and by varying the concentrations of trisodium citrate (AuNP1 1.55 mM, AuNP2 3.1 mM) and silver nitrate (AuNP3 5.3 mu M, AuNP4 10.6 mu M) with characteristic LSPR peaks in the range of 525-533 nm. TEM analysis revealed AuNPs to be predominantly faceted nanocrystals with the average size of AuNP1 to be 35 +/- 5 nm, AuNP2 15 +/- 5 nm, AuNP3 30 +/- 5 nm, and AuNP4 30 +/- 5 nm and the zeta-average for AuNPs were calculated to be 31.23, 63.80, 26.08, and 28 nm respectively. Induced aggregation was observed within 10 s in all synthesized AuNPs while lipid-treated AuNP2 (AuNP2-L) was found to withstand ionic interferences at all concentration levels. However, lipid-treated AuNPs synthesized using silver nitrate and 1.55 mM trisodium citrate (AuNP3, AuNP4) showed much lower stability. The zeta potential values of lipid-treated AuNPs (AuNP1-L-1x/200, -17.93 +/- 1.02 mV; AuNP2-L-1x/200, -21.63 +/- 0.70; AuNP3-L-1x/200, -14.54 +/- 0.90; AuNP3-L-1x/200 -13.77 +/- 0.83) justified these observations. To summarize, AuNP1 and AuNP2 treated with lipid mixture 1 equals or above 1x/200 or 1x/1000 respectively showed strong resistance against ionic interferences (up to 400 mM NaCl). Use of lipid mixture 1 for obtaining highly stable AuNPs also provided functional arms of various lengths which can be used for covalent coupling.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Dept Biophys, Lab Bioluminescent Biotechnol, 79 Svobodny Prospect, Krasnoyarsk 660041, Russia.
RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, Inst Biophys, Akademgorodok 50-50, Krasnoyarsk 660036, Russia.
RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, Kirensky Inst Phys, Akademgorodok 50-38, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Electron Microscopy Lab, 79 Svobodny Prospect, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Ranjan, Rajeev; Kirillova, Maria A.; Esimbekova, Elena N.; Zharkov, Sergey M.; Kratasyuk, Valentina A.; Russian Foundation for Basic Research [16-34-60100]; [0356-2017-0017]

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)