Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (1)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Antimicrobial<.>)
Общее количество найденных документов : 7
Показаны документы с 1 по 7
1.


   
    Biosynthesis of tetrahydrofolate in plants: Crystal structure of 7,8-dihydroneopterin aldolase from Arabidopsis thaliana reveals a novel adolase class [Text] / S. . Bauer [et al.] // J. Mol. Biol. - 2004. - Vol. 339, Is. 4. - P. 967-979, DOI 10.1016/j.jmb.2004.04.034. - Cited References: 66 . - ISSN 0022-2836
РУБ Biochemistry & Molecular Biology
Рубрики:
GTP CYCLOHYDROLASE-I
   GUANOSINE TRIPHOSPHATE CYCLOHYDROLASE

   6-PYRUVOYL TETRAHYDROPTERIN SYNTHASE

   ESCHERICHIA-COLI

   DIHYDRONEOPTERIN ALDOLASE

   FOLIC-ACID

   ENZYMATIC SYNTHESIS

   DIHYDROPTEROATE SYNTHASE

   REACTION-MECHANISM

   3-DIMENSIONAL STRUCTURE

Кл.слова (ненормированные):
tetrahydrofolate biosynthesis -- aldolase classes -- retroaldol reaction -- purin binding -- Schiff base
Аннотация: Dihydroneopterin aldolase (DHNA) catalyses a retroaldol reaction yielding 6-hydroxymethyl-7,8-dihydropterin, a biosynthetic precursor of the vitamin, tetrahydrofolate. The enzyme is a potential target for antimicrobial and anti-parasite chemotherapy. A gene specifying a dihydroneopterin aldolase from Arabidopsis thaliana was expressed in a recombinant Escherichia coli strain. The recombinant protein was purified to apparent homogeneity and crystallised using polyethylenglycol as the precipitating agent. The crystal structure was solved by X-ray diffraction analysis at 2.2 Angstrom resolution. The enzyme forms a D-4-symmetric homo-octamer. Each polypeptide chain is folded into a single domain comprising an antiparallel four-stranded beta-sheet and two long alpha-helices. Four monomers are arranged in a tetrameric ring, and two of these rings form a hollow cylinder. Well defined purine derivatives are found at all eight topologically equivalent active sites. The subunit fold of the enzyme is related to substructures of dihydroneopterin triphosphate epimerase, GTP cyclohydrolase I, and pyruvoyltetrahydropterin synthase, which are all involved in the biosynthesis of pteridine type cofactors, and to urate oxidase, although some members of that superfamily have no detectable sequence similarity Due to structural and mechanistical differences of DHNA in comparison with class I and class II aldolases, a new aldolase class is proposed. (C) 2004 Elsevier Ltd. All rights reserved.

WOS
Держатели документа:
Max Planck Inst Biochem, Abt Strukturforsch, D-82152 Martinsried, Germany
Tech Univ Munich, Lehrstuhl Organ Chem & Biochem, D-85747 Garching, Germany
Russian Acad Sci, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Bauer, S...; Schott, A.K.; Illarionova, V...; Bacher, A...; Huber, R...; Fischer, M...

Найти похожие
2.


   
    Siberian plants: untapped repertoire of bioactive endosymbionts / S. Baker, S. V. Prudnikova, T. Volova // Front. Biol. - 2018. - P1-11, DOI 10.1007/s11515-018-1483-5 . - ISSN 1674-7984
Кл.слова (ненормированные):
bioactive metabolite -- endophyte -- endosymbiont -- novel compound -- siberian plant
Аннотация: Background: Endosymbionts are microorganisms present in all plant species, and constitute the subject of interest among the scientific community. These symbionts have gained considerable attention in recent years, owing to their emerging biological roles. Global challenges, such as antimicrobial resistance, treatment of infectious diseases such as HIV and tuberculosis, cancer, and many genetic disorders, exist. Endosymbionts can help address these challenges by secreting valueadded bioactive compounds with various activities. Objective: Herein, we describe the importance of plants inhabiting Siberian niches. These plants are considered to be among the least studied organisms in the plant kingdom worldwide. Barcoding these plants can be of interest for exploring bioactive endosymbionts possessing myriad biological properties. Methods: A systematic survey of relevant scientific reports was conducted using the PubMed search engine. The reports were analyzed, and compiled to draft this review. Results: The literature survey on Siberian plants regarding endosymbionts included a few reports, since extremely few exploratory studies have been conducted on the plants in these regions. Studies on the endosymbionts of these plants are highly valuable, as they report potent endosymbionts possessing numerous biological properties. Based on these considerations, this review aims to create awareness among the global scientific community working on related areas. Conclusion: This review could provide the basis for barcoding novel endosymbionts of Siberian plants and their ecological importance, which can be exploited in various sectors. The main purpose of this review is to create awareness of Siberian plants, which are among the least studied organisms in the plant kingdom, with respect to endosymbionts, among the scientific community. © 2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Scopus,
Смотреть статью
Держатели документа:
Laboratory of Biotechnology of New Materials, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, Russian Federation
Siberian Federal University, School of Fundamental Biology and Biotechnology, 79 Svobodny pr., Krasnoyarsk, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS,”, 50/50 Akademgorodok, Krasnoyarsk, Russian Federation
Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, Russian Federation

Доп.точки доступа:
Baker, S.; Prudnikova, S. V.; Volova, T.

Найти похожие
3.


   
    Bio-hybridization of nanobactericides with cellulose films for effective treatment against members of ESKAPE multi-drug-resistant pathogens / S. Baker [et al.] // Appl. Nanosci. - 2018. - Vol. 8, Is. 5. - P1101-1110, DOI 10.1007/s13204-018-0717-9. - Cited References:51. - Authors are thankful for Ministry of Education and Science of the Russian Federation for providing funding under the scheme of 5-100: Russian Academic Excellence Project. Authors are grateful for facilities provided by Siberian Federal University to carry out the present study. . - ISSN 2190-5509. - ISSN 2190-5517
РУБ Nanoscience & Nanotechnology
Рубрики:
SILVER NANOPARTICLES
   BACTERIAL CELLULOSE

   ANTIBIOTIC-RESISTANCE

Кл.слова (ненормированные):
ESKAPE -- Bio-hybridization -- Silver nanobactericides -- Phytogenic -- Bactericidal activity
Аннотация: The rapid expansion of drug-resistant pathogens has created huge global impact and development of novel antimicrobial leads is one of the top priority studies in the current scenario. The present study aims to develop bio-hybridized nanocellulose films which comprise of phytogenic silver nanobactericides. The nanobactericides were synthesized by treating 1 mM silver nitrate with aqueous extract of Chamerion angustifolium which reduced the metal salt to produce polydispersed nanobactericides which were tested against the members of ESKAPE drug-resistant communities. The synthesized silver nanobactericides were subjected to characterization with UV-visible spectra which displayed maximum absorbance at 408 nm. The bio-molecular interaction of phyto-constituents to mediate synthesis and stabilization of nanobactericides was studied with Fourier-transform infrared spectroscopy (FTIR) which depicted functional groups associated with nanobactericides. The crystalline nature was studied with X-ray diffraction (XRD) which showed Bragg's intensities at 2 theta angle which denoted (111), (200), (220), and (311) planes. The morphological characteristics of silver nanobactericides were defined with transmission electron Microscopy (TEM) image which displayed polydispersity of silver nanobactericides with size ranging from 2 to 40 nm. The synthesized nanobactericides showed a significant activity against MRSA strain with 21 mm zone of inhibition. The minimal inhibitory concentration of silver nanobactericides to inhibit the growth of test pathogens was also determined which ranged between 0.625 and 1.25 mu g/ml. The silver nanobactericides were bio-hybridized onto nanocellulose films produced by Komagataeibacter xylinus B-12068 culture strain. The films were dried to determine the mechanical properties which showed increased in Young's modulus and tensile strength in comparison with control bacterial cellulose films. Overall, the results obtained in the present investigation are promising enough to report bactericidal activity of bio-hybridized nanobactericidal films against ESKAPE. These communities are reported to cause severe threats to all forms of lives irrespective to their habitats which can lead to huge economical crisis.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Siberian Fed Univ, Lab Biotechnol New Mat, Svobodnyy Pr 79, Krasnoyarsk 660041, Russia.
SB RAS, Krasnoyarsk Sci Ctr, Fed Res Ctr, Inst Biophys, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.
Siberian Fed Univ, Sch Fundamental Biol & Biotechnol, Krasnoyarsk, Russia.
Krasnoyasrk State Med Univ, Dept Microbiol, Krasnoyarsk Partizana Zheleznyaka St 1, Krasnoyarsk 660022, Russia.
SB RAS, Fed Res Ctr KSC, Kirensky Inst Phys, Akademgorodok 50,Bld 38, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Sch Petr & Nat Gas Engn, Krasnoyarsk, Russia.

Доп.точки доступа:
Baker, Syed; Volova, Tatiana; Prudnikova, Svetlana, V; Shumilova, Anna A.; Perianova, Olga, V; Zharkov, Sergey M.; Kuzmin, And Rey; Olga, Kondratenka; Bogdan, Kiryukhin; Shidlovskiy, Ivan P.; Potkina, Zoya K.; Khohlova, Olga Y.; Lobova, Tatiana, I; Ministry of Education and Science of the Russian Federation under the scheme of 5-100: Russian Academic Excellence Project

Найти похожие
4.


   
    Effect of nanoparticles in growth of test - Bacteria / S. V. Stolyar, L. A. Chekanova, R. N. Yaroslavtsev [et al.] // Journal of Physics: Conference Series : Institute of Physics Publishing, 2019. - Vol. 1399: International Scientific Conference on Applied Physics, Information Technologies and Engineering 2019, APITECH 2019 (25 September 2019 through 27 September 2019, ) Conference code: 156053, Is. 2. - Ст. 022029, DOI 10.1088/1742-6596/1399/2/022029
Кл.слова (ненормированные):
Coefficient of performance -- Hematite -- Industrial water treatment -- Nanomagnetics -- Nanoparticles -- Nickel compounds -- Nickel-Phosphorus -- Silver compounds -- Testing -- Water conservation -- Anti-microbial properties -- Klebsiella pneumoniae -- Magnetic composites -- Magnetic nano-particles -- Magnetic particle -- Pseudomonas aeruginosa -- Staphylococcus aureus -- Water treatment facilities -- Bacteria
Аннотация: Confident effect of five magnetic composite nanoparticles (FeP@Ag, FeP@Pd, CoP, NiP, Fe2O3@A) on growth of test bacteria colonies (Acinetobacter baumannii, scherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus) in five replicates each is considered. Reliable inhibitors of colonies of all five test bacteria were nanoparticles FeP@Ag. CoP nanoparticles are reliable inhibitors of growth of 4 test bacteria (except for test bacteria Escherichia oli). NiP nanoparticles are reliable inhibitors of growth of 2 test bacteria: Escherichia oli and Klebsiella pneumoniae. Bacteria Escherichia oli were most sensitive to the effect of magnetic nanoparticles; and bacteria Pseudomonas aeruginosa and Staphylococcus aureus were most resistant to the effect of magnetic nanoparticles. The prospects of the method are in the possibility of multiple reuse of the magnetic particles with antimicrobial properties for bacterial decontamination of the studied sources of water and removal of magnetic nanoparticles from the treated liquids by electromagnet. The method can find use in water treatment facilities for household, Industrial and medical wastes. © Published under licence by IOP Publishing Ltd.

Scopus
Держатели документа:
Federal Research Center, Krasnoyarsk Science Center, Siberian Branch of the Russian Academy of Sciences, Akademgorodok, 50, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodnyi pr. 79, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, 50/38 Akademgorodok, Krasnoyarsk, Russian Federation
Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, 50/12 Akademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Stolyar, S. V.; Chekanova, L. A.; Yaroslavtsev, R. N.; Ladygina, V. P.; Tirranen, L. S.

Найти похожие
5.


   
    Antimicrobial and antiradical activity of individual fractions of essential oil from seeds of heracleum dissectum ledeb. Of Siberian Region / A. A. Efremov, I. D. Zykova, N. S. Korosteleva // Khimiya Rastitel'nogo Syr'ya. - 2020. - Is. 2. - С. 79-85, DOI 10.14258/JCPRM.2020027029 . - ISSN 1029-5151
   Перевод заглавия: АНТИМИКРОБНАЯ И АНТИРАДИКАЛЬНАЯ АКТИВНОСТЬ ОТДЕЛЬНЫХ ФРАКЦИЙ ЭФИРНОГО МАСЛА ПЛОДОВ HERACLEUM DISSECTUM LEDEB. СИБИРСКОГО РЕГИОНА
Кл.слова (ненормированные):
2 -- 2-diphenyl-1-picrylhydrazyl -- Antimicrobial activity -- Antiradical activity -- Beans -- Essential oil -- Heracleum dissectum Ledeb
Аннотация: By the method of exhaustive hydroponically obtained essential oil from beans of Heracleum dissectum Ledeb., growing in the Krasnoyarsk region. Separate fractions of oil were obtained: the first after 45 minutes from the beginning of distillation, the second – after 2 hours, the third-after 5 hours, the fourth fraction was collected after the end of hydro-distillation. The component composition of both whole essential oil and its separate fractions was studied. The main components are octyl acetate (60.0%), octyl-2-methylpropanoate (10.2%), n-hexyl-2-methylbutanoate (9.0%). The main amount of octyl acetate (64.7%) is concentrated in the first fraction of the oil. The antimicrobial activity of various fractions of essential oil of borscht dissected against strains of opportunistic microorganisms: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus 209p, MRSA, Proteus vulgaris. It was found that, depending on the duration of isolation, the antimicrobial activity of essential oil fractions in relation to Staphylococcus aureus 209p, MRSA and Pseudomonas aeruginosa decreases, and in relation to Escherichia coli, Klebsiella pneumoniae and Proteus vulgaris increases. The most pronounced inhibitory effect of the third and fourth fractions of essential oil against Klebsiella pneumonia. The antiradical activity of all studied samples of borscht essential oil dissected in reaction with stable free 2,2-diphenyl-1-picrylhydrazyl radical was established. The first fraction showed minimal antiradical activity (15.1%), the fourth – maximum (49.2%). © 2020 Altai State University. All rights reserved.

Scopus
Держатели документа:
Siberian Federal University, pr. Svobodnyy, 79, Krasnoyarsk, 660049, Russian Federation
Special Design and Technology Bureau “Science”, Federal Research Center of the KSC SB RAS, Akademgorodok, 50/45, Krasnoyarsk, 660036, Russian Federation
Institute of Biophysics, Federal Research Center, KSC SB RAS, Akademgorodok, 50/50, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Efremov, A. A.; Zykova, I. D.; Korosteleva, N. S.

Найти похожие
6.


   
    Effect of nanoparticles in growth of test - bacteria / S. V. Stolyar, L. A. Chekanova, R. N. Yaroslavtsev [et al.] // INTERNATIONAL SCIENTIFIC CONFERENCE ON APPLIED PHYSICS, INFORMATION : IOP PUBLISHING LTD, 2019. - Vol. 1399: International Scientific Conference on Applied Physics, Information (SEP 25-27, 2019, Siberian Fed Univ, Polytechn Inst, Krasnoyarsk, RUSSIA). - Ст. 022029. - (Journal of Physics Conference Series), DOI 10.1088/1742-6596/1399/2/022029. - Cited References:10 . -
РУБ Engineering, Multidisciplinary + Physics, Applied

Аннотация: Confident effect of five magnetic composite nanoparticles (FeP@Ag, FeP@Pd, CoP, NiP, Fe2O3@AF) on growth of test bacteria colonies (Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus) in five replicates each is considered. Reliable inhibitors of colonies of all five test bacteria were nanoparticles FeP@Ag. CoP nanoparticles are reliable inhibitors of growth of 4 test bacteria (except for test bacteria Escherichia coli). NiP nanoparticles are reliable inhibitors of growth of 2 test bacteria: Escherichia coli and Klebsiella pneumoniae. Bacteria Escherichia coli were most sensitive to the effect of magnetic nanoparticles; and bacteria Pseudomonas aeruginosa and Staphylococcus aureus were most resistant to the effect of magnetic nanoparticles. The prospects of the method are in the possibility of multiple reuse of the magnetic particles with antimicrobial properties for bacterial decontamination of the studied sources of water and removal of magnetic nanoparticles from the treated liquids by electromagnet. The method can find use in water treatment facilities for household, Industrial and medical wastes.

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Fed Res Ctr, Akademgorodok 50, Krasnoyarsk, Russia.
Siberian Fed Univ, Svobodnyi Pr 79, Krasnoyarsk, Russia.
Kirensky Inst Phys, Akademgorodok 50-38, Krasnoyarsk, Russia.
Russian Acad Sci, Siberian Branch, Inst Biophys, Akademgorodok 50-12, Krasnoyarsk, Russia.

Доп.точки доступа:
Stolyar, S., V; Chekanova, L. A.; Yaroslavtsev, R. N.; Ladygina, V. P.; Tirranen, L. S.

Найти похожие
7.


   
    A Novel Approach Towards Green Synthesis of Nanodiamonds as Biocompatible Agents / A. Anand, M. Saran, S. Chaudhary [et al.] // J. Nano. Electron. Phys. - 2021. - Vol. 13, Is. 3. - P1-6, DOI 10.21272/jnep.13(3).03040 . - ISSN 2077-6772
   Перевод заглавия: Новий підхід до зеленого синтезу наноалмазів як біосумісних агентів
Кл.слова (ненормированные):
Antimicrobial -- Antioxidants -- Biocompatible agents -- Green synthesis
Аннотация: The application of nanobiotechnology is an emerging area of nanoscience and nanotechnology. Nanodi-amond has been a potent antibacterial, antifungal, antioxidant, and antiplatelet agent. In the present study, nanodiamonds were reduced by green synthesis and characterization was done through SEM, TEM, FTIR, and XRD. Further they were tested for their biological applications. The antimicrobial activity was investigated/studied/examined? through well diffusion method. The best activity was observed against Trichoderma reesei (16 mm) at 140 ?g/ml. The antioxidant activity was investigated through DPPH and FRAPS method. It was observed that the biologically reduced nanodiamonds reduce the Fe3+ ions to Fe2+ ions at 600 mM/l/g concentration. In DPPH assay, inhibitory concentration was found to be 4.58 ?g/ml. Further the antiplatelet activity was investigated by prothrombin time (PT) and activated partial throm-boplastin time (APTT) assay, and it was observed that biologically reduced nanodiamonds have potent an-tiplatelet activity. © 2021 Sumy State University

Scopus
Держатели документа:
Department of Biotechnology, Mewar University, Chittorgarh, 312901, India
Department of Physics, Manipal University Jaipur, Jaipur, 303007, India
Department of Nanobiotechnology, Seminal Applied Sciences Pvt. Ltd, Jaipur, 302015, India
Department of Chemistry, Malviya National Institute of Technology, Jaipur, 302017, India
School of Agriculture, Suresh Gyan Vihar University, Mahal Road, Jaipur, 302017, India
Institute of Computational Technologies SB RAS, Krasnoyarsk, 660049, Russian Federation
Institute of Biophysics, SB RAS, Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Anand, A.; Saran, M.; Chaudhary, S.; Ronin, R. S.; Swami, A. K.; Mathur, M.; Burov, A.; Bagaria, A.

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)