Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Arctic<.>)
Общее количество найденных документов : 38
Показаны документы с 1 по 20
 1-20    21-38 
1.
577.34
И 73


   
    Интенсивность накопления урана-238 представителями разных экологических уровней экосистемы р. Енисей [Текст] / Сибирское Отделение Российской академии наук, Институт биофизики СО РАН ; Институт биофизики СО РАН // Вестник Томского государственного университета. Биология. - 2016. - №  2 (34) . - С. 161-171DOI 10.17223/19988591/34/11
   Перевод заглавия: Accumulation of uranium-238 by representatives of different ecological levels in the Yenisei River ecosystem
УДК

Кл.слова (ненормированные):
коэффициент накопления -- трофический уровень -- Philolimnogammarus viridis -- Fointinalis antipyretica -- Thymallus arcticus -- Esox lucius)
Аннотация: В результате многолетних исследований (2010-2013) получены данные по накоплению урана-238 в гидробионтах разных трофических уровней экосистемы р. Енисей. Пробы водного мха (Fointinalis antipyretica), зообентоса (Philolimnogammarus viridis и Ph. Cyaneus), сибирского хариуса (Thymallus arcticus) и щуки (Esox lucius) отбирали в районе ранее зарегистрированного повышенного содержания урана в воде р. Енисей (вблизи радиоактивных сбросов Горно-химического комбината Росатома). Показано, что уран способен эффективно накапливаться из воды в биомассе всех исследованных гидробионтов. Максимальные коэффициенты накопления (КН) урана получены для водного мха, что многократно превышает КН урана для зообентоса и мышечной ткани рыб. Средние значения КН урана для зообентоса статистически значимо превышают КН в мышцах рыб за весь период наблюдения. Не выявлено статистически значимых отличий в накоплении урана рыбами разного трофического уровня (хариус и щука)
The aim of the research was a comparative evaluation of the intensity of uranium-238 accumulation in the biomass of aquatic organisms, occupying different trophic levels in the ecosystem of the Yenisei river. Previously, uranium-238 at concentrations higher than the background ones was detected in water and sediment samples of the Yenisei River collected close to the discharge site of one of the Rosatom facilities (the Mining-and-Chemical Combine). However, radioecological studies of the Yenisei River ecosystem have not focused on uranium isotopes in aquatic organisms so far. The toxic effects of uranium on living organisms are known to be based on its both radioactive and chemical properties. We conducted a study on accumulation of uranium-238 in aquatic organisms at different trophic levels in the Yenisei River ecosystem between 2010 and 2013. We collected samples of aquatic moss (Fointinalis antipyretica), zoobenthos (Philolimnogammarus viridis and Ph. cyaneus), arctic grayling (Thymallus arcticus), and pike (Esox lucius) from the Yenisei region at a distance of 85-90 km downstream of Krasnoyarsk (5-10 km downstream of the radioactive discharge of the Mining-and-Chemical Combine). Data on samples are shown in Table 1. We determined uranium concentration in the samples of aquatic organisms by neutron activation analysis, in water - by ICP-MS (Table 2). The study shows that uranium can be effectively concentrated from water and accumulate in the biomass of all aquatic organisms used in experiments. The highest uranium concentration factors (CFs) were obtained for aquatic moss, and they were several times higher than the uranium CFs for zoobenthos and fish muscles. Based on the uranium concentration from water, all aquatic organisms of the Yenisei River used in this study can be ranked as follows: aquatic moss > gammarids > grayling = pike. No statistically significant difference has been found between uranium accumulation by fish of different trophic levels (Arctic grayling and pike). The uranium CFs obtained in this study is comparable with the literature data on the CFs of artificial radionuclides for aquatic moss and fish of the Yenisei River

смотреть полный текст
Держатели документа:
Институт биофизики Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Болсуновский, Александр Яковлевич; Трофимова, Елена Александровна; Дементьев, Дмитрий Владимирович; Карпов, Антон Дмитриевич; Институт биофизики Сибирского отделения Российской Академии наук (Красноярск)

Найти похожие
2.


   
    Time-dependent trends of artificial radionuclides in biota of the Yenisei River (Siberia, Russia) / T. A. Zotina, E. A. Trofimova, D. V. Dementyev // J. Environ. Radioact. - 2019. - Vol. 208-209. - Ст. 106028, DOI 10.1016/j.jenvrad.2019.106028 . - ISSN 0265-931X
Кл.слова (ненормированные):
Apatania crymophila -- Esox lucius -- Eulimnogammarus viridis -- Fontinalis antipyretica -- Leuciscus baicalensis -- Thymallus arcticus -- Fish -- Muscle -- Nuclear reactors -- Plant shutdowns -- Apatania crymophila -- Esox lucius -- Eulimnogammarus viridis -- Fontinalis antipyretica -- Leuciscus baicalensis -- Thymallus arcticus -- Radioisotopes -- Amphipoda -- Apatania crymophila -- Bryophyta -- Esox lucius -- Eulimnogammarus viridis -- Fontinalis antipyretica -- Leuciscus -- Thymallus arcticus -- Trichoptera
Аннотация: We investigated time-dependent trends of artificial radionuclides in aquatic moss, zoobenthos (amphipods and caddisfly larvae), and three abundant wild fish species (Northern pike, Arctic grayling, and Siberian dace) inhabiting the Yenisei River in the vicinity of the radioactive discharge site in 2007–2015, in a period before and after the shutdown of the last nuclear reactor plant at the Mining-and-Chemical Combine (MCC), which occurred in 2010. From our research, we learned that concentrations of short-lived radionuclides, whose discharges to the Yenisei either stopped or declined after the shutdown of the reactor plant at the MCC (24Na, 46Sc,51Cr, 54Mn, 58Co, 59Fe, 60Co, 65Zn, 103Ru, 141,144Ce, 152,154Eu, 239Np), decreased in biota samples as well. The ecological half-life (EHL) of 65Zn (0.4–0.7 y) was similar to the physical half-life of this isotope, the EHLs of 60Co (1.2–2.1 y) and 152Eu (1.8 y) were shorter than the physical half-lives of these isotopes. Concentration of 137Cs did not decrease significantly in biota of the Yenisei after the shutdown of the last reactor plant because the discharges of this radionuclide to the Yenisei continued at the same level. On a longer-term scale (since 1973 and since 1991), concentration of 137Cs in fish muscle had significantly decreased, following the decrease in annual discharges of this radionuclide to the Yenisei, and the EHL of 137Cs was estimated as 6.5–12.8 y. Statistically significant correlation with annual discharges of 137Cs was revealed for the concentration of this radionuclide in grayling (whole bodies and muscle); dace (muscle), and amphipods. Despite their ability to accumulate high concentrations of 137Cs, aquatic moss and caddisfly larvae (analyzed together with their stony casings) were not sensitive to interannual fluctuations in the releases of this radionuclide to the Yenisei. Among the analyzed fish species of the Yenisei, the highest activity concentration of 137Cs was revealed in pike (body and muscle), indicating biomagnification of this radionuclide in the top level of the trophic chain. © 2019 Elsevier Ltd

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics, Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny av., Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Zotina, T. A.; Trofimova, E. A.; Dementyev, D. V.

Найти похожие
3.


   
    The Influence of Temperature and Humidity on Greenhouse Gas Emission in Experiments on Imitation of the Full Vegetation Cycle of Tundra Ecosystems / Y. V. Barkhatov [et al.] // Dokl. Earth Sci. - 2018. - Vol. 483, Is. 2. - P1539-1541, DOI 10.1134/S1028334X18120115. - Cited References:15. - This study was supported by the Russian Foundation for Basic Research, the Krasnoyarsk Krai Government and the Krasnoyarsk Regional Fund of Science (project no. 17-45-240884), the Russian Foundation for Basic Research (project no. 16-04-01677-a), and the Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, governmental assignment, theme no. 56.1.4. for 2013-2020. . - ISSN 1028-334X. - ISSN 1531-8354
РУБ Geosciences, Multidisciplinary
Рубрики:
POLYGONAL TUNDRA
   METHANE EMISSION

   CARBON

   DELTA

   LAKES

Аннотация: Laboratory experiments were conducted in a hermetically sealed growth chamber with two soil samples obtained from the arctic tundra zone with different levels of moisture. Samples were maintained at a growing season typical of the region from which they were taken, and for the sample with a high level of moisture it was made twice: with the temperature in accord with natural conditions and one increased by 2 degrees C. It has been shown that heating of the overmoistened tundra soil by 2 degrees C can increased the average carbon dioxide emissions by almost two times (from 75 to 100-150 mg m(-2) h(-1)). Upon the application of heat, no significant increase in methane emission was observed.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Sukachev Inst Forests, Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Barkhatov, Yu. V.; Ushakova, S. A.; Shikhov, V. N.; Evgrafova, S. Yu.; Tikhomirov, A. A.; Degermendzhi, A. G.; Russian Foundation for Basic Research; Krasnoyarsk Krai Government; Krasnoyarsk Regional Fund of Science [17-45-240884]; Russian Foundation for Basic Research [16-04-01677-a]; Institute of Biophysics, Siberian Branch, Russian Academy of Sciences [56.1.4.]

Найти похожие
4.


   
    THE FIRST RECORDS OF SENECELLA SIBERICA VYSHKVARTZEVA 1994 (COPEPODA, CALANOIDA) IN LARGE NORILSK LAKES, PYASINA RIVER BASIN, CENTRAL SIBERIA / O. P. Dubovskaya, L. A. Glushchenko // Zool. Zhurnal. - 2018. - Vol. 97, Is. 10. - С. 1264-1271, DOI 10.1134/S0044513418100057. - Cited References:26 . - ISSN 0044-5134
РУБ Zoology
Рубрики:
LIMNOCALANUS-MACRURUS
   FRESH-WATER

   MICHIGAN

   ESTUARY

Кл.слова (ненормированные):
Senecella siberica -- marine glacial relict -- zooplankton -- Norilsk lakes -- central Siberia
Аннотация: The large, deep, freshwater Norilsk lakes (Lake Lama, Lake Sobachye, Lake Glubokoe and Lake Keta) are located beyond the Arctic Circle, at the northwestern edge of the Putorana Plateau. They underwent a Pleistocene boreal marine transgression. A relict of that transgression, Limnocalanus macrurus Sars 1863 (Copepoda, Calanoida), presently dominates the crustacean zooplankton of these lakes. Sympatric with the native relict species L. macrurus, Senecella siberica Vyshkvartzeva 1994, was found in our zooplankton samples taken from the deep parts of lakes Lama and Sobachye in the summer-autumn of 2014-2016. Sampling was performed using a Juday net hauled vertically from a depth of 15, 20(25/30) and/or 50 m to the surface. All Senecella specimens were older copepodites, mainly CIV stage in Lama and Sobachye lakes in August and CV in Sobachye Lake in September; their abundance was low (25-2000 ind. m(-2)). They inhabited the central deeper regions of the lakes, contributing up to 7-14% to the total wet biomass of net zooplankton in 0-20 and 0-50 m strata. Previous sporadic and rather superficial samplings in these lakes missed Senecella due to its deep locations, low abundance levels and the absence of both the oldest copepodites and adults in summer.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Inst Biophys,Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Dubovskaya, O. P.; Glushchenko, L. A.

Найти похожие
5.


   
    Specific Features of the Macrozoobenthic Communities of Small Arctic Lakes in Eurasia / M. V. Chertoprud, S. V. Krylenko, A. I. Lukinych [et al.] // Inland Water Biol. - 2021. - Vol. 14, Is. 4. - P401-414, DOI 10.1134/S1995082921030056. - Cited References:58. - The primary processing of the material and statistical analysis of the data were carried out with financial support from the Russian Foundation for Basic Research (project No. 20-04-00145). Field works on Kolguev Island were sup-ported by the Meeresenten project (Bundesamt fur Naturschutz, BfN; online ID 100308472), the Federal Agency for Nature Protection of Germany (Conservation Bundesamtfur Naturschutz, BfN), grant MEERESENTEN (3516821500), and State assignment.AAAA-A19119021990093-8; works on Svalbard were funded by the Norwegian Institute for Nature Research (NINA) and Research Council of Norway, projects no. 227024 and 246726. Research on the Putorana Plateau was supported by a state task as part of the Basic Research Program of the Russian Federation, topic no. 51.1.1, and the State Assignment of the Ministry of Science and Higher Education of the Russian Federation to the Siberian Federal University, project no. FSRZ-2020-0006. . - ISSN 1995-0829. - ISSN 1995-0837
РУБ Marine & Freshwater Biology
Рубрики:
WATER BODIES
   ECOSYSTEMS

   ZOOBENTHOS

   RECOVERY

   SVALBARD

   IMPACT

   PONDS

Кл.слова (ненормированные):
small lakes -- Arctic -- subarctic -- Putorana Plateau -- Kolguev Island -- Svalbard -- macrozoobenthos -- community structure
Аннотация: The taxonomic structure, typology, species richness, and total abundance of bentic and littoral macroinvertebrate communities from small lakes of the Arctic and Subarctic zones are considered on the basis of original data from three northern Palearctic regions (the foot of the Putorana Plateau, Kolguev Island, and Western Svalbard Island). A comparative analysis of the communities of these regions has been carried out. The features of High Arctic insular, Low Arctic, subarctic, and boreal lake communities are discussed using a large volume of literature data. The complex pattern of changes in the total benthos biomass of small lakes has been revealed: it decreases in the subarctic taiga, increases in the hypoarctic tundra, and decreases again in the High Arctic.

WOS
Держатели документа:
Moscow MV Lomonosov State Univ, Moscow, Russia.
Russian Acad Sci, Inst Geog, Moscow, Russia.
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk Sci Ctr, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Russian Acad Sci, Severtsov Inst Ecol & Evolut, Moscow, Russia.

Доп.точки доступа:
Chertoprud, M. V.; Krylenko, S. V.; Lukinych, A. I.; Glazov, P. M.; Dubovskaya, O. P.; Chertoprud, E. S.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [20-04-00145]; Meeresenten project (Bundesamt fur Naturschutz, BfN) [100308472]; Federal Agency for Nature Protection of Germany (Conservation Bundesamtfur Naturschutz, BfN), grant MEERESENTEN [3516821500]; Norwegian Institute for Nature Research (NINA); Research Council of NorwayResearch Council of Norway [227024, 246726]; Basic Research Program of the Russian Federation [51.1.1]; Ministry of Science and Higher Education of the Russian Federation to the Siberian Federal University [FSRZ-2020-0006]; [AAAA-A19119021990093-8]

Найти похожие
6.


   
    Spatial biodiversity of bacteria along the largest Arctic river determined by next-generation sequencing / O. V. Kolmakova [et al.] // FEMS Microbiol. Ecol. - 2014. - Vol. 89, Is. 2. - P442-450, DOI 10.1111/1574-6941.12355 . - ISSN 1574-6941
Кл.слова (ненормированные):
16S rRNA gene -- Bacterial community -- Diversity -- Yenisei River -- Actinobacteria -- Bacteria (microorganisms) -- Cyanobacteria -- Proteobacteria
Аннотация: The biodiversity of bacterial communities along the Yenisei River at section c. 1800 km was studied using next-generation sequencing of 16S rRNA genes and common biodiversity indices. Overall, 3022 unique operational taxonomic units were identified. Actinobacteria and Proteobacteria were the dominant phyla at all sampling sites. The highest alpha-diversity values were found in the middle section of the studied river. The beta-diversity of bacterial assemblages in the river was related to the surrounding landscape (biome): three distinctly different bacterial assemblages occurred in sections of the river, situated in mountain taiga, plain taiga and in a region of permafrost, covered by forest-tundra and tundra. Tributaries arising from these different landscapes likely contributed substantially to the variations of Yenisei bacterial communities. In contrast to a prediction of the river continuum concept, the proportion of photoautotrophic Cyanobacteria in bacterial assemblages did not increase downstream, but peaked at the middle section. © 2014 Federation of European Microbiological Societies.

Scopus
Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kolmakova, O.V.; Gladyshev, M.I.; Rozanov, A.S.; Peltek, S.E.; Trusova, M.Y.

Найти похожие
7.


   
    Spatial biodiversity of bacteria along the largest Arctic river determined by next-generation sequencing [Text] / O. V. Kolmakova [et al.] // FEMS Microbiol. Ecol. - 2014. - Vol. 89, Is. 2. - P442-450, DOI 10.1111/1574-6941.12355. - Cited References: 36. - This work was supported by the Attracting Leading Scientists to Russian Educational Institutions Program of the Russian Federation, agreement 11.G34.31.0014, and by the project G-1 of Siberian Federal University, carried out according to Federal tasks of the Ministry of Education and Science of Russian Federation. . - ISSN 0168-6496. - ISSN 1574-6941
РУБ Microbiology
Рубрики:
DISSOLVED ORGANIC-MATTER
   INLAND WATERS

   CARBON

   BACTERIOPLANKTON

   COMMUNITY

   GREENGENES

   ECOSYSTEM

   RESERVOIR

   PATTERNS

   PRIMERS

Кл.слова (ненормированные):
bacterial community -- diversity -- 16S rRNA gene -- Yenisei River
Аннотация: The biodiversity of bacterial communities along the Yenisei River at section c. 1800 km was studied using next-generation sequencing of 16S rRNA genes and common biodiversity indices. Overall, 3022 unique operational taxonomic units were identified. Actinobacteria and Proteobacteria were the dominant phyla at all sampling sites. The highest alpha-diversity values were found in the middle section of the studied river. The beta-diversity of bacterial assemblages in the river was related to the surrounding landscape (biome): three distinctly different bacterial assemblages occurred in sections of the river, situated in mountain taiga, plain taiga and in a region of permafrost, covered by forest-tundra and tundra. Tributaries arising from these different landscapes likely contributed substantially to the variations of Yenisei bacterial communities. In contrast to a prediction of the river continuum concept, the proportion of photoautotrophic Cyanobacteria in bacterial assemblages did not increase downstream, but peaked at the middle section.

WOS
Держатели документа:
[Kolmakova, Olesya V.
Gladyshev, Michail I.] Siberian Fed Univ, Krasnoyarsk, Russia
[Kolmakova, Olesya V.
Gladyshev, Michail I.
Trusova, Maria Y.] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia
[Rozanov, Alexey S.
Peltek, Sergey E.] Russian Acad Sci, Inst Cytol & Genet, Siberian Branch, Novosibirsk 630090, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kolmakova, O.V.; Gladyshev, M.I.; Rozanov, A.S.; Peltek, S.E.; Trusova, M.Y.; Attracting Leading Scientists to Russian Educational Institutions Program of the Russian Federation [11.G34.31.0014]; Siberian Federal University

Найти похожие
8.


   
    Spatial and temporal variation in Arctic freshwater chemistry—Reflecting climate-induced landscape alterations and a changing template for biodiversity / B. J. Huser, M. N. Futter, D. Bogan [et al.] // Freshw. Biol. - 2020, DOI 10.1111/fwb.13645 . - Article in press. - ISSN 0046-5070
Кл.слова (ненормированные):
biogeochemistry -- eutrophication -- lakes -- oligotrophication -- rivers
Аннотация: Freshwater chemistry across the circumpolar region was characterised using a pan-Arctic data set from 1,032 lake and 482 river stations. Temporal trends were estimated for Early (1970–1985), Middle (1986–2000), and Late (2001–2015) periods. Spatial patterns were assessed using data collected since 2001. Alkalinity, pH, conductivity, sulfate, chloride, sodium, calcium, and magnesium (major ions) were generally higher in the northern-most Arctic regions than in the Near Arctic (southern-most) region. In particular, spatial patterns in pH, alkalinity, calcium, and magnesium appeared to reflect underlying geology, with more alkaline waters in the High Arctic and Sub Arctic, where sedimentary bedrock dominated. Carbon and nutrients displayed latitudinal trends, with lower levels of dissolved organic carbon (DOC), total nitrogen, and (to a lesser extent) total phosphorus (TP) in the High and Low Arctic than at lower latitudes. Significantly higher nutrient levels were observed in systems impacted by permafrost thaw slumps. Bulk temporal trends indicated that TP was higher during the Late period in the High Arctic, whereas it was lower in the Near Arctic. In contrast, DOC and total nitrogen were both lower during the Late period in the High Arctic sites. Major ion concentrations were higher in the Near, Sub, and Low Arctic during the Late period, but the opposite bulk trend was found in the High Arctic. Significant pan-Arctic temporal trends were detected for all variables, with the most prevalent being negative TP trends in the Near and Sub Arctic, and positive trends in the High and Low Arctic (mean trends ranged from +0.57%/year in the High/Low Arctic to ?2.2%/year in the Near Arctic), indicating widespread nutrient enrichment at higher latitudes and oligotrophication at lower latitudes. The divergent P trends across regions may be explained by changes in deposition and climate, causing decreased catchment transport of P in the south (e.g. increased soil binding and trapping in terrestrial vegetation) and increased P availability in the north (deepening of the active layer of the permafrost and soil/sediment sloughing). Other changes in concentrations of major ions and DOC were consistent with projected effects of ongoing climate change. Given the ongoing warming across the Arctic, these region-specific changes are likely to have even greater effects on Arctic water quality, biota, ecosystem function and services, and human well-being in the future. © 2020 The Authors. Freshwater Biology published by John Wiley & Sons Ltd.

Scopus
Держатели документа:
Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
Alaska Center for Conservation Science, University of Alaska Anchorage, Anchorage, AK, United States
Norwegian Water Resources & Energy Directorate, Oslo, Norway
Natural History Museum, University of Oslo, Oslo, Norway
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, ON, Canada
Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Department of Ecology and Environmental Science, Climate Impacts Research Centre, Umea University, Abisko, Sweden
Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of Biology, Queen’s University, Kingston, ON, Canada
Norwegian Institute for Nature Research, Oslo, Norway
Canadian Rivers Institute and Department of Biology, University of New Brunswick, Fredericton, NB, Canada

Доп.точки доступа:
Huser, B. J.; Futter, M. N.; Bogan, D.; Brittain, J. E.; Culp, J. M.; Goedkoop, W.; Gribovskaya, I.; Karlsson, J.; Lau, D. C.P.; Ruhland, K. M.; Schartau, A. K.; Shaftel, R.; Smol, J. P.; Vrede, T.; Lento, J.

Найти похожие
9.


   
    Spatial and temporal variation in Arctic freshwater chemistry-Reflecting climate-induced landscape alterations and a changing template for biodiversity / B. J. Huser, M. N. Futter, D. Bogan [et al.] // Freshw. Biol. - 2020, DOI 10.1111/fwb.13645. - Cited References:98. - Environment and Climate Change Canada; Cumulative Impact Monitoring Program, Government of Northwest Territories . - Article in press. - ISSN 0046-5070. - ISSN 1365-2427
РУБ Ecology + Marine & Freshwater Biology
Рубрики:
DISSOLVED ORGANIC-CARBON
   PERMAFROST THAW

   CHEMICAL LIMNOLOGY

Кл.слова (ненормированные):
biogeochemistry -- eutrophication -- lakes -- oligotrophication -- rivers
Аннотация: Freshwater chemistry across the circumpolar region was characterised using a pan-Arctic data set from 1,032 lake and 482 river stations. Temporal trends were estimated for Early (1970-1985), Middle (1986-2000), and Late (2001-2015) periods. Spatial patterns were assessed using data collected since 2001. Alkalinity, pH, conductivity, sulfate, chloride, sodium, calcium, and magnesium (major ions) were generally higher in the northern-most Arctic regions than in the Near Arctic (southern-most) region. In particular, spatial patterns in pH, alkalinity, calcium, and magnesium appeared to reflect underlying geology, with more alkaline waters in the High Arctic and Sub Arctic, where sedimentary bedrock dominated. Carbon and nutrients displayed latitudinal trends, with lower levels of dissolved organic carbon (DOC), total nitrogen, and (to a lesser extent) total phosphorus (TP) in the High and Low Arctic than at lower latitudes. Significantly higher nutrient levels were observed in systems impacted by permafrost thaw slumps. Bulk temporal trends indicated that TP was higher during the Late period in the High Arctic, whereas it was lower in the Near Arctic. In contrast, DOC and total nitrogen were both lower during the Late period in the High Arctic sites. Major ion concentrations were higher in the Near, Sub, and Low Arctic during the Late period, but the opposite bulk trend was found in the High Arctic. Significant pan-Arctic temporal trends were detected for all variables, with the most prevalent being negative TP trends in the Near and Sub Arctic, and positive trends in the High and Low Arctic (mean trends ranged from +0.57%/year in the High/Low Arctic to -2.2%/year in the Near Arctic), indicating widespread nutrient enrichment at higher latitudes and oligotrophication at lower latitudes. The divergent P trends across regions may be explained by changes in deposition and climate, causing decreased catchment transport of P in the south (e.g. increased soil binding and trapping in terrestrial vegetation) and increased P availability in the north (deepening of the active layer of the permafrost and soil/sediment sloughing). Other changes in concentrations of major ions and DOC were consistent with projected effects of ongoing climate change. Given the ongoing warming across the Arctic, these region-specific changes are likely to have even greater effects on Arctic water quality, biota, ecosystem function and services, and human well-being in the future.

WOS
Держатели документа:
Swedish Univ Agr Sci, Dept Aquat Sci & Assessment, Box 7050, S-75007 Uppsala, Sweden.
Univ Alaska Anchorage, Alaska Ctr Conservat Sci, Anchorage, AK USA.
Norwegian Water Resources & Energy Directorate, Oslo, Norway.
Univ Oslo, Nat Hist Museum, Oslo, Norway.
Wilfrid Laurier Univ, Cold Regions Res Ctr, Waterloo, ON, Canada.
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk, Russia.
Umea Univ, Climate Impacts Res Ctr, Dept Ecol & Environm Sci, Umea, Sweden.
Queens Univ, Dept Biol, Paleoecol Environm Assessment & Res Lab PEARL, Kingston, ON, Canada.
Norwegian Inst Nat Res, Oslo, Norway.
Univ New Brunswick, Canadian Rivers Inst, Fredericton, NB, Canada.
Univ New Brunswick, Dept Biol, Fredericton, NB, Canada.

Доп.точки доступа:
Huser, Brian J.; Futter, Martyn N.; Bogan, Daniel; Brittain, John E.; Culp, Joseph M.; Goedkoop, Willem; Gribovskaya, Iliada; Karlsson, Jan; Lau, Danny C. P.; Ruhland, Kathleen M.; Schartau, Ann Kristin; Shaftel, Rebecca; Smol, John P.; Vrede, Tobias; Lento, Jennifer; Environment and Climate Change Canada; Cumulative Impact Monitoring Program, Government of Northwest Territories

Найти похожие
10.


   
    Seasonal variability of length-weight relationships of Arctic grayling (Thymallus arcticus) and Siberian dace (Leuciscus baicalensis) inhabiting the middle reaches of the Yenisei River, Siberia, Russia / I. V. Zuev, E. A. Trofimova, T. A. Zotina // Turk. J. Fish. Quat. Sci. - 2019. - Vol. 19, Is. 10. - P893-897, DOI 10.4194/1303-2712-v19_10_09. - Cited References:23. - The authors would like to thank Natalia Oskina, Nikolay Moshkin, and Tatiana Fetisova for their help with fish measurements. The work was partly supported by Russian Foundation for Basic Research, Grant No. 18-44-240003. . - ISSN 1303-2712. - ISSN 2149-181X
РУБ Fisheries + Marine & Freshwater Biology
Рубрики:
FISH
   GROWTH

   PALLAS

Кл.слова (ненормированные):
LWR -- Fish condition -- Baikal grayling -- Total length -- Total body weight
Аннотация: The present study proves the presence of seasonal variability of LWRs of Arctic grayling and Siberian dace inhabiting the middle reaches of the Yenisei River. LWRs were estimated using total length (cm) and total body weight (g). The literature data on LWRs of dace and grayling from different regions were compared using log a over b plot. The comparison revealed that seasonal variability of LWRs was wider than the geographic variability for these species. The position of points on the plot can be used to predict the season of sample collection and vice versa.

WOS,
Смотреть статью
Держатели документа:
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Svobodny Av 79, Krasnoyarsk 660041, Russia.
RAS, SB, Fed Res Ctr, Krasnoyarsk Sci Ctr,Inst Biophys, Akademgorodok 50-50, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Zuev, Ivan V.; Trofimova, Elena A.; Zotina, Tatiana A.; Zuev, Ivan; Russian Foundation for Basic Research [18-44-240003]

Найти похожие
11.


   
    Seasonal changes in feeding and relative condition factors of Arctic grayling (Thymallus arcticus) in a stretch of the middle reaches of the Yenisei River / I. V. Zuev [et al.] // Contemp. Probl. Ecol. - 2017. - Vol. 10, Is. 3. - P250-258, DOI 10.1134/S1995425517030143 . - ISSN 1995-4255
Кл.слова (ненормированные):
amphipods -- Apatania crymophila -- feeding spectrum -- relative condition factor -- Thymallus arcticus -- zoobenthos -- Amphipoda -- Apatania crymophila -- Thymallus arcticus -- Trichoptera
Аннотация: The seasonal dynamics of feeding spectra and diet of Arctic graying in a stretch of the middle reaches of the Yenisei River (from the dam of the Krasnoyarsk HPP to the mouth of the Kan River) was studied in 2009–2013. Its connection with the food-supply state and fish growth has been traced. It has been shown that the intensity of fish feeding is relatively stable throughout the year, despite significant fluctuations in zoobenthos biomass. The contribution of groups dominating in diet (amphipods and larvae of caddisflies) changes depending on the month. Amphipods prevail in the diet of fish during the period from June to October and caddisflies prevail in the winter and spring months. Among caddisflies, selective feeding on a small species, Apatania crymophila, has been revealed. The change of the primary diet component during the summer period corresponds to a sharp increase in the coefficients of relative condition factors with a peak in August–September. It has been assumed that changes in the ratio of weight and linear sizes of fish are associated not only with an increase in the water temperature, but also with the grayling switching to the consumption of amphipods with a higher nutrition value. © 2017, Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk Scientific Center, Akademgorodok 50/50, Krasnoyarsk, Russian Federation

Доп.точки доступа:
V. Zuev, I.; Shulepina, S. P.; Trofimova, E. A.; Zotina, T. A.

Найти похожие
12.


   
    Postglacial Colonization of the North European Seas by Pacific Fishes and Lamprey / A. A. Makhrov, D. L. Lajus // Contemp. Probl. Ecol. - 2018. - Vol. 11, Is. 3. - P247-258, DOI 10.1134/S1995425518030071. - Cited References:134. - This work was supported by Russian Science Foundation, project no. 16-14-10001. . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology
Рубрики:
MULTIPLE GLACIAL REFUGIA
   GENETIC DIFFERENTIATION

   SPECIES COMPLEX

   1956

Кл.слова (ненормированные):
Arctic Ocean -- zoogeography -- phylogeography -- fish -- lamprey -- evolution -- immobilization
Аннотация: A critical analysis of literature data on the distribution, morphology, and phylogeography of the Arctic lamprey (Lethenteron camtschaticum) and five species of marine and anadromous fish such as navaga (Eleginus navaga), pollock (Theragra chalcogramma), rainbow smelt (Osmerus mordax dentex), Pacific herring (Clupea pallasii), and pond smelt (Hypomesus olidus) has been performed. The results show that all these species have colonized Northern European seas, distributing along the Arctic coastline of Eurasia after the glacier retreat. The reasons that the dispersal of these species in the Atlantic Ocean may be impeded (preference for a cold environment, competition, and decrease of the evolutionary potential) are discussed.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Russian Acad Sci, Severtsov Inst Ecol & Evolut, Moscow 119071, Russia.
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Inst Biophys, Krasnoyarsk 660036, Russia.
St Petersburg State Univ, St Petersburg 199178, Russia.

Доп.точки доступа:
Makhrov, A. A.; Lajus, D. L.; Russian Science Foundation [16-14-10001]

Найти похожие
13.


   
    Phenotypic Plasticity and Allometry of Craniological Characters of Anadromous and Lacustrine Forms of Whitefish Coregonus lavaretus (Linnaeus, 1758) as an Indication of the Wrong Species Status of Coregonus pidschian / E. A. Borovikova, J. V. Kodukhova, A. V. Semenova // Contemp. Probl. Ecol. - 2020. - Vol. 13, Is. 6. - P620-630, DOI 10.1134/S1995425520060049. - Cited References:64. - This article was prepared with financial support from the Russian Science Foundation, grant no. 16-14-10001. . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology
Рубрики:
SALMON SALMO-SALAR
   SKULL MORPHOLOGY

   ARCTIC CHARR

   SEA

   L.

Кл.слова (ненормированные):
coregonid fish -- craniological features -- anadromous form -- lacustrine -- form -- plasticity -- allometry -- species status
Аннотация: The variability of craniological characters has been studied for anadromous and lacustrine forms of whitefish Coregonus lavaretus (Linnaeus, 1758) from waterbodies of the Karelian coast of the White Sea. The significant phenotypic plasticity of craniological characters of the whitefish depends on the environmental conditions. Moreover, there is a correlation between indexes of the craniological traits (except for the index of the snout length) and the body and/or head length (allometric effect). These results suggest that it is unreasonable to separate anadromous and lacustrine forms of C. lavaretus as distinct taxonomical units and argues for the invalidity of C. pidschian and C. oxyrinchus species.

WOS
Держатели документа:
Russian Acad Sci, Papanin Inst Biol Inland Waters, Borok 152742, Yaroslavl Oblas, Russia.
Russian Acad Sci, Inst Biophys, Siberian Branch, Akad Gorodok 50-50, Krasnoyarsk 660036, Russia.
Moscow MV Lomonosov State Univ, Fac Biol, Moscow 119234, Russia.

Доп.точки доступа:
Borovikova, E. A.; Kodukhova, J., V; Semenova, A., V; Russian Science FoundationRussian Science Foundation (RSF) [16-14-10001]

Найти похожие
14.


   
    Phenotypic Plasticity and Allometry of Craniological Characters of Anadromous and Lacustrine Forms of Whitefish Coregonus lavaretus (Linnaeus, 1758) as an Indication of the Wrong Species Status of Coregonus pidschian / E. A. Borovikova, J. V. Kodukhova, A. V. Semenova // Contemp. Probl. Ecol. - 2020. - Vol. 13, Is. 6. - P620-630, DOI 10.1134/S1995425520060049 . - ISSN 1995-4255
Кл.слова (ненормированные):
allometry -- anadromous form -- coregonid fish -- craniological features -- lacustrine form -- plasticity -- species status -- allometry -- cranium -- environmental conditions -- lacustrine environment -- phenotypic plasticity -- salmonid -- taxonomy -- Arctic Ocean -- White Sea -- Coregonus lavaretus -- Coregonus pidschian
Аннотация: Abstract—: The variability of craniological characters has been studied for anadromous and lacustrine forms of whitefish Coregonus lavaretus (Linnaeus, 1758) from waterbodies of the Karelian coast of the White Sea. The significant phenotypic plasticity of craniological characters of the whitefish depends on the environmental conditions. Moreover, there is a correlation between indexes of the craniological traits (except for the index of the snout length) and the body and/or head length (allometric effect). These results suggest that it is unreasonable to separate anadromous and lacustrine forms of C. lavaretus as distinct taxonomical units and argues for the invalidity of C. pidschian and C. oxyrinchus species. © 2020, Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl oblast 152742, Russian Federation
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/50, Krasnoyarsk, 660036, Russian Federation
Faculty of Biology, Moscow State University, Moscow, 119234, Russian Federation

Доп.точки доступа:
Borovikova, E. A.; Kodukhova, J. V.; Semenova, A. V.

Найти похожие
15.


   
    Oil Spills in Fresh Waters and State of Ecosystem of Lake Pyasino before the Incidental Spill of 2020 / M. I. Gladyshev // Contemp. Probl. Ecol. - 2021. - Vol. 14, Is. 4. - P313-322, DOI 10.1134/S1995425521040041. - Cited References:50. - This work was supported by Federal Tasks no. 223-EP2020/07 with the Siberian Branch of the Russian Academy of Sciences and by State Assignment as a part of Basic Research of the Russian Federation, topic no. 51.1.1. . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology
Рубрики:
POLYUNSATURATED FATTY-ACIDS
   PECHORA BASIN

   RIVER

   ZOOPLANKTON

Кл.слова (ненормированные):
petroleum pollution -- plankton -- benthos -- ichthyofauna -- water quality -- Arctic lakes
Аннотация: This article presents the history of large oil spills in freshwaters, considering the processes of physicochemical and biological degradation of oil. It discusses the toxicity of oil for hydrobionts and effects of oil pollution on communities of plankton, benthos, and ichthyofauna, as well as challenges in mitigating the environmental impact of oil spills. The discussion is concerned with the state of the ecosystem in Lake Pyasino before the incidental spill of 2020, specifically, hydrochemical indicators; species composition; and abundance and biomass of plankton, benthos, and fish. Candidate technologies for restoring the Lake Pyasino ecosystem are reviewed, including "bottom-up" biomanipulation.

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Inst Biophys,Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Gladyshev, M. I.; Siberian Branch of the Russian Academy of SciencesRussian Academy of Sciences [223-EP2020/07]; Basic Research of the Russian Federation [51.1.1]

Найти похожие
16.


   
    Metabolic activity of cryogenic soils in the subarctic zone of Siberia towards “green” bioplastics / S. V. Prudnikova, S. Y. Evgrafova, T. G. Volova // Chemosphere. - 2021. - Vol. 263. - Ст. 128180, DOI 10.1016/j.chemosphere.2020.128180 . - ISSN 0045-6535
Кл.слова (ненормированные):
metabolic activity -- P(3HB) bioplastic -- P(3HB) properties -- P(3HB)-degrading strains -- Siberian cryogenic soils -- structure of microbial community -- Aspergillus -- Bacteriology -- Biodegradable polymers -- Biodegradation -- Cryogenics -- Crystallinity -- Metabolism -- Polymer films -- Reinforced plastics -- RNA -- Soils -- Aspergillus fumigatus -- Degree of crystallinity -- Microbial communities -- Nucleotide sequences -- Poly-3-hydroxybutyrate -- Polymer biodegradation -- Soil microbial community -- Surface microstructures -- Bacteria -- bacterial RNA -- fungal RNA -- mineral -- plastic -- poly(3 hydroxybutyric acid) -- polymer -- ribosome RNA -- RNA 16S -- RNA 18S -- RNA 28S -- RNA 5.8S -- abundance -- bacterium -- biodegradation -- biomass -- community structure -- concentration (composition) -- crystallinity -- fungus -- microbial community -- microstructure -- plastic -- polymer -- soil temperature -- subarctic region -- Actinobacteria -- Agrobacterium tumefaciens -- Antarctica -- Arctic -- Article -- Aspergillus fumigatus -- Aspergillus niger -- Bacilli -- Bacillus cereus -- Bacillus pumilus -- bacterial gene -- bacterium isolate -- biodegradability -- biodegradation -- biomass -- Chryseobacterium ioostei -- colony forming unit -- community structure -- concentration (parameter) -- cryogenic soil -- crystallization -- Cupriavidus necator -- ecosystem -- Escherichia coli -- Flavobacteria -- Flavobacterium -- fungal community -- fungal gene -- Fusarium fujikuroi -- Gammaproteobacteria -- green chemistry -- Lactobacterium helveticus -- metabolism -- microbial biomass -- microbial community -- molecular weight -- Mortierella alpina -- Mycobacterium -- Mycobacterium pseudoshotsii -- Nocardioides -- nucleotide sequence -- nucleotide sequence -- Paenibacillus -- Paraburkholderia -- Penicillium -- Penicillium arenicola -- Penicillium glabrum -- Penicillium lanosum -- Penicillium restrictum -- Penicillium spinulosum -- Penicillium thomii -- phylogeny -- Pseudomonas -- Rhizopus oryzae -- Rhodococcus -- RNA sequence -- Russian Federation -- soil -- soil microflora -- soil temperature -- species composition -- Stenotrophomonas -- Streptomyces -- Streptomyces prunicolor -- surface property -- temperature dependence -- thawing -- Variovorax paradoxus -- zpseudomonas lutea -- Siberia -- Aspergillus fumigatus -- Bacillus pumilus -- Bacteria (microorganisms) -- Fungi -- Penicillium thomii -- Pseudomonas sp. -- Rhodococcus sp. -- Stenotrophomonas rhizophila -- Streptomyces prunicolor -- Variovorax paradoxus
Аннотация: The present study investigates, for the first time, the structure of the microbial community of cryogenic soils in the subarctic region of Siberia and the ability of the soil microbial community to metabolize degradable microbial bioplastic – poly-3-hydroxybutyrate [P(3HB)]. When the soil thawed, with the soil temperature between 5-7 and 9–11 °C, the total biomass of microorganisms at a 10-20-cm depth was 226–234 mg g?1 soil and CO2 production was 20–46 mg g?1 day?1. The total abundance of microscopic fungi varied between (7.4 ± 2.3) ? 103 and (18.3 ± 2.2) ? 103 CFU/g soil depending on temperature; the abundance of bacteria was several orders of magnitude greater: (1.6 ± 0.1) ? 106 CFU g?1 soil. The microbial community in the biofilm formed on the surface of P(3HB) films differed from the background soil in concentrations and composition of microorganisms. The activity of microorganisms caused changes in the surface microstructure of polymer films, a decrease in molecular weight, and an increase in the degree of crystallinity of P(3HB), indicating polymer biodegradation due to metabolic activity of microorganisms. The clear-zone technique – plating of isolates on the mineral agar with polymer as sole carbon source – was used to identify P(3HB)-degrading microorganisms inhabiting cryogenic soil in Evenkia. Analysis of nucleotide sequences of rRNA genes was performed to identify the following P(3HB)-degrading species: Bacillus pumilus, Paraburkholderia sp., Pseudomonas sp., Rhodococcus sp., Stenotrophomonas rhizophila, Streptomyces prunicolor, and Variovorax paradoxus bacteria and the Penicillium thomii, P. arenicola, P. lanosum, Aspergillus fumigatus, and A. niger fungi. © 2020 Elsevier Ltd

Scopus
Держатели документа:
Siberian Federal University, 79 Svobodny Pr, Krasnoyarsk, 660041, Russian Federation
V.N. Sukachev Institute of Forest, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/28 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Melnikov Permafrost Institute, SB RAS, 36 Merzlotnaya St., Yakutsk, 677010, Russian Federation

Доп.точки доступа:
Prudnikova, S. V.; Evgrafova, S. Y.; Volova, T. G.

Найти похожие
17.


   
    Instability Stabilized: Mechanisms of Evolutionary Stasis and Genetic Diversity Accumulation in Fishes and Lampreys from Environments with Unstable Abiotic Factors / A. A. Makhrov, V. S. Artamonova // Contemp. Probl. Ecol. - 2020. - Vol. 13, Is. 4. - P370-381, DOI 10.1134/S1995425520040083. - Cited References:141. - We are grateful to Yu.P. Altukhov, I.N. Bolotov, E.A. Borovikova, I.V. Vikhrev, Yu.Yu. Dgebuadze, E.Yu. Krysanov, K.V. Kuzishchin, B.M. Mednikov, M.V. Mina, V.M. Spitsyn, and V.S. Fridman for helpful discussions of the problems considered in the review. The work was supported by the Russian Science Foundation (project no. 16-14-10001). . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology
Рубрики:
SEBASTES-MENTELLA EVIDENCE
   MTDNA CONTROL REGION

   POPULATION-STRUCTURE

Кл.слова (ненормированные):
ecology -- evolution -- phenotypic plasticity -- heterozygosity -- heteroplasmy -- mobilization reserve -- Arctic -- mountains
Аннотация: As studies have shown, individuals from well morphologically distinct groups often represent the same species and may even belong to one population in fishes and lampreys from environments with unstable abiotic factors (Arctic, mountain, and desert regions). Phenotypic plasticity ensures broad variation ranges of morphological traits in unstable conditions, which require rapid transitions from one morphogenetic variant to another. The choice of a morphogenetic pathway can be influenced by the level of individual heterozygosity, changes in the copy numbers of certain DNA sequences, heteroplasmy, and the presence of several allelic variants in the genes that strongly affect the phenotype. A cyclic character is often observed for evolutionary processes driven by these mechanisms, and speciation usually does not take place in unstable environmental conditions. However, mobilization reserve accumulate in a species with a broad reaction norm, and particular morphogenetic pathways may be genetically fixed when its population finds its way into stable environmental conditions, facilitating fast allopatric speciation.

WOS
Держатели документа:
Russian Acad Sci, Severtsov Inst Ecol & Evolut, Moscow 119071, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Fed Res Ctr, Inst Biophys,Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Makhrov, A. A.; Artamonova, V. S.; Russian Science FoundationRussian Science Foundation (RSF) [16-14-10001]

Найти похожие
18.


   
    Growth and survival of cyanobacteria in water from blooming and nonblooming ponds under experimental conditions. / M. I. Gladyshev [et al.] // Doklady Biological Sciences. - 2000. - Vol. 375. - P607-609 . - ISSN 0012-4966
Кл.слова (ненормированные):
chlorophyll -- fresh water -- phosphorus -- Anabaena -- Arctic -- article -- biomass -- comparative study -- Cyanobacterium -- growth, development and aging -- microbiology -- pH -- plant -- Russian Federation -- season -- Anabaena -- Arctic Regions -- Biomass -- Chlorophyll -- Cyanobacteria -- Fresh Water -- Hydrogen-Ion Concentration -- Phosphorus -- Plants -- Russia -- Seasons

Scopus
Держатели документа:
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036 Russia. : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gladyshev, M.I.; Kolmakov, V.I.; Kravchuk, E.S.; Ivanova, E.A.; Trusova, M.Y.; Gribovskaya, I.V.; Zhilenkov, M.D.

Найти похожие
19.


   
    Global data set of long-term summertime vertical temperature profiles in 153 lakes / R. M. Pilla, E. M. Mette, C. E. Williamson [et al.] // Sci. Data. - 2021. - Vol. 8, Is. 1. - Ст. 200, DOI 10.1038/s41597-021-00983-y. - Cited References:45. - This work was conceived at the Global Lake Ecological Observatory Network (GLEON), and benefited from continued participation and travel support from GLEON. This manuscript is dedicated to the late Karl Havens and Alon Rimmer, who provided data for this manuscript. Funding and support for this work came from the following sources: the Belarus Republican Foundation for Fundamental Research; the IGB Long-term Ecological Research Programme; SOERE OLA, AnaEE-France, INRA Thonon les Bains, SILA (Syndicat Mixte du Lac d'Annecy), CISALB (Comite Intercommunautaire pour l'Assainissement du Lac du Bourget), and CIPEL (Commission Internationale pour la protection des eaux du Leman); Shiga Prefectural Fisheries Experiment Station (SPFES); Castle Lake Environmental Research and Education Program, University of Nevada at Reno and UC Davis; the Flathead Lake Monitoring program funded through a consortium of state and private funds, and thank the generous citizens of Flathead Lake for their continued support of lake monitoring; the Institute for water ecology, fish biology and lake research and the Institute for Limnology of the Austrian Academy of Sciences (until 2011), and acknowledge the sampling efforts by many individuals over the long period of investigation, especially H. Gassner, M. Luger, H. Ficker, and R. Kurmayer; the EC project "Response of European Freshwater Lakes to Environmental and Climatic Change" (REFLECT, ENV4-CT97-0453), the EC-project "Climate Impacts on European Lakes" (CLIME, EVK1-CT-2002-00121), the project "Risk Analysis of Direct and Indirect Climate effects on deep Austrian Lake Ecosystems" (RADICAL) funded by the Austrian Climate and Energy Fund (No. K09ACK00046) -Austrian Climate Research Programme (ACRP, http://www.klimafonds.gv.at); O. Garcia and E. Bocel for data analysis and management; D. Cabrera, M.W. Dix, G. Ochaeta, S. van Tuylen, M. Orozco, E. Symonds for sampling efforts; NSF grant No. 0947096 to E. Rejmankova, U.S. PeaceCorps and Ministerio de Ambiente y Recursos Naturales of Guatemala; H. Swain, L. Battoe, K. Main, N. Deyrup (Archbold Biological Station), the Florida Lakewatch program, E. Gaiser (Florida International University); the Crater Lake National Park Long-Term Limnological Monitoring Program; the City of Tulsa (R. West and A. Johnson), the Grand River Dam Authority (R. M. Zamor), W.M. Matthews and US ACE (T. Clyde), and the Oklahoma Water Resources Board; Bay of Plenty Regional Council; Ministry of Business, Innovation and Employment: Enhancing the Health and Resilience of New Zealand lakes (UOWX1503); the field and laboratory staff of the South Florida Water Management District for collecting and analyzing the samples; the Norwegian Water Resources and Energy Directorate (NVE), by courtesy of A. S. Kvambekk; the Lake Champlain Long-term Monitoring program (VT DEC and NY DEC); the National Capital Authority, ACT, Australia; Ontario Ministry of Environment, Conservation and Parks; FirstLight Power Resources and Friends of the Lake, especially G. Bollard and R. White; the Finnish Environment Institute SYKE database (Hertta) and S. Mitikka; N. Spinelli and the Lake Wallenpaupack Watershed Management District; Lakes Heywood, Moss, and Sombre: Long-Term Monitoring of Signy Lake Chemistry by BAS 1963-2004. Ref: GB/NERC/BAS/AEDC/00063, and dataset supplied by the Polar Data Centre under Open Government License (c) NERC-BAS, Lake Nkugute: Beadle (1966), CLANIMAE project funded by the Belgian Science Policy Office; Dr. L.; Garibaldi; NSF awards #1418698 and North Temperate Lakes LTER NTL-LTER #1440297; NSERC Canada, Canada Research Chairs, Canada Foundation for Innovation, Province of Saskatchewan, University of Regina, and Queen's University Belfast; Commissione Internazionale per la protezione delle acque italo-svizzere, Ufficio della protezione delle acque e dell'approvvigionamento idrico del Canton Ticino; KamchatNIRO scientists; Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCaPE programme delivering National Capability; U.S. NSF Arctic LTER DEB1637459; Belgian Science Policy (Choltic, Climlake, Climfish); Ontario Ministry of Natural Resources' Harkness Laboratory of Fisheries Research, especially T. Middel; Max-Planck-Institute for Limnology Plon; staff at Erken Laboratory; Mohonk Preserve and D. Smiley; Lake Sunapee Protective Association; KLL database; International Commission for the Protection of Swiss-Italian Waters (CIPAIS) and the LTER (Long Term Ecological Research) Italian network, site "Southern Alpine lakes", LTER_EU_IT_008; staff and students at MECP's Dorset Environmental Science Centre; the LTER (Long-Term Ecological Research) Italian network, site "Southern Alpine lakes", IT08-005-A (http://www.lteritalia.it), with the support of the ARPA Veneto; Prof. L. Chapman, McGill University (Montreal, Quebec, Canada); Amt fur Abfall, Wasser, Energie und Luft (AWEL) of the Canton of Zurich; grants of RSCF project #18-44-06201 and #20-64-46003, of Russian Ministry of Higher Education and Research (projects. FZZE-2020-0026;. FZZE-2020-0023), and of Foundation for support of applied ecological studies "Lake Baikal" (https://baikalfoundation.ru/project/tochka-1/); National Science Foundation Long Term Research in Environmental Biology program (DEB-1242626); the National Park Service (the Inventory and Monitoring Program as well as the Air Resources Division) and Acadia National Park and the Acadia National Park monitoring program; Gordon and Betty Moore Foundation, the Andrew Mellon Foundation, the US National Science Foundation and the Bristol Bay salmon processors; J. Franzoi, G. Larsen, and S. Morales, and the LTSER platform Tyrolean Alps, which belongs to the national and international long-term ecological research network (LTER-Austria, LTER Europe and ILTER); Institut fur Seenforschung, Langenargen (Internationale Gewasserschutzkommission fur den Bodensee -IGKB); University of Michigan Biological Station (A. Schubel) and Cooperative Institute for Great Lakes Research (R. Miller); the Belgian Science Policy Office (BELSPO) is acknowledged for supporting research on Lake Kivu through the research project EAGLES (CD/AR/02 A); US National Science Foundation awards 9318452, 9726877, 0235755, 0743192 and 1255159; West Coast Regional Council, the Bay of Plenty Regional Council, and Waikato Regional Council, and NIWA; D. Schindler (funding and data access) and B. Parker (logistical support and data management); Swedish Infrastructure for Ecosystem Science (SITES) and the Swedish Research Council under the grant no 2017-00635; NSF DEB 1754276 and NSF DEB 1950170, the Ohio Eminent Scholar in Ecosystem Ecology fund, and Lacawac Sanctuary and Biological Field Station; Russian Foundation for Basic Research, grant. 19-04-00362 A and. 19-05-00428. . - ISSN 2052-4463
РУБ Multidisciplinary Sciences
Рубрики:
CLIMATE-CHANGE
   THERMAL STRATIFICATION

   OXYGEN DEPLETION

   FISH

Аннотация: Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.

WOS
Держатели документа:
Miami Univ, Dept Biol, Oxford, OH 45056 USA.
Belarusian State Univ, Fac Biol, Minsk, BELARUS.
Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Ecosyst Res, Berlin, Germany.
Univ Savoie Mont Blanc, INRAE, CARRTEL, Thonon Les Bains, France.
Univ Comahue INIBIOMA, CONICET, Neuquen, Argentina.
Univ Shiga Prefecture, Shiga, Japan.
Univ Nevada, Global Water Ctr, Reno, NV 89557 USA.
Uppsala Univ, Dept Ecol & Genet Limnol, Uppsala, Sweden.
Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA.
Univ Valle Guatemala, Ctr Estudios Atitlan, Guatemala City, Guatemala.
Univ Innsbruck, Res Dept Limnol Mondsee, Mondsee, Austria.
Daniel Smiley Res Ctr, Mohonk Preserve, New Paltz, NY USA.
Lake Ecosyst Grp, UK Ctr Ecol & Hydrol, Lancaster, England.
Seqwater, Ipswich, Qld, Australia.
Florida Int Univ, Dept Biol Sci, Miami, FL 33199 USA.
Inst Environm, Miami, FL USA.
Natl Pk Serv, Crater Lake Natl Pk, Crater Lake, OR USA.
Univ Oklahoma, Dept Biol, Norman, OK 73019 USA.
Griffith Univ, Australian Rivers Inst, Nathan, Qld, Australia.
Univ Florida, Gainesville, FL USA.
Univ Oslo, Dept Biosci, Oslo, Norway.
Inst Seenforschung, LUBW Landesanstalt Umwelt Messungen & Naturschutz, Langenargen, Germany.
IISD Expt Lake Area Inc, Winnipeg, MB, Canada.
BELSPO, FAO, Brussels, Belgium.
Univ Eastern Finland, Dept Environm & Biol Sci, Joensuu, Finland.
Swiss Fed Inst Aquat Sci & Technol, Dept Aquat Ecol, Dubendorf, Switzerland.
CSIRO, Land & Water, Canberra, ACT, Australia.
Laurentian Univ, Cooperat Freshwater Ecol Unit, Sudbury, ON, Canada.
Fairfield Univ, Dept Biol, Fairfield, CT 06430 USA.
Univ Minnesota, Itasca Biol Stn & Labs, Lake Itasca, MN USA.
Finnish Environm Inst SYKE, Freshwater Ctr, Helsinki, Finland.
Russian Acad Sci, Lab Ecol Water Communities & Invas, AN Severtsov Inst Ecol & Evolut, Moscow, Russia.
Zurich Water Supply, Zurich, Switzerland.
Univ Regina, Inst Environm Change & Soc, Regina, SK, Canada.
Milano Bicocca Univ, Milan, Italy.
Univ Appl Sci & Arts Southern Switzerland, Dept Environm Construct & Design, Canobbio, Switzerland.
Russian Fed Res Inst Fisheries & Oceanog, Kamchatka Res Inst Fisheries & Oceanog, Kamchatka Branch, Petropavlovsk Kamchatski, Russia.
Univ Wisconsin, Ctr Limnol, Boulder Jct, WI USA.
Inst Aquat Ecol & Fisheries Management, Fed Agcy Water Management, Mondsee, Austria.
Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA.
Univ Waikato, Environm Res Inst, Hamilton, New Zealand.
Ryerson Univ, Dept Biol & Chem, Toronto, ON, Canada.
Univ Hamburg, Dept Biol, Hamburg, Germany.
Dominion Diamond Mines, Environm Dept, Calgary, AB, Canada.
Ontario Minist Environm Conservat & Pk, Dorset Environm Sci Ctr, Dorset, ON, Canada.
Irkutsk State Univ, Inst Biol, Irkutsk, Russia.
Univ Liege, Inst Phys B5A, Chem Oceanog Unit, Liege, Belgium.
SUNY Coll New Paltz, Dept Biol, New Paltz, NY USA.
Israel Oceanog & Limnol Res, Kinneret Limnol Lab, Migdal, Israel.
CNR Water Res Inst, Verbania, Pallanza, Italy.
RAS, Inst Biophys, Krasnoyarsk Sci Ctr, SB, Krasnoyarsk, Russia.
Univ Calif Davis, Dept Environm Sci & Policy, Davis, CA 95616 USA.
Fdn Edmund Mach, Res & Innovat Ctr, San Michele All Adige, Italy.
Univ Maine, Climate Change Inst, Orono, ME USA.
Univ Turku, Turku, Finland.
Univ Laval, Dept Biol, Quebec City, PQ, Canada.
Univ Laval, Dept Geog, Quebec City, PQ, Canada.
Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA.
Tech Univ Kenya, Dept Geosci & Environm, Nairobi, Kenya.
Univ Innsbruck, Dept Ecol, Innsbruck, Austria.
Univ Konstanz, Limnol Inst, Constance, Germany.
Dickinson Coll, Dept Environm Sci, Carlisle, PA 17013 USA.
Archbold Biol Stn, Venus, FL USA.
Univ Michigan, Biol Stn, Pellston, MI USA.
Vrije Univ Brussel, Dept Hydrol & Hydraul Engn, Brussels, Belgium.
Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland.
Natl Inst Water & Atmospher Res, Hamilton, New Zealand.
Univ Alberta, Dept Biol Sci, Edmonton, AB, Canada.
Cary Inst Ecosyst Studies, Millbrook, NY USA.

Доп.точки доступа:
Pilla, Rachel M.; Mette, Elizabeth M.; Williamson, Craig E.; Adamovich, Boris V.; Adrian, Rita; Anneville, Orlane; Balseiro, Esteban; Ban, Syuhei; Chandra, Sudeep; Colom-Montero, William; Devlin, Shawn P.; Dix, Margaret A.; Dokulil, Martin T.; Feldsine, Natalie A.; Feuchtmayr, Heidrun; Fogarty, Natalie K.; Gaiser, Evelyn E.; Girdner, Scott F.; Gonzalez, Maria J.; Hambright, K. David; Hamilton, David P.; Havens, Karl; Hessen, Dag O.; Hetzenauer, Harald; Higgins, Scott N.; Huttula, Timo H.; Huuskonen, Hannu; Isles, Peter D. F.; Joehnk, Klaus D.; Keller, Wendel Bill; Klug, Jen; Knoll, Lesley B.; Korhonen, Johanna; Korovchinsky, Nikolai M.; Koster, Oliver; Kraemer, Benjamin M.; Leavitt, Peter R.; Leoni, Barbara; Lepori, Fabio; Lepskaya, Ekaterina V.; Lottig, Noah R.; Luger, Martin S.; Maberly, Stephen C.; MacIntyre, Sally; McBride, Chris; McIntyre, Peter; Melles, Stephanie J.; Modenutti, Beatriz; Muller-Navarra, L.; Pacholski, Laura; Paterson, Andrew M.; Pierson, Don C.; Pislegina, Helen V.; Plisnier, Pierre-Denis; Richardson, David C.; Rimmer, Alon; Rogora, Michela; Rogozin, Denis Y.; Rusak, James A.; Rusanovskaya, Olga O.; Sadro, Steve; Salmaso, Nico; Saros, Jasmine E.; Sarvala, Jouko; Saulnier-Talbot, Emilie; Schindler, Daniel E.; Shimaraeva, Svetlana V.; Silow, Eugene A.; Sitoki, Lewis M.; Sommaruga, Ruben; Straile, Dietmar; Strock, Kristin E.; Swain, Hilary; Tallant, Jason M.; Thiery, Wim; Timofeyev, Maxim A.; Tolomeev, Alexander P.; Tominaga, Koji; Vanni, Michael J.; Verburg, Piet; Vinebrooke, Rolf D.; Wanzenbock, Josef; Weathers, Kathleen; Weyhenmeyer, Gesa A.; Zadereev, Egor S.; Zhukova, Tatyana V.; Johnk, Klaus; Belarus Republican Foundation for Fundamental Research; AnaEE-France; SILA (Syndicat Mixte du Lac d'Annecy); Castle Lake Environmental Research and Education Program, University of Nevada at Reno; EC project "Response of European Freshwater Lakes [ENV4-CT97-0453]; EC-project "Climate Impacts on European Lakes" [EVK1-CT-2002-00121]; Austrian Climate and Energy Fund [K09ACK00046]; NSFNational Science Foundation (NSF) [DEB 1950170]; Crater Lake National Park Long-Term Limnological Monitoring Program; Ministry of Business, Innovation and Employment: Enhancing the Health and Resilience of New Zealand lakes [UOWX1503]; National Capital Authority; ACT, Australia [GB/NERC/BAS/AEDC/00063]; Belgian Science Policy OfficeBelgian Federal Science Policy Office; North Temperate Lakes LTER NTL-LTER [1440297]; NSERC CanadaNatural Sciences and Engineering Research Council of Canada (NSERC); Canada Research Chairs, Canada Foundation for InnovationCanada Foundation for InnovationCanada Research Chairs; University of Regina; Commissione Internazionale per la protezione delle acque italo-svizzere; Natural Environment Research CouncilUK Research & Innovation (UKRI)Natural Environment Research Council (NERC) [NE/R016429/1]; U.S. NSF Arctic LTER [DEB1637459, LTER_EU_IT_008]; Canton of Zurich [18-44-06201, 20-64-46003]; Russian Ministry of Higher Education and Research [FZZE-2020-0026, FZZE-2020-0023]; National Science Foundation Long Term Research in Environmental Biology program [DEB-1242626]; National Park Service (the Inventory and Monitoring Program); Acadia National Park monitoring program; Gordon and Betty Moore FoundationGordon and Betty Moore Foundation; Andrew Mellon Foundation; US National Science FoundationNational Science Foundation (NSF) [9318452, 9726877, 0235755, 0743192, 1255159]; Institut fur Seenforschung, Langenargen (Internationale Gewasserschutzkommission fur den Bodensee -IGKB); University of Michigan Biological StationUniversity of Michigan System; Belgian Science Policy Office (BELSPO)Belgian Federal Science Policy Office [CD/AR/02 A]; Waikato Regional Council; NIWA; Swedish Research CouncilSwedish Research CouncilEuropean Commission [2017-00635, NSF DEB 1754276]; Lacawac Sanctuary and Biological Field Station; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-04-00362 A, 19-05-00428]

Найти похожие
20.


   
    First circumpolar assessment of Arctic freshwater phytoplankton and zooplankton diversity: Spatial patterns and environmental factors / A. K. Schartau, H. L. Mariash, K. S. Christoffersen [et al.] // Freshw. Biol. - 2021, DOI 10.1111/fwb.13783. - Cited References:78. - RFBR, Grant/Award Number: 20-04-00145_a . - Article in press. - ISSN 0046-5070. - ISSN 1365-2427
РУБ Ecology + Marine & Freshwater Biology
Рубрики:
HIGH-LATITUDE LAKES
   CLIMATE-CHANGE

   SPECIES RICHNESS

   BETA DIVERSITY

Кл.слова (ненормированные):
alpha diversity -- beta diversity -- ecoregions -- latitude -- taxonomic -- richness -- temperature
Аннотация: Arctic freshwaters are facing multiple environmental pressures, including rapid climate change and increasing land-use activities. Freshwater plankton assemblages are expected to reflect the effects of these stressors through shifts in species distributions and changes to biodiversity. These changes may occur rapidly due to the short generation times and high dispersal capabilities of both phyto- and zooplankton. Spatial patterns and contemporary trends in plankton diversity throughout the circumpolar region were assessed using data from more than 300 lakes in the U.S.A. (Alaska), Canada, Greenland, Iceland, the Faroe Islands, Norway, Sweden, Finland, and Russia. The main objectives of this study were: (1) to assess spatial patterns of plankton diversity focusing on pelagic communities; (2) to assess dominant component of beta diversity (turnover or nestedness); (3) to identify which environmental factors best explain diversity; and (4) to provide recommendations for future monitoring and assessment of freshwater plankton communities across the Arctic region. Phytoplankton and crustacean zooplankton diversity varied substantially across the Arctic and was positively related to summer air temperature. However, for zooplankton, the positive correlation between summer temperature and species numbers decreased with increasing latitude. Taxonomic richness was lower in the high Arctic compared to the sub- and low Arctic for zooplankton but this pattern was less clear for phytoplankton. Fennoscandia and inland regions of Russia represented hotspots for, respectively, phytoplankton and zooplankton diversity, whereas isolated regions had lower taxonomic richness. Ecoregions with high alpha diversity generally also had high beta diversity, and turnover was the most important component of beta diversity in all ecoregions. For both phytoplankton and zooplankton, climatic variables were the most important environmental factors influencing diversity patterns, consistent with previous studies that examined shorter temperature gradients. However, barriers to dispersal may have also played a role in limiting diversity on islands. A better understanding of how diversity patterns are determined by colonisation history, environmental variables, and biotic interactions requires more monitoring data with locations dispersed evenly across the circumpolar Arctic. Furthermore, the importance of turnover in regional diversity patterns indicates that more extensive sampling is required to fully characterise the species pool of Arctic lakes.

WOS
Держатели документа:
Norwegian Inst Nat Res, Songsveien 68, NO-0855 Oslo, Norway.
Natl Wildlife Res Ctr, Environm & Climate Change Canada, Ottawa, ON, Canada.
Univ Copenhagen, Freshwater Biol Sect, Dept Biol, Copenhagen O, Denmark.
Univ Alaska Anchorage, Alaska Ctr Conservat Sci, Anchorage, AK USA.
Russian Acad Sci, Inst Biophys, Krasnoyarsk Sci Ctr, Siberian Branch, Krasnoyarsk, Russia.
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk, Russia.
Russian Acad Sci, Inst Biol, Komi Sci Ctr, Ural Branch, Syktyvkar, Russia.
Univ New Brunswick, Canadian Rivers Inst, Fredericton, NB, Canada.
Univ New Brunswick, Dept Biol, Fredericton, NB, Canada.
Nat Hist Museum Kopavogur, Kopavogur, Iceland.
Norwegian Inst Nat Res, Trondheim, Norway.
Lomonosov Moscow State Univ, Fac Biol, Dept Gen Ecol & Hydrobiol, Moscow, Russia.
State Nat Reserve Wrangel Isl, Pevek, Chukotka Autono, Russia.
Univ Quebec Chicoutimi, Dept Sci Fondamentales, Saguenay, PQ, Canada.
Univ Laval, Ctr Northern Studies CEN, Quebec City, PQ, Canada.
Queens Univ, Dept Biol, Paleoecol Environm Assessment & Res Lab PEARL, Kingston, ON, Canada.
Swedish Univ Agr Sci, Dept Aquat Sci & Assessment, Uppsala, Sweden.
Univ Helsinki, Lammi Biol Stn, Lammi, Finland.

Доп.точки доступа:
Schartau, Ann Kristin; Mariash, Heather L.; Christoffersen, Kirsten S.; Bogan, Daniel; Dubovskaya, Olga P.; Fefilova, Elena B.; Hayden, Brian; Ingvason, Haraldur R.; Ivanova, Elena A.; Kononova, Olga N.; Kravchuk, Elena S.; Lento, Jennifer; Majaneva, Markus; Novichkova, Anna A.; Rautio, Milla; Ruhland, Kathleen M.; Shaftel, Rebecca; Smol, John P.; Vrede, Tobias; Kahilainen, Kimmo K.; RFBRRussian Foundation for Basic Research (RFBR) [20-04-00145_a]

Найти похожие
 1-20    21-38 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)