Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Complexation<.>)
Общее количество найденных документов : 4
Показаны документы с 1 по 4
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Malikova N.P., Visser N.V., van Hoek A..., Skakun V.V., Vysotski E.S., Lee J..., Visser AJWG
Заглавие : Green-Fluorescent Protein from the Bioluminescent Jellyfish Clytia gregaria Is an Obligate Dimer and Does Not Form a Stable Complex with the Ca2+-Discharged Photoprotein Clytin
Колич.характеристики :10 с
Место публикации : Biochemistry: AMER CHEMICAL SOC, 2011. - Vol. 50, Is. 20. - С. 4232-4241. - ISSN 0006-2960, DOI 10.1021/bi101671p
Примечания : Cited References: 50. - This work was supported by NATO Collaborative Linkage Grant 979229, Grants SB RAS No. 2 and RFBR 08-04-92209, 09-04-12022, and 09-04-00172, the MCB program of the Russian Academy of Sciences, and Bayer AG.
Предметные рубрики: VIBRIO-FISCHERI Y1
ENERGY-TRANSFER
CORRELATION SPECTROSCOPY
BACTERIAL LUCIFERASE
REFRACTIVE-INDEX
PHOTOBACTERIUM-LEIOGNATHI
POLARIZED FLUORESCENCE
EXCITATION TRANSFER
RECOMBINANT OBELIN
LUMAZINE PROTEIN
Аннотация: Green-fluorescent protein (GFP) is the origin of the green bioluminescence color exhibited by several marine hydrozoans and anthozoans. The mechanism is believed to be Forster resonance energy transfer (FRET) within a luciferase GFP or photoprotein-GFP complex. As the effect is found in vitro at micromolar concentrations, for FRET to occur this complex must have an affinity in the micromolar range. We present here a fluorescence dynamics investigation of the recombinant bioluminescence proteins from the jellyfish Clytia gregaria, the photoprotein clytin in its Ca2+-discharged form that is highly fluorescent (lambda(max) = 506 nm) and its GFP (cgreGFP; lambda(max) = 500 nm). Ca2+-discharged clytin shows a predominant fluorescence lifetime of 5.7 ns, which is assigned to the final emitting state of the bioluminescence reaction product, coelenteramide anion, and a fluorescence anisotropy decay or rotational correlation time of 12 ns (20 degrees C), consistent with tight binding and rotation with the whole protein. A 34 ns correlation time combined with a translational diffusion constant and molecular brightness from fluorescence fluctuation spectroscopy all confirm that cgreGFP is an obligate dimer down to nanomolar concentrations. Within the dimer, the two chromophores have a coupled excited-state transition yielding fluorescence depolarization via FRET with a transfer correlation time of 0.5 ns. The 34 ns time of cgreGFP showed no change upon addition of a 1000-fold excess of Ca2+-discharged clytin, indicating no stable complexation below 0.2 mM. It is proposed that any bioluminescence FRET complex with micromolar affinity must be one formed transiently by the cgreGFP dimer with a short-lived (millisecond) intermediate in the clytin reaction pathway.
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Titushin M.S., Feng Y.G., Lee J..., Vysotski E.S., Liu Z.J.
Заглавие : Protein-protein complexation in bioluminescence
Колич.характеристики :16 с
Место публикации : Protein Cell: HIGHER EDUCATION PRESS, 2011. - Vol. 2, Is. 12. - С. 957-972. - ISSN 1674-800X, DOI 10.1007/s13238-011-1118-y
Примечания : Cited References: 114. - The work was funded by "Fellowship for Young International Scientists" of Chinese Academy of Sciences. This work was supported by the National Natural Science Foundation of China (Grant Nos: 30870483, 31070660, 31021062 and 81072449), Ministry of Science and Technology of China (Nos. 2009DFB30310, 2009CB918803 and 2011CB911103), CAS Research Grants (Nos. YZ200839 and KSCX2-EW-J-3).
Предметные рубрики: GREEN-FLUORESCENT PROTEIN
LUCIFERIN-BINDING-PROTEIN
RENILLA-RENIFORMIS LUCIFERASE
VIBRIO-FISCHERI Y1
JELLYFISH CLYTIA-GREGARIA
ALPHA/BETA-HYDROLASE FOLD
AMINO-ACID-SEQUENCE
BACTERIAL LUCIFERASE
ENERGY-TRANSFER
CRYSTAL-STRUCTURE
Ключевые слова (''Своб.индексиров.''): green-fluorescent protein (gfp)--photoprotein--luciferase--lumazine protein--forster resonance energy transfer (fret)--docking
Аннотация: In this review we summarize the progress made towards understanding the role of protein-protein interactions in the function of various bioluminescence systems of marine organisms, including bacteria, jellyfish and soft corals, with particular focus on methodology used to detect and characterize these interactions. In some bioluminescence systems, protein-protein interactions involve an "accessory protein" whereby a stored substrate is efficiently delivered to the bioluminescent enzyme luciferase. Other types of complexation mediate energy transfer to an "antenna protein" altering the color and quantum yield of a bioluminescence reaction. Spatial structures of the complexes reveal an important role of electrostatic forces in governing the corresponding weak interactions and define the nature of the interaction surfaces. The most reliable structural model is available for the protein-protein complex of the Ca2+-regulated photoprotein clytin and green-fluorescent protein (GFP) from the jellyfish Clytia gregaria, solved by means of X-ray crystallography, NMR mapping and molecular docking. This provides an example of the potential strategies in studying the transient complexes involved in bioluminescence. It is emphasized that structural studies such as these can provide valuable insight into the detailed mechanism of bioluminescence.
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Titushin M.S., Feng Y.G., Stepanyuk G.A., Li Y..., Markova S.V., Golz S..., Wang B.C., Lee J..., Wang J.F., Vysotski E.S., Liu Z.J.
Заглавие : NMR-derived Topology of a GFP-photoprotein Energy Transfer Complex
Колич.характеристики :10 с
Коллективы :
Место публикации : J. Biol. Chem.: AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2010. - Vol. 285, Is. 52. - С. 40891-40900. - ISSN 0021-9258, DOI 10.1074/jbc.M110.133843
Примечания : Cited References: 54. - This work was supported by the National Natural Science Foundation of China, Ministry of Science and Technology of China, CAS Research Grant, CAS Fellowship for Young International Scientists Grant, Russian Foundation for Basic Research (08-09-92209 RFBR-China joint grant), SB RAS Grant 2, "Molecular and Cell Biology" program of RAS, Bayer AG (Germany), and by the University of Georgia Research Foundation and the Georgia Research Alliance.
Предметные рубрики: GREEN-FLUORESCENT PROTEIN
STRUCTURAL DETERMINANTS
RENILLA BIOLUMINESCENCE
ANGSTROM RESOLUTION
CRYSTAL-STRUCTURE
ELECTRON-DENSITY
SOFTWARE
PROGRAM
BINDING
SYSTEM
Аннотация: Forster resonance energy transfer within a protein-protein complex has previously been invoked to explain emission spectral modulation observed in several bioluminescence systems. Here we present a spatial structure of a complex of the Ca2+ regulated photoprotein clytin with its green-fluorescent protein (cgGFP) from the jellyfish Clytia gregaria, and show that it accounts for the bioluminescence properties of this system in vitro. We adopted an indirect approach of combining x-ray crystallography determined structures of the separate proteins, NMR spectroscopy, computational docking, and mutagenesis. Heteronuclear NMR spectroscopy using variously N-15, C-13, H-2-enriched proteins enabled assignment of backbone resonances of more than 94% of the residues of both proteins. In a mixture of the two proteins at millimolar concentrations, complexation was inferred from perturbations of certain H-1-N-15 HSQC-resonances, which could be mapped to those residues involved at the interaction site. A docking computation using HADDOCK was employed constrained by the sites of interaction, to deduce an overall spatial structure of the complex. Contacts within the clytin-cgGFP complex and electrostatic complementarity of interaction surfaces argued for a weak protein-protein complex. A weak affinity was also observed by isothermal titration calorimetry (K-D = 0.9 mM). Mutation of clytin residues located at the interaction site reduced the degree of protein-protein association concomitant with a loss of effectiveness of cgGFP in color-shifting the bioluminescence. It is suggested that this clytin-cgGFP structure corresponds to the transient complex previously postulated to account for the energy transfer effect of GFP in the bioluminescence of aequorin or Renilla luciferase.
Найти похожие
4.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Bondareva L.G., Kalyakina O.P., Bolsunovskii A.Ya.
Заглавие : Effect of humic acid on absorption-release processes in the bottom sediments-Yenisei river water system as studied by dual-column ion chromatography and ?-ray spectrometry
Место публикации : Journal of Analytical Chemistry. - 2006. - Vol. 61, Is. 4. - С. 354-358. - ISSN 10619348 (ISSN) , DOI 10.1134/S1061934806040101
Ключевые слова (''Своб.индексиров.''): absorption--chromatographic analysis--complexation--gamma ray spectrometers--radioisotopes--?-ray spectrometry--absorption-release processes--dual-column ion chromatography--humic acid--organic acids
Аннотация: The effect of humic acid on absorption-release processes in the bottom sediments-Yenisei river water system was studied by dual-column ion chromatography and ?-ray spectrometry. With the use of ion chromatography, it was found that processes related to the absorption of SO 42- and Cl- anions by a solid phase with the release of NO 3- , PO 43- , and F- to a liquid phase competed in the test systems as the concentration of water-soluble organic carbon (WSOC) was increased. Only the test anions were released in the systems without the introduction of an additional amount of WSOC as humic acid. With the use of ?-ray spectrometry, it was found that the release of 60Co, 152Eu, and 241Am radionuclides to the liquid phase in the systems with added humic acid began much earlier than in the system without the addition of humic acid. In this case, the amount of released radionuclides was greater than the amount of radioisotopes released in the system without the addition of humic acid: ?25% 241Am, ?3% 152Eu, and ?0.8% 60Co in the system with added humic acid or 0.8% 152Eu and <0.1% 60Co in the system without the addition of humic acid. The 241Am radionuclide was not determined in the system without the addition of humic acid. An increase in the concentration of WSOC in the experimental system of bottom sediments-Yenisei river water initiated the release of 60Co, 152Eu, and 241Am anthropogenic radionuclides from bottom sediments because of the formation of soluble complexes capable of migration. An increase in the concentration of WSOC had almost no effect on the release of 40K and 137Cs radionuclides. В© Pleiades Publishing, Inc., 2006.
Scopus
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)