Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (1)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Degradation<.>)
Общее количество найденных документов : 83
Показаны документы с 1 по 20
 1-20    21-40   41-60   61-80   81-83 
1.


   
    Constructing sustained-release herbicide formulations based on poly-3-hydroxybutyrate and natural materials as a degradable matrix / E. G. Kiselev, A. N. Boyandin, N. O. Zhila [et al.] // Pest Manag. Sci., DOI 10.1002/ps.5702. - Cited References:83. - This study was financially supported by the project 'Agropreparations of the new generation: a strategy of construction and realization' (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, 'On measures designed to attract leading scientists to the Russian institutions of higher learning'. . - ISSN 1526-498X. - ISSN 1526-4998
РУБ Agronomy + Entomology
Рубрики:
SOIL MICROBIAL COMMUNITY
   FENOXAPROP-P-ETHYL

   SLOW-RELEASE

   METRIBUZIN

Кл.слова (ненормированные):
degradation in soil -- fenoxaprop-P-ethyl -- herbicide release -- metribuzin -- physicochemical properties -- tribenuron-methyl
Аннотация: BACKGROUND The purpose of the present study was to develop ecofriendly herbicide formulations. Its main aim was to develop and investigate slow-release formulations of herbicides (metribuzin, tribenuron-methyl, and fenoxaprop-P-ethyl) of different structure, solubility, and specificity, which were loaded into a degradable matrix of poly-3-hydroxybutyrate (P(3HB)) blended with available natural materials (peat, clay, and wood flour). RESULTS Differences in the structure and physicochemical properties of the formulations were studied depending on the type of the matrix. Herbicide release and accumulation in soil were associated with the solubility of the herbicide. Fourier-transform infrared spectroscopy showed that no chemical bonds were formed between the components in the experimental formulations. Degradation of the formulations in agro-transformed soil in laboratory conditions was chiefly influenced by the shape of the specimens (granules or pellets) while the effect of the type of filler (peat, clay, or wood flour) was insignificant. The use of granules enabled more rapid accumulation of the herbicides in soil: their peak concentrations were reached after 3 weeks of incubation while the concentrations of the herbicides released from the pellets were the highest after 5-7 weeks. Loading of the herbicides into the polymer matrix composed of the slowly degraded P(3HB) and natural materials enabled both sustained function of the formulations in soil (lasting between 1.5 and >= 3 months) and stable activity of the otherwise rapidly inactivated herbicides such as tribenuron-methyl and fenoxaprop-P-ethyl. CONCLUSION The experimental herbicide formulations enabled slow release of the active ingredients to soil. (c) 2019 Society of Chemical Industry

WOS
Держатели документа:
Siberian Fed Univ, Sch Fundamental Biol & Biotechnol, Krasnoyarsk, Russia.
Inst Biophys SB RAS, Krasnoyarsk Sci Ctr SB RAS, Fed Res Ctr, Krasnoyarsk, Russia.
Mahatma Gandhi Univ, Int & Interuniv Ctr Nano Sci & Nano Technol, Kottayam, Kerala, India.

Доп.точки доступа:
Kiselev, Evgeniy G.; Boyandin, Anatoly N.; Zhila, Natalia O.; Prudnikova, Svetlana, V; Shumilova, Anna A.; Baranovskiy, Sergey, V; Shishatskaya, Ekaterina, I; Thomas, Sabu; Volova, Tatiana G.; Kiselev, Evgeniy; Boyandin, Anatoly; Government of the Russian Federation [074-02-2018-328, 220]

Найти похожие
2.


   
    Properties of degradable polyhydroxyalkanoates with different monomer compositions / T. Volova, E. Kiselev, I. Nemtsev [et al.] // Int. J. Biol. Macromol. - 2021. - Vol. 182. - P98-114, DOI 10.1016/j.ijbiomac.2021.04.008 . - ISSN 0141-8130
Кл.слова (ненормированные):
Chemical composition -- Films -- Microstructure -- Physicochemical properties -- Polyhydroxyalkanoates -- Surface properties -- 3 hydroxybutyric acid -- 3 hydroxyhexanoate -- 3 hydroxyvalerate -- 4 hydroxybutyric acid -- monomer -- poly(3 hydroxybutyric acid) -- polyhydroxyalkanoic acid -- polymer -- unclassified drug -- Article -- chemical composition -- comparative study -- crystallization -- degradation -- dispersity -- elasticity -- glass transition temperature -- hydrophilicity -- melting point -- molecular weight -- surface property -- synthesis -- thermoregulation -- thermostability
Аннотация: Purpose: To synthesize and investigate polyhydroxyalkanoates (PHAs) with different monomer composition and percentages and polymer films prepared from them. Results: Various PHAs: homopolymer poly-3-hydroxybutyrate P(3HB) and 2-, 3-, and 4-component copolymers comprising various combinations of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB), and 3-hydroxyhexanoate (3HHx) monomers were synthesized under specialized conditions. Relationships were found between the monomer composition of PHAs and their molecular-weight and thermal properties and degree of crystallinity. All copolymers had decreased weight average molecular weights, Mw (to 390–600 kDa), and increased values of polydispersity (3.2–4.6) compared to the P(3HB). PHA copolymers showed different thermal behavior: an insignificant decrease in Tmelt and the presence of the second peak in the melting region and changes in parameters of crystallization and glass transition. At the same time, they retained thermostability, and the difference between Tmelt and Tdegr was at least 100–120 °C. Incorporation of 4HB, 3HV, and 3HHx monomer units into the 3-hydroxybutyrate chain caused changes in the amorphous to crystalline ratio and decreased the degree of crystallinity (Cx) to 20–40%. According to the degree to which the monomers reduced crystallinity, they were ranked as follows: 4HB – 3HHx – 3HV. A unique set of films was produced; their surface properties and physical/mechanical properties were studied as dependent on PHA composition; monomers other than 3-hydroxybutyrate were found to enhance hydrophilicity, surface development, and elasticity of polymer films. Conclusion: An innovative set of PHA copolymers was synthesized and solution-cast films were prepared from them; the copolymers and films were investigated as dependent on polymer chemical composition. Results obtained in the present study contribute to the solution of a critical issue of producing degradable polymer materials. © 2021 Elsevier B.V.

Scopus
Держатели документа:
Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
L.V. Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/12 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Volova, T.; Kiselev, E.; Nemtsev, I.; Lukyanenko, А.; Sukovatyi, A.; Kuzmin, A.; Ryltseva, G.; Shishatskaya, E.

Найти похожие
3.


   
    Synthesis and characterization of multicomponent PHAs / E. G. Kiselev, A. D. Vasiliev, T. G. Volova // J. Sib. Fed. Univ. - Biol. - 2021. - Vol. 14, Is. 1. - С. 97-113, DOI 10.17516/1997-1389-0325. - Cited By :1 . - ISSN 1997-1389
Кл.слова (ненормированные):
Biosynthesis -- Copolymers -- Physicochemical properties -- Polyhydroxyalkanoates (PHAs) -- Precursor substrates
Аннотация: Cupriavidus necator B10646 bacterial cells were cultivated in the mode of synthesis of the reserve polyhydroxyalkanoates (PHAs) in the growth medium that contained, in addition to glucose as the main substrate, precursor substrates of the monomers of various monocarboxylic acids - salts of valeric and hexanoic acids, propionate, and ?-butyrolactone. PHA terpolymers and quaterpolymers with different compositions and proportions of monomers were synthesized, and their physicochemical properties were studied. The terpolymers were composed of monomers of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB), or 3-hydroxyhexanoate (3HHx) and had the following compositions: P(3HB/3HB/4HHx) and P(3HB/3HV/4HHx). The quaterpolymers had the following composition: P(3HB/3HV/4HB/3HHx). All copolymer samples, regardless of the composition and proportions of monomers, had lower molecular weights and higher polydispersity values compared to the highly crystalline 3-hydroxybutyrate homopolymer, but retained thermal stability properties, with a difference between the melting point and thermal degradation of at least 100-110 °C. The inclusion of 3HV, 4HB, and 3HHx monomers in the C-chain of 3HB caused changes in the crystalline to amorphous phase ratio and a significant decrease in the degree of crystallinity (Cx), which depended on the type of monomers and their contents in the copolymer. The maximum decrease in Cx (9-17 %) was detected in the P(3HB/3HV/4HB) terpolymer and the P(3HB/3HV/4HB/3HHx) quaterpolymer (30-36 %). The study confirms that there is the possibility of synthesizing polymers with various compositions, including new ones, which differ significantly in their basic properties. © Siberian Federal University. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, FRC Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
L.V. Kirenskii Institute of Physics SB RAS, FRC Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kiselev, E. G.; Vasiliev, A. D.; Volova, T. G.

Найти похожие
4.


   
    Constructing slow-release formulations of herbicide metribuzin using its co-extrusion with biodegradable polyester poly-ε-caprolactone / A. N. Boyandin, E. A. Kazantseva // J. Environ. Sci. Health Part B Pestic. Food Contamin. Agric. Wastes. - 2021, DOI 10.1080/03601234.2021.1911206 . - Article in press. - ISSN 0360-1234
Кл.слова (ненормированные):
extrusion -- herbicide -- long-term -- pesticide -- Polycaprolactone -- Biodegradable polymers -- Biodegradation -- Degradation -- Extrusion -- Melting -- Plastic coatings -- Polyesters -- Soils -- Weed control -- Biodegradable polyesters -- Degradation rate -- First-order models -- Long-term release -- Low cost methods -- Partial degradation -- Release kinetics -- Soil applications -- Herbicides
Аннотация: Different technologies to prepare long term pesticide forms include polymer coating, preparing composites and encapsulating pesticides in nanoparticles. A simple and low-cost method was proposed to obtain slow-release formulations by co-extrusion of a pesticide with a biodegradable polymer at a temperature above the melting points of both components. A herbicide metribuzin and low-melting polyester poly-?-caprolactone were chosen for this work. Formulations containing 10%, 20%, and 40% herbicide were prepared. During 7 days of their exposition in water, it was released from 81% to 96% of initially loaded metribuzin; the highest release was detected for 40%-loaded forms. Biodegradation of the constructs and pesticide release were further studied in the model soil. Degradation rates of the specimens increased with an increase in pesticide content, from 9% to 20% over 14 weeks for the 10%/20%-loaded and the 40%-loaded specimens, respectively. The release of metribuzin reached, respectively, 37–38% and 55%. The herbicide content in soil was lower due to its partial degradation in soil; it reached 23–25% and 33%, respectively, from initially loaded into the polymer matrix. Release kinetics of metribuzin in water as in soil best fitted the First-order model. The used approach is promising for obtaining long-term release formulations for soil applications. © 2021 Taylor & Francis Group, LLC.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Boyandin, A. N.; Kazantseva, E. A.

Найти похожие
5.


   
    Oil Spills in Fresh Waters and State of Ecosystem of Lake Pyasino before the Incidental Spill of 2020 / M. I. Gladyshev // Contemp. Probl. Ecol. - 2021. - Vol. 14, Is. 4. - P313-322, DOI 10.1134/S1995425521040041. - Cited References:50. - This work was supported by Federal Tasks no. 223-EP2020/07 with the Siberian Branch of the Russian Academy of Sciences and by State Assignment as a part of Basic Research of the Russian Federation, topic no. 51.1.1. . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology
Рубрики:
POLYUNSATURATED FATTY-ACIDS
   PECHORA BASIN

   RIVER

   ZOOPLANKTON

Кл.слова (ненормированные):
petroleum pollution -- plankton -- benthos -- ichthyofauna -- water quality -- Arctic lakes
Аннотация: This article presents the history of large oil spills in freshwaters, considering the processes of physicochemical and biological degradation of oil. It discusses the toxicity of oil for hydrobionts and effects of oil pollution on communities of plankton, benthos, and ichthyofauna, as well as challenges in mitigating the environmental impact of oil spills. The discussion is concerned with the state of the ecosystem in Lake Pyasino before the incidental spill of 2020, specifically, hydrochemical indicators; species composition; and abundance and biomass of plankton, benthos, and fish. Candidate technologies for restoring the Lake Pyasino ecosystem are reviewed, including "bottom-up" biomanipulation.

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Inst Biophys,Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Gladyshev, M. I.; Siberian Branch of the Russian Academy of SciencesRussian Academy of Sciences [223-EP2020/07]; Basic Research of the Russian Federation [51.1.1]

Найти похожие
6.


   
    Unexpected Coelenterazine Degradation Products of Beroe abyssicola Photoprotein Photoinactivation / L. P. Burakova, M. S. Lyakhovich, K. S. Mineev [et al.] // Org. Lett. - 2021. - Vol. 23, Is. 17. - P6846-6849, DOI 10.1021/acs.orglett.1c02410. - Cited References:20. - This work was supported by grant 20-04-00085 of the Russian Foundation for Basic Research, grant 20-44-242003 of the Russian Foundation for Basic Research, Krasnoyarsk Territory, and Krasnoyarsk Regional Fund of Science in part of purification and spectral characterization of native compounds, grant 17-1401169p of the Russian Science Foundation, and the President of Russian Federation grant for Leading Scientific Schools LS-2605.2020.4 in part of structural elucidation of native products and organic synthesis. We thank Konstantin Antonov (IBCh RAS) and Igor Ivanov (IBCh RAS) for the registration of HRMS spectra. . - ISSN 1523-7060. - ISSN 1523-7052
РУБ Chemistry, Organic
Рубрики:
CRYSTAL-STRUCTURE
   BIOLUMINESCENCE

   OBELIN

   RESIDUES

   BINDING

Аннотация: Ca2+-regulated photoproteins of ctenophores lose bioluminescence activity when exposed to visible light. Little is known about the chemical nature of chromophore photo-inactivation. Using a total synthesis strategy, we have established the structures of two unusual coelenterazine products, isolated from recombinant berovin of the ctenophore Beroe abyssicola, which are Z/E isomers. We propose that during light irradiation, these derivatives are formed from 2-hydroperoxycoelenterazine via the intermediate 8a-peroxide by a mechanism reminiscent of that previously described for the auto-oxidation of green-fluorescent-protein-like chromophores.

WOS
Держатели документа:
Fed Res Ctr Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Photo Biol Lab, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Shemyakin Ovchinnikov Inst Bioorgan Chem, Moscow 117997, Russia.
Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Russia.
Pirogov Russian Natl Res Med Univ, Moscow 117997, Russia.

Доп.точки доступа:
Burakova, Ludmila P.; Lyakhovich, Maria S.; Mineev, Konstantin S.; Petushkov, Valentin N.; Zagitova, Renata, I; Tsarkova, Aleksandra S.; Kovalchuk, Sergey, I; Yampolsky, Ilia, V; Vysotski, Eugene S.; Kaskova, Zinaida M.; Mineev, Konstantin; Tsarkova, Aleksandra; Vysotski, Eugene; Kaskova, Zinaida; Burakova, Lyudmila; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [20-04-00085]; Russian Foundation for Basic Research, Krasnoyarsk Territory [20-44-242003]; Krasnoyarsk Regional Fund of Science in part of purification and spectral characterization of native compounds; Russian Science FoundationRussian Science Foundation (RSF) [17-1401169p]; Russian FederationRussian Federation [LS-2605.2020.4]

Найти похожие
7.


   
    Zooplankton carcasses stimulate microbial turnover of allochthonous particulate organic matter / D. Neubauer, O. Kolmakova, J. Woodhouse [et al.] // ISME J. - 2021, DOI 10.1038/s41396-020-00883-w. - Cited References:83. - Open Access funding enabled and organized by Projekt DEAL. . - Article in press. - ISSN 1751-7362. - ISSN 1751-7370
РУБ Ecology + Microbiology
Рубрики:
FRESH-WATER
   SEASONAL-CHANGES

   CARBON

   LAKE

   DECOMPOSITION

   DEGRADATION

Аннотация: Carbon turnover in aquatic environments is dependent on biochemical properties of organic matter (OM) and its degradability by the surrounding microbial community. Non-additive interactive effects represent a mechanism where the degradation of biochemically persistent OM is stimulated by the provision of bioavailable OM to the degrading microbial community. Whilst this is well established in terrestrial systems, whether it occurs in aquatic ecosystems remains subject to debate. We hypothesised that OM from zooplankton carcasses can stimulate the degradation of biochemically persistent leaf material, and that this effect is influenced by the daphnia:leaf OM ratio and the complexity of the degrading microbial community. Fresh Daphnia magna carcasses and C-13-labelled maize leaves (Zea mays) were incubated at different ratios (1:1, 1:3 and 1:5) alongside either a complex microbial community (50 mu m) or solely bacteria (0.8 mu m). C-13 stable-isotope measurements of CO2 analyses were combined with phospholipid fatty acids (PLFA) analysis and DNA sequencing to link metabolic activities, biomass and taxonomic composition of the microbial community. Our experiments indicated a significantly higher respiration of leaf-derived C when daphnia-derived OM was most abundant (i.e. daphnia:leaf OM ratio of 1:1). This process was stronger in a complex microbial community, including eukaryotic microorganisms, than a solely bacterial community. We concluded that non-additive interactive effects were a function of increased C-N chemodiversity and microbial complexity, with the highest net respiration to be expected when chemodiversity is high and the degrading community complex. This study indicates that identifying the interactions and processes of OM degradation is one important key for a deeper understanding of aquatic and thus global carbon cycle.

WOS
Держатели документа:
Leibniz Inst Freshwater Ecol & Inland Fisheries I, Dept Expt Limnol, D-16775 Stechlin, Germany.
Potsdam Univ, Inst Biochem & Biol, D-14476 Potsdam, Germany.
RAS, Inst Biophys SB, Fed Res Ctr, Krasnoyarsk Sci Ctr, Krasnoyarsk, Russia.
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk, Russia.
Helmholtz Ctr Potsdam, Sect Organ Geochem 32, GFZ German Res Ctr Geosci, D-14473 Potsdam, Germany.
Leibniz Inst Freshwater Ecol & Inland Fisheries I, Dept Chem Analyt & Biogeochem, Muggelseedamm 310, D-12587 Berlin, Germany.

Доп.точки доступа:
Neubauer, Darshan; Kolmakova, Olesya; Woodhouse, Jason; Taube, Robert; Mangelsdorf, Kai; Gladyshev, Michail; Premke, Katrin; Grossart, Hans-Peter; Projekt DEAL

Найти похожие
8.


   
    Constructing Slow-Release Metribuzin Formulations by Co-extrusion of the Pesticide with Poly-?-Caprolactone / A. N. Boyandin, E. A. Kazantseva // Macromol. Sympos. - 2021. - Vol. 395, Is. 1. - Ст. 2000283, DOI 10.1002/masy.202000283 . - ISSN 1022-1360
Кл.слова (ненормированные):
extrusion -- herbicides -- long-term -- pesticides -- polycaprolactone -- Biodegradable polymers -- Biodegradation -- Degradation -- Extrusion -- Melting -- Soils -- Weed control -- Biodegradable polyesters -- Caprolactone -- Degradation rate -- Long-term release -- Low cost methods -- Pesticide formulations -- Soil applications -- Soil degradation -- Herbicides
Аннотация: A simple and low-cost method of obtaining slow-release pesticide formulations is proposed by co-extrusion of a herbicide metribuzin with a low-melting biodegradable polyester poly-?-caprolactone, at a temperature above the melting points of both components. Formulations containing 10%, 20%, and 40% herbicide are prepared. Metribuzin release in water during 7 days of exposition reached 81% from the formulations with the 10% loading and 96% from the specimens with the 40% herbicide loading. Biodegradation and pesticide release from the polymer constructs are studied in the model soil for 14 weeks. Degradation rates of the specimens increased with an increase in pesticide content: between 9% for the 10%-loaded specimen and 20% for the 40%-loaded specimen over 14 weeks. The release of metribuzin from the specimens with the 10–20% and 40% loadings reached 37–38% and 55%, respectively; thus, taking into account soil degradation of the herbicide, the herbicide content in soil reached 23–25% and 33%, respectively, of the initially loaded into the polymer matrix. The used approach is promising to obtain long-term release formulations for soil application. © 2021 Wiley-VCH GmbH

Scopus
Держатели документа:
Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Boyandin, A. N.; Kazantseva, E. A.

Найти похожие
9.


   
    Constructing Slow-Release Metribuzin Formulations by Co-extrusion of the Pesticide with Poly-epsilon-Caprolactone / A. N. Boyandin, E. A. Kazantseva // Macromol. Symp. - 2021. - Vol. 395: 4th International Conference on Progress on Polymers and Composites (NOV 26-28, 2020, ELECTR NETWORK), Is. 1. - Ст. 2000283, DOI 10.1002/masy.202000283. - Cited References:6. - This study was financially supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning". . - ISSN 1022-1360. - ISSN 1521-3900
РУБ Polymer Science

Кл.слова (ненормированные):
extrusion -- herbicides -- long‐ -- term -- pesticides -- polycaprolactone
Аннотация: A simple and low-cost method of obtaining slow-release pesticide formulations is proposed by co-extrusion of a herbicide metribuzin with a low-melting biodegradable polyester poly-epsilon-caprolactone, at a temperature above the melting points of both components. Formulations containing 10%, 20%, and 40% herbicide are prepared. Metribuzin release in water during 7 days of exposition reached 81% from the formulations with the 10% loading and 96% from the specimens with the 40% herbicide loading. Biodegradation and pesticide release from the polymer constructs are studied in the model soil for 14 weeks. Degradation rates of the specimens increased with an increase in pesticide content: between 9% for the 10%-loaded specimen and 20% for the 40%-loaded specimen over 14 weeks. The release of metribuzin from the specimens with the 10-20% and 40% loadings reached 37-38% and 55%, respectively; thus, taking into account soil degradation of the herbicide, the herbicide content in soil reached 23-25% and 33%, respectively, of the initially loaded into the polymer matrix. The used approach is promising to obtain long-term release formulations for soil application.

WOS
Держатели документа:
Russian Acad Sci, Krasnoyarsk Sci Ctr, Inst Biophys, Siberian Branch,Fed Res Ctr, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Boyandin, Anatoly Nikolayevich; Kazantseva, Eugenia Andreevna; Government of the Russian Federation [220, 074-02-2018-328]

Найти похожие
10.


   
    Constructing slow-release formulations of herbicide metribuzin using its co-extrusion with biodegradable polyester poly-epsilon-caprolactone / A. N. Boyandin, E. A. Kazantseva // J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes. - 2021, DOI 10.1080/03601234.2021.1911206. - Cited References:43. - This study was financially supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning". . - Article in press. - ISSN 0360-1234. - ISSN 1532-4109
РУБ Environmental Sciences + Public, Environmental & Occupational Health

Кл.слова (ненормированные):
Polycaprolactone -- herbicide -- pesticide -- long-term -- extrusion
Аннотация: Different technologies to prepare long term pesticide forms include polymer coating, preparing composites and encapsulating pesticides in nanoparticles. A simple and low-cost method was proposed to obtain slow-release formulations by co-extrusion of a pesticide with a biodegradable polymer at a temperature above the melting points of both components. A herbicide metribuzin and low-melting polyester poly-epsilon-caprolactone were chosen for this work. Formulations containing 10%, 20%, and 40% herbicide were prepared. During 7 days of their exposition in water, it was released from 81% to 96% of initially loaded metribuzin; the highest release was detected for 40%-loaded forms. Biodegradation of the constructs and pesticide release were further studied in the model soil. Degradation rates of the specimens increased with an increase in pesticide content, from 9% to 20% over 14 weeks for the 10%/20%-loaded and the 40%-loaded specimens, respectively. The release of metribuzin reached, respectively, 37-38% and 55%. The herbicide content in soil was lower due to its partial degradation in soil; it reached 23-25% and 33%, respectively, from initially loaded into the polymer matrix. Release kinetics of metribuzin in water as in soil best fitted the First-order model. The used approach is promising for obtaining long-term release formulations for soil applications.

WOS
Держатели документа:
Russian Acad Sci, Krasnoyarsk Sci Ctr SB RAS, Fed Res Ctr, Inst Biophys,Siberian Branch, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.

Доп.точки доступа:
Boyandin, Anatoly N.; Kazantseva, Eugenia A.; Boyandin, Anatoly; Project "Agropreparations of the new generation: a strategy of construction and realization" [074-02-2018-328]; Government of the Russian Federation [220]

Найти похожие
11.


   
    Biodegradable polymers - Perspectives and applications in agriculture / E. G. Kiselev, N. O. Zhila, T. G. Volova // IOP Conference Series: Earth and Environmental Science : IOP Publishing Ltd, 2021. - Vol. 689: 2020 International Conference on Germany and Russia: Ecosystems Without Borders, EcoSystConfKlgtu 2020 (5 October 2020 through 10 October 2020, ) Conference code: 167944, Is. 1. - Ст. 012036, DOI 10.1088/1755-1315/689/1/012036
Кл.слова (ненормированные):
Biodegradable polymers -- Ecosystems -- Fungi -- Glycerol -- Monounsaturated fatty acids -- Oilseeds -- Pesticides -- Substrates -- Sunflower oil -- Fenoxaprop-p-ethyl -- Natural materials -- Pesticide formulations -- Poly-3-hydroxybutyrate -- Polyhydroxyalkanoates -- Productive process -- Strategy of constructions -- Various substrates -- Palm oil
Аннотация: The paper presents a brief overview of the results of the implementation of the project "Agropreparations of the new generation: a strategy of construction and realization". The first part contains the analysis of the growth of the wild-type strain Cupriavidus necator B-10646 (formerly eutrophus) and the synthesis of polyhydroxyalkanoates by this strain on various substrates: glycerol, palm oil, Siberian oil seed, sunflower seed oils, and oleic acid. On refined glycerin, a highly productive process is implemented when scaling up, allowing to obtain 128 ± 11 g / L PHA. Evaluation of oils has shown that palm oil is the best carbon substrate. The second part presents the results of the development of environmentally friendly slow-release pesticide formulations. They are a degradable matrix of poly-3-hydroxybutyrate mixed with natural materials (peat, clay, wood flour), into which a pesticide (metribuzin, tribenuron-methyl, fenoxaprop-P-ethyl, azoxystrobin, epoxiconazole, and tebuconazole) has been. The developed preparations showed high activity against pathogenic fungi and weeds and had a much weaker negative effect on the soil microflora. Studies of the degradation of the developed preparations and the release of pesticides into the soil confirm their effectiveness over a long period of time, up to 90 days. © Published under licence by IOP Publishing Ltd.

Scopus
Держатели документа:
School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russian Federation
Laboratory of Chemoautotrophic Biosynthesis, Institute of Biophysics, SB, RAS, Federal Research Center, Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kiselev, E. G.; Zhila, N. O.; Volova, T. G.

Найти похожие
12.


   
    Thermal, mechanical and biodegradation studies of biofiller based poly-3-hydroxybutyrate biocomposites / S. Thomas, A. A. Shumilova, E. G. Kiselev [et al.] // Int. J. Biol. Macromol. - 2020. - Vol. 155. - P1373-1384, DOI 10.1016/j.ijbiomac.2019.11.112. - Cited References:38. - This studywas financially supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning".; The surface of the samples was investigated using a scanning electron microscope Hitachi TM-3000 in the Joint Instrument Use Center at the Krasnoyarsk Scientific Center of Siberian Branch of Russian Academy of Sciences. . - ISSN 0141-8130. - ISSN 1879-0003
РУБ Biochemistry & Molecular Biology + Chemistry, Applied + Polymer Science
Рубрики:
FORMULATIONS
   POLYHYDROXYALKANOATES

   POLYHYDROXYBUTYRATE

   SOIL

Кл.слова (ненормированные):
Poly-3-hydroxybutyrate -- Biocomposite -- Physical properties -- Environmental -- degradation
Аннотация: Biodegradable poly-3-hydroxybutyrate [P(3HB)] and natural fillers - clay, peat, and birch wood flour - were used to prepare powdered composites to form pellets and granules. Pellets were produced by cold pressing of polymer and filler powder whereas granules were produced from the powders wetted with ethanol. Characterization techniques like IR spectroscopy, differential scanning calorimetry, X-ray analysis, mechanical analysis and electron microscopy were employed to study the properties of the initial P(3HB) and fillers and the composites. Analysis of the IR spectra of the composites showed the absence of chemical bonds between the components, i.e. the composites were physical mixtures. Young's moduli of the pellets prepared from initial materials varied considerably, and the highest value was obtained for P(3HB) pellets (350 MPa). Studies of biodegradation of composite pellets and granules in the soil for 35 days showed that the residual mass of the pellets had decreased to 68% for P (3HB); 56.4% for P(3HB)/peat; 67% for P(3HB)/wood flour, and 64% for P(3HB)/clay; granules exhibited a similar mass loss, residual mass of the granules of P(3HB) was 68.4%, P(3HB)/peat 46.4%; P(3HB)/wood flour 77%, and P (3HB)/clay 74%. This shows the significance of the material as an eco-friendly composite without sacrificing its mechanical properties. (C) 2019 Published by Elsevier B.V.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodnyi Av, Krasnoyarsk 660041, Russia.
Int & Interuniv Ctr Nano Sci & Nano Technol, Kottayam, Kerala, India.
Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Fed Res Ctr, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Krasnoyarsk Sci Ctr SB RAS, LV Kirensky Inst Phys SB RAS, Fed Res Ctr, 43-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Fed Res Ctr, 50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Thomas, Sabu; Shumilova, A. A.; Kiselev, E. G.; Baranovsky, S., V; Vasiliev, A. D.; Nemtsev, I., V; Kuzmin, Andrei Petrovich; Sukovatyi, A. G.; Avinash, R. Pai; Volova, T. G.; Nemtsev, Ivan; Government of the Russian Federation [220]; Project "Agropreparations of the new generation: a strategy of construction and realization" [074-02-2018-328]

Найти похожие
13.


   
    Overview of past, current, and future ecosystem and biodiversity trends of inland saline lakes of Europe and Central Asia / E. Zadereev, O. Lipka, B. Karimov [et al.] // Inland Waters. - 2020, DOI 10.1080/20442041.2020.1772034. - Cited References:123 . - Article in press. - ISSN 2044-2041. - ISSN 2044-205X
РУБ Limnology + Marine & Freshwater Biology
Рубрики:
ARAL SEA
   SHALLOW LAKES

   SALT LAKES

   WATER-LEVEL

   HISTORY

Кл.слова (ненормированные):
aquatic -- climate -- conservation -- habitat -- salinity
Аннотация: This review of trends in inland saline lakes of Europe and Central Asia is based on the relevant section of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Regional Assessment Report for Europe and Central Asia (ECA). We assessed the present status of ECA saline lakes and the effects of direct drivers (climate change, land use, pollution, resource exploitation, invasive species) on ecosystem health and biodiversity. We also assessed past, current and future trends using habitat area and degradation, species richness, and endangered species as indicators. No uniform scenario is applicable to saline lakes in the region. The desiccation of the Aral Sea is caused mainly by land use change and water extraction. In the Caspian Sea, river modifications, water pollution, overfishing and poaching, and species invasions have led to a decrease in species richness and have threatened endemic species. Although trends for smaller saline lakes vary, our analysis demonstrates that land use change, over-exploitation, and pollution are more important direct drivers of ecosystem health and biodiversity than climate change. The establishment of baseline biodiversity values for saline lakes is, however, complicated because biodiversity and the food-web structure are variable and depend strongly on salinity. Thus, there is a need to classify the ecological quality, biodiversity and ecosystem services of saline lakes along a salinity gradient. The improvement of water management and reuse of water, conservation measures, and introduction of climate-smart agriculture are basic conditions for the sustainable use of saline lakes in the region.

WOS
Держатели документа:
Russian Acad Sci, Krasnoyarsk Sci Ctr, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Yu A Izrael Inst Global Climate & Ecol, Moscow, Russia.
Tashkent Inst Irrigat & Agr Mechanizat Engineers, Tashkent, Uzbekistan.
RAS, Shirshov Inst Oceanol, Gelendzhik, Russia.
WWF Russia, Moscow, Russia.
Univ Porto, Fac Sci, Dept Biol, Porto, Portugal.
Interdisciplinary Ctr Marine & Environm Res Ciima, Porto, Portugal.
Azerbaijan Natl Acad Sci, Inst Bot, Baku, Azerbaijan.
Ariel Univ, Dept Chem Engn, Ariel, Israel.
Ariel Univ, Eastern R&D Ctr, Ariel, Israel.
Univ Bristol, Fac Engn, Bristol, Avon, England.
RAS, Inst Geog, Moscow, Russia.
Inst Global Environm Strategies, Hayama, Kanagawa, Japan.
Univ Bern, Inst Plant Sci, Bern, Switzerland.

Доп.точки доступа:
Zadereev, Egor; Lipka, Oksana; Karimov, Bakhtiyor; Krylenko, Marina; Elias, Victoria; Pinto, Isabel Sousa; Alizade, Valida; Anker, Yaakov; Feest, Alan; Kuznetsova, Daria; Mader, Andre; Salimov, Rashad; Fischer, Markus; Sousa, Isabel

Найти похожие
14.


   
    The effect of the pesticide delivery method on the microbial community of field soil / S. Prudnikova, N. Streltsova, T. Volova // Environ. Sci. Pollut. Res. - 2020, DOI 10.1007/s11356-020-11228-7. - Cited References:119. - This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation, project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328). . - Article in press. - ISSN 0944-1344. - ISSN 1614-7499
РУБ Environmental Sciences
Рубрики:
CONTROLLED-RELEASE
   2,4-DICHLOROPHENOXYACETIC ACID

   DEGRADATION

Кл.слова (ненормированные):
Soil microorganisms -- Pesticides -- Slow release formulations -- Biodegradable polymer -- Poly-3-hydroxybutyrate -- P(3HB)-degrading -- microorganisms
Аннотация: The study deals with the effects of herbicides (metribuzin, tribenuron-methyl, fenoxaprop-P-ethyl) and fungicides (tebuconazole, epoxiconazole, azoxystrobin) applied to soil as free pesticides or as slow release formulations embedded in a biodegradable composite matrix on the structure of the soil microbial community. The matrix consisted of a natural biopolymer poly-3-hydroxybutyrate [P(3HB)] and a filler-one of the natural materials (peat, clay, and wood flour). The soil microbial community was characterized, including the major eco-trophic groups of bacteria, dominant taxa of bacteria and fungi, and primary P(3HB)-degrading microorganisms, such asPseudomonas,Bacillus,Pseudarthrobacter,Streptomyces,Penicillium, andTalaromyces. The addition of free pesticides adversely affected the abundance of soil microorganisms; the decrease varied from 1.4 to 56.0 times for different types of pesticides. The slow release pesticide formulations, in contrast to the free pesticides, exerted a much weaker effect on soil microorganisms, no significant inhibition in the abundance of saprotrophic bacteria was observed, partly due to the positive effects of the composite matrix (polymer/natural material), which was a supplementary substrate for microorganisms. The slow release fungicide formulations, like the free fungicides, reduced the total abundance of fungi and inhibited the development of the phytopathogensFusariumandAlternaria. Thus, slow release formulations of pesticides preserve the bioremediation potential of soil microorganisms, which are the main factor of removing xenobiotics from the biosphere.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.
Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Fed Res Ctr, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Prudnikova, Svetlana; Streltsova, Nadezhda; Volova, Tatiana; Ministry of Science and Higher Education of the Russian Federation, project "Agropreparations of the new generation: a strategy of construction and realization" [074-02-2018-328]

Найти похожие
15.


   
    Constructing Slow-Release Fungicide Formulations Based on Poly(3-hydroxybutyrate) and Natural Materials as a Degradable Matrix / T. Volova [et al.] // J. Agric. Food Chem. - 2019. - Vol. 67, Is. 33. - P9220-9231, DOI 10.1021/acs.jafc.9b01634. - Cited References:52. - This study was financially supported by Project "Agro-preparations of the New Generation: A Strategy of Construction and Realization" (Agreement 074-02-2018-328) in accordance with Resolution 220 of the Government of the Russian Federation of April 9, 2010, "On Measures Designed To Attract Leading Scientists to the Russian Institutions of Higher Learning". . - ISSN 0021-8561. - ISSN 1520-5118
РУБ Agriculture, Multidisciplinary + Chemistry, Applied + Food Science &
Рубрики:
BIODEGRADABLE POLY-3-HYDROXYBUTYRATE
   CHITOSAN NANOPARTICLES

Кл.слова (ненормированные):
poly(3-hydroxybutyrate) -- fungicides -- slow-release formulations -- antifungal activity -- degradation -- fungicide release
Аннотация: Slow-release fungicide formulations (azoxystrobin, epoxiconazole, and tebuconazole) shaped as pellets and granules in a matrix of biodegradable poly(3-hydroxybutyrate) and natural fillers (clay, wood flour, and peat) were constructed. Infrared spectroscopy showed no formation of chemical bonds between components in the experimental formulations. The formulations of pesticides had antifungal activity against Fusarium verticillioides in vitro. A study of biodegradation of the experimental fungicide formulations in the soil showed that the degradation process was mainly influenced by the type of formulation without significant influence of the type of filler. More active destruction of the granules led to a more rapid accumulation of fungicides in the soil. The content of fungicides present in the soil as a result of degradation of the formulations and fungicide release was determined by their solubility. Thus, all formulations are able to function in the soil for a long time, ensuring gradual and sustained delivery of fungicides.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Siberian Fed Univ, 79 Svobodnyi Ave, Krasnoyarsk 660041, Russia.
SB RAS, Inst Biophys, Fed Res Ctr Krasnoyarsk Sci Ctr SB RAS, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Mahatma Gandhi Univ, Int & Inter Univ Ctr Nanosci & Nanotechnol, Priyadarshini Hills, Kottayam 686560, Kerala, India.

Доп.точки доступа:
Volova, Tatiana; Prudnikova, Svetlana; Boyandin, Anatoly; Zhila, Natalia; Kiselev, Evgeniy; Shumilova, Anna; Baranovskiy, Sergey; Demidenko, Aleksey; Shishatskaya, Ekaterina; Thomas, Sabu; Project "Agro-preparations of the New Generation: A Strategy of Construction and Realization" [074-02-2018-328]; Resolution 220 of the Government of the Russian Federation of April 9, 2010, "On Measures Designed To Attract Leading Scientists to the Russian Institutions of Higher Learning"

Найти похожие
16.


   
    Nanodiamonds as an effective adsorbent for immobilization of extracellular peroxidases from luminous fungus Neonothopanus nambi to construct a phenol detection system / O. Mogilnaya [et al.] // Biocatal. Biotransform. - 2019. - Vol. 37, Is. 2. - P97-105, DOI 10.1080/10242422.2018.1472586. - Cited References:50. - This work was supported by the state budget allocated to the fundamental research at the Russian Academy of Sciences [project no. 0356-2016-0709]. . - ISSN 1024-2422. - ISSN 1029-2446
РУБ Biochemistry & Molecular Biology + Biotechnology & Applied Microbiology
Рубрики:
CARBON NANOTUBES
   ARMILLARIA-BOREALIS

   LIGHT-EMISSION

   DEGRADATION

Кл.слова (ненормированные):
Nanodiamonds -- immobilization -- luminous fungus -- beta-glucosidase -- peroxidase -- indicator system
Аннотация: Modified nanodiamonds (MNDs) produced by detonation synthesis can be used as an effective adsorbent to immobilize extracellular peroxidases of the luminous basidiomycete Neonothopanus nambi. The enzymes are firmly immobilized on MND particles and exhibit catalytic activity. The indicator system (the MND-enzyme complex) reused many times retains its ability to catalyze reaction of co-oxidation of phenol and 4-aminoantipirine in the presence of hydrogen peroxide and remains functionally active during long-term storage (for 1 month or longer) in aqueous suspensions at 4 degrees C. MNDs and enzymes of higher fungi can be effectively used to construct new reusable indicator systems for analytical applications such as monitoring contamination of aquatic environments by phenolic compounds.

WOS,
Смотреть статью
Держатели документа:
RAS, Inst Biophys, Fed Res Ctr, Krasnoyarsk Sci Ctr,SB, Krasnoyarsk, Russia.

Доп.точки доступа:
Mogilnaya, Olga; Ronzhin, Nikita; Artemenko, Karina; Bondar, Vladimir; Russian Academy of Sciences [0356-2016-0709]

Найти похожие
17.


   
    Thermal, mechanical and biodegradation studies of biofiller based poly-3-hydroxybutyrate biocomposites / S. Thomas [et al.] // Int. J. Biol. Macromol. - 2019, DOI 10.1016/j.ijbiomac.2019.11.112 . - Article in press. - ISSN 0141-8130
Кл.слова (ненормированные):
Biocomposite -- Environmental degradation -- Physical properties -- Poly-3-hydroxybutyrate
Аннотация: Biodegradable poly-3-hydroxybutyrate [P(3HB)] and natural fillers - clay, peat, and birch wood flour – were used to prepare powdered composites to form pellets and granules. Pellets were produced by cold pressing of polymer and filler powder whereas granules were produced from the powders wetted with ethanol. Characterization techniques like IR spectroscopy, differential scanning calorimetry, X-ray analysis, mechanical analysis and electron microscopy were employed to study the properties of the initial P(3HB) and fillers and the composites. Analysis of the IR spectra of the composites showed the absence of chemical bonds between the components, i.e. the composites were physical mixtures. Young's moduli of the pellets prepared from initial materials varied considerably, and the highest value was obtained for P(3HB) pellets (350 MPa). Studies of biodegradation of composite pellets and granules in the soil for 35 days showed that the residual mass of the pellets had decreased to 68% for P(3HB); 56.4% for P(3HB)/peat; 67% for P(3HB)/wood flour, and 64% for P(3HB)/clay; granules exhibited a similar mass loss, residual mass of the granules of P(3HB) was 68.4%, P(3HB)/peat 46.4%; P(3HB)/wood flour 77%, and P(3HB)/clay 74%. This shows the significance of the material as an eco-friendly composite without sacrificing its mechanical properties. © 2018

Scopus,
Смотреть статью
Держатели документа:
Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk, 660041, Russian Federation
International and Interuniversity Centre for Nano Science and Nano technology, Kottayam, Kerala, India
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 43/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of Russian, Academy of Sciences, 50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Thomas, S.; Shumilova, A. A.; Kiselev, E. G.; Baranovsky, S. V.; Vasiliev, A. D.; Nemtsev, I. V.; Kuzmin, A. P.; Sukovatyi, A. G.; Avinash, R. P.; Volova, T. G.

Найти похожие
18.


   
    Constructing sustained-release herbicide formulations based on poly-3-hydroxybutyrate and natural materials as a degradable matrix / E. G. Kiselev, A. N. Boyandin, N. O. Zhila [et al.] // Pest Manage. Sci. - 2019, DOI 10.1002/ps.5702 . - Article in press. - ISSN 1526-498X
Кл.слова (ненормированные):
degradation in soil -- fenoxaprop-P-ethyl -- herbicide release -- metribuzin -- physicochemical properties -- tribenuron-methyl
Аннотация: BACKGROUND: The purpose of the present study was to develop ecofriendly herbicide formulations. Its main aim was to develop and investigate slow-release formulations of herbicides (metribuzin, tribenuron-methyl, and fenoxaprop-P-ethyl) of different structure, solubility, and specificity, which were loaded into a degradable matrix of poly-3-hydroxybutyrate (P(3HB)) blended with available natural materials (peat, clay, and wood flour). RESULTS: Differences in the structure and physicochemical properties of the formulations were studied depending on the type of the matrix. Herbicide release and accumulation in soil were associated with the solubility of the herbicide. Fourier-transform infrared spectroscopy showed that no chemical bonds were formed between the components in the experimental formulations. Degradation of the formulations in agro-transformed soil in laboratory conditions was chiefly influenced by the shape of the specimens (granules or pellets) while the effect of the type of filler (peat, clay, or wood flour) was insignificant. The use of granules enabled more rapid accumulation of the herbicides in soil: their peak concentrations were reached after 3 weeks of incubation while the concentrations of the herbicides released from the pellets were the highest after 5–7 weeks. Loading of the herbicides into the polymer matrix composed of the slowly degraded P(3HB) and natural materials enabled both sustained function of the formulations in soil (lasting between 1.5 and ?3 months) and stable activity of the otherwise rapidly inactivated herbicides such as tribenuron-methyl and fenoxaprop-P-ethyl. CONCLUSION: The experimental herbicide formulations enabled slow release of the active ingredients to soil. © 2019 Society of Chemical Industry. © 2019 Society of Chemical Industry

Scopus
Держатели документа:
School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russian Federation
Federal Research Center “Krasnoyarsk Science Center SB RAS”, Institute of Biophysics SB RAS, Krasnoyarsk, Russian Federation
International and Interuniversity Centre for Nano Science and Nano Technology, Mahatma Gandhi University, Kottayam, Kerala, India

Доп.точки доступа:
Kiselev, E. G.; Boyandin, A. N.; Zhila, N. O.; Prudnikova, S. V.; Shumilova, A. A.; Baranovskiy, S. V.; Shishatskaya, E. I.; Thomas, S.; Volova, T. G.

Найти похожие
19.


   
    Toxic effects of the fungicide tebuconazole on the root system of fusarium-infected wheat plants / E. Shishatskaya [et al.] // Plant Physiol. Biochem. - 2018. - Vol. 132. - P400-407, DOI 10.1016/j.plaphy.2018.09.025 . - ISSN 0981-9428
Кл.слова (ненормированные):
Border cells -- Carbonylated proteins -- Free proline -- Fusarium -- Malondialdehyde -- Tebuconazole
Аннотация: The study investigates toxic effects of the fungicide tebuconazole (TEB) on Fusarium-infected wheat (Triticum aestivum) plants based on the morphological characteristics of root apices and changes in the integrated parameters of redox homeostasis, including the contents of free proline and products of peroxidation of proteins (carbonylated proteins, CP) and lipids (malondialdehyde, MDA) in roots. In two-day-old wheat sprouts infected by Fusarium graminearum, the levels of proline, CP, and border cells of root apices are higher than in roots of uninfected sprouts by a factor of 1.4, 8.0, and 3, respectively. The triazole fungicide tebuconazole (TEB) at the concentrations of 0.01, 0.10, and 1.00 ?g ml?1 of medium causes a dose-dependent decrease in the number of border cells. The study of the effects of TEB and fusarium infection on wheat plants in a 30-day experiment shows that the effect of the fungicide TEB on redox homeostasis in wheat roots varies depending on the plant growth stage and is significantly different in ecosystems with soil and plants infected by Fusarium phytopathogens. The study of the morphology of root apices shows that the toxic effects of TEB and fusarium infection are manifested in the destructive changes in root apices and the degradation of the root tip mantle. © 2018 Elsevier Masson SAS

Scopus,
Смотреть статью,
WOS
Держатели документа:
Siberian Federal University, 79 Svobodnyi Ave., Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
International and Interuniversity Centre for Nano Science and Nano Technology, Kottayam, Kerala, India

Доп.точки доступа:
Shishatskaya, E.; Menzyanova, N.; Zhila, N.; Prudnikova, S.; Volova, T.; Thomas, S.

Найти похожие
20.


   
    Effects of zooplankton carcasses degradation on freshwater bacterial community composition and implications for carbon cycling / O. V. Kolmakova [et al.] // Environ. Microbiol. - 2018, DOI 10.1111/1462-2920.14418 . - Article in press. - ISSN 1462-2912
Аннотация: Non-predatory mortality of zooplankton provides an abundant, yet, little studied source of high quality labile organic matter (LOM) in aquatic ecosystems. Using laboratory microcosms, we followed the decomposition of organic carbon of fresh 13C-labelled Daphnia carcasses by natural bacterioplankton. The experimental setup comprised blank microcosms, that is, artificial lake water without any organic matter additions (B), and microcosms either amended with natural humic matter (H), fresh Daphnia carcasses (D) or both, that is, humic matter and Daphnia carcasses (HD). Most of the carcass carbon was consumed and respired by the bacterial community within 15 days of incubation. A shift in the bacterial community composition shaped by labile carcass carbon and by humic matter was observed. Nevertheless, we did not observe a quantitative change in humic matter degradation by heterotrophic bacteria in the presence of LOM derived from carcasses. However, carcasses were the main factor driving the bacterial community composition suggesting that the presence of large quantities of dead zooplankton might affect the carbon cycling in aquatic ecosystems. Our results imply that organic matter derived from zooplankton carcasses is efficiently remineralized by a highly specific bacterial community, but does not interfere with the bacterial turnover of more refractory humic matter. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Siberian Federal University, Institute of Fundamental Biology and Biotechnology, Krasnoyarsk, Russian Federation
Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
GFZ German Research Centre for Geosciencess, Section 5.3 Geomicrobiology, Potsdam, Germany
Experimental Phycology and Culture Collection of Algae (SAG), University of Gottingen, Gottingen, Germany
Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany

Доп.точки доступа:
Kolmakova, O. V.; Gladyshev, M. I.; Fonvielle, J. A.; Ganzert, L.; Hornick, T.; Grossart, H. -P.

Найти похожие
 1-20    21-40   41-60   61-80   81-83 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)