Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (26)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Design<.>)
Общее количество найденных документов : 44
Показаны документы с 1 по 20
 1-20    21-40   41-44 
1.


   
    Antimicrobial and antiradical activity of individual fractions of essential oil from seeds of heracleum dissectum ledeb. Of Siberian Region / A. A. Efremov, I. D. Zykova, N. S. Korosteleva // Khimiya Rastitel'nogo Syr'ya. - 2020. - Is. 2. - С. 79-85, DOI 10.14258/JCPRM.2020027029 . - ISSN 1029-5151
   Перевод заглавия: АНТИМИКРОБНАЯ И АНТИРАДИКАЛЬНАЯ АКТИВНОСТЬ ОТДЕЛЬНЫХ ФРАКЦИЙ ЭФИРНОГО МАСЛА ПЛОДОВ HERACLEUM DISSECTUM LEDEB. СИБИРСКОГО РЕГИОНА
Кл.слова (ненормированные):
2 -- 2-diphenyl-1-picrylhydrazyl -- Antimicrobial activity -- Antiradical activity -- Beans -- Essential oil -- Heracleum dissectum Ledeb
Аннотация: By the method of exhaustive hydroponically obtained essential oil from beans of Heracleum dissectum Ledeb., growing in the Krasnoyarsk region. Separate fractions of oil were obtained: the first after 45 minutes from the beginning of distillation, the second – after 2 hours, the third-after 5 hours, the fourth fraction was collected after the end of hydro-distillation. The component composition of both whole essential oil and its separate fractions was studied. The main components are octyl acetate (60.0%), octyl-2-methylpropanoate (10.2%), n-hexyl-2-methylbutanoate (9.0%). The main amount of octyl acetate (64.7%) is concentrated in the first fraction of the oil. The antimicrobial activity of various fractions of essential oil of borscht dissected against strains of opportunistic microorganisms: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus 209p, MRSA, Proteus vulgaris. It was found that, depending on the duration of isolation, the antimicrobial activity of essential oil fractions in relation to Staphylococcus aureus 209p, MRSA and Pseudomonas aeruginosa decreases, and in relation to Escherichia coli, Klebsiella pneumoniae and Proteus vulgaris increases. The most pronounced inhibitory effect of the third and fourth fractions of essential oil against Klebsiella pneumonia. The antiradical activity of all studied samples of borscht essential oil dissected in reaction with stable free 2,2-diphenyl-1-picrylhydrazyl radical was established. The first fraction showed minimal antiradical activity (15.1%), the fourth – maximum (49.2%). © 2020 Altai State University. All rights reserved.

Scopus
Держатели документа:
Siberian Federal University, pr. Svobodnyy, 79, Krasnoyarsk, 660049, Russian Federation
Special Design and Technology Bureau “Science”, Federal Research Center of the KSC SB RAS, Akademgorodok, 50/45, Krasnoyarsk, 660036, Russian Federation
Institute of Biophysics, Federal Research Center, KSC SB RAS, Akademgorodok, 50/50, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Efremov, A. A.; Zykova, I. D.; Korosteleva, N. S.

Найти похожие
2.


   
    Application of Enzyme Bioluminescence in Ecology [Text] / E. Esimbekova, V. Kratasyuk, O. Shimomura // Adv. Biochem. Eng. Biotechnol. : SPRINGER-VERLAG BERLIN, 2014. - Vol. 144. - P67-109. - (Advances in Biochemical Engineering-Biotechnology), DOI 10.1007/978-3-662-43385-0_3. - Cited References:85 . -
РУБ Biotechnology & Applied Microbiology
Рубрики:
BACTERIAL LUCIFERASE
   IN-VITRO

   PYRETHROID INSECTICIDES

   FRESH-WATER

Кл.слова (ненормированные):
Bioluminescence -- Ecological monitoring -- Enzymatic assay -- Immobilization -- Integral water toxicity -- Luciferase
Аннотация: This review examines the general principles of bioluminescent enzymatic toxicity bioassays and describes the applications of these methods and the implementation in commercial biosensors. Bioluminescent enzyme system technology (BEST) has been proposed in the bacterial coupled enzyme system, wherein NADH: FMN-oxidoreductase-luciferase substitutes for living organisms. BEST was introduced to facilitate and accelerate the development of cost-competitive enzymatic systems for use in biosensors for medical, environmental, and industrial applications. For widespread use of BEST, the multicomponent reagent "Enzymolum'' has been developed, which contains the bacterial luciferase, NADH: FMN-oxidoreductase, and their substrates, co-immobilized in starch or gelatin gel. Enzymolum is the central part of Portable Laboratory for Toxicity Detection (PLTD), which consists of a biodetector module, a sampling module, a sample preparation module, and a reagent module. PLTD instantly signals chemical-biological hazards and allows us to detect a wide range of toxic substances. Enzymolum can be integrated as a biological module into the portable biodetector-biosensor originally constructed for personal use. Based on the example of Enzymolum and the algorithm for creating new enzyme biotests with tailored characteristics, a new approach was demonstrated in biotechnological design and construction. The examples of biotechnological design of various bioluminescent methods for ecological monitoring were provided. Possible applications of enzyme bioassays are seen in the examples for medical diagnostics, assessment of the effect of physical load on sportsmen, analysis of food additives, and in practical courses for higher educational institutions and schools. The advantages of enzymatic assays are their rapidity (the period of time required does not exceed 3-5 min), high sensitivity, simplicity and safety of procedure, and possibility of automation of ecological monitoring; the required luminometer is easily available.

WOS
Держатели документа:
Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
ИБФ СО РАН

Доп.точки доступа:
Esimbekova, Elena; Kratasyuk, Valentina; Shimomura, Osamu

Найти похожие
3.


   
    Battle of GLP-1 delivery technologies / M. Yu [et al.] // Adv. Drug Deliv. Rev. - 2018, DOI 10.1016/j.addr.2018.07.009 . - ISSN 0169-409X
Кл.слова (ненормированные):
Albumin fusion -- Exenatide -- Fatty acid conjugate -- Fc fusion -- GLP-1 receptor agonist -- Half-life -- Peptide delivery -- Pharmacokinetics
Аннотация: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) belong to an important therapeutic class for treatment of type 2 diabetes. Six GLP-1 RAs, each utilizing a unique drug delivery strategy, are now approved by the Food and Drug Administration (FDA) and additional, novel GLP-1 RAs are still under development, making for a crowded marketplace and fierce competition among the manufacturers of these products. As rapid elimination is a major challenge for clinical application of GLP-1 RAs, various half-life extension strategies have been successfully employed including sequential modification, attachment of fatty-acid to peptide, fusion with human serum albumin, fusion with the fragment crystallizable (Fc) region of a monoclonal antibody, sustained drug delivery systems, and PEGylation. In this review, we discuss the scientific rationale of the various half-life extension strategies used for GLP-1 RA development. By analyzing and comparing different approved GLP-1 RAs and those in development, we focus on assessing how half-life extending strategies impact the pharmacokinetics, pharmacodynamics, safety, patient usability and ultimately, the commercial success of GLP-1 RA products. We also anticipate future GLP-1 RA development trends. Since similar drug delivery strategies are also applied for developing other therapeutic peptides, we expect this case study of GLP-1 RAs will provide generalizable concepts for the rational design of therapeutic peptides products with extended duration of action. © 2018 Elsevier B.V.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI, United States
Amneal Pharmaceuticals, 50 Horseblock Rd, Brookhaven, NY, United States
Siberian Federal University, 79 Svobodnuy Ave, Krasnoyarsk, Russian Federation
Institute of Biophysics SBRAS, 50 Akademgorodok, Russian Federation
Biointerfaces Institute, NCRC, 2800 Plymouth Rd, Ann Arbor, MI, United States
Department of Biomedical Engineering, 2200 Bonisteel Blvd, Ann Arbor, MI, United States

Доп.точки доступа:
Yu, M.; Benjamin, M. M.; Srinivasan, S.; Morin, E. E.; Shishatskaya, E. I.; Schwendeman, S. P.; Schwendeman, A.

Найти похожие
4.


   
    Benefits of biophysical tests of saliva for athletic functionality rating tests / A. M. Vyshedko [и др.] // Teor. Prakt. Fiz. Kult. - 2019. - Vol. 2019, Is. 7. - С. 65-67 . - ISSN 0040-3601
Кл.слова (ненормированные):
Antioxidant activity rate -- Bioluminescence test -- Chemoluminescence test -- Elite sports -- Residual luminescence -- Saliva
Аннотация: Modern physical training systems give a high priority to the training process individualizing elements that may be efficient enough only when supported by objective tests to rate the bodily responses to physical workloads. Moreover, success in modern professional sports is impossible unless supported by the newest medical/ biological findings and technologies in the health rating and forecast domains, with a special role played by the modern biophysical research of the cellular- and molecular-level biological processes. The study was designed to assess benefits of biophysical analysis of saliva for the athletic functionality rating tests. Sampled for the purposes of the study were athletes of different skill levels (from Class I to Honorary Masters of Sport) versus the untrained students, with the saliva sampled prior to and after physical trainings by bioluminescence and chemoluminescence test methods. The test data were processed by Statistica 10 (made by StatSoft Inc., the US) toolkit to produce median values (Me) and inter-quartile distribution (C25-C75 percentile) rates. The Mann-Whitney nonparametric U-test of the null hypothesis was used to rate differences of the independent variables, with the statistical difference rated meaningful at p<0.05. The bioluminescence tests found the higher ferment activity of saliva in the athletes’ versus untrained students, with the ferment activity in the bioluminescence tests also tested to grow after physical workloads in the highly-skilled athletes and fall in the untrained students. The study found the saliva antioxidant system functional intensity being athletic skills dependent. Therefore, the study has demonstrated benefits of the biophysical (bioluminescence and chemoluminescence) tests of saliva for the athletic functionality rating tests in the physical workload design and management initiatives. © 2019, Teoriya i praktika fizicheskoy kul'tury i sporta. All rights reserved.

Scopus
Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Research Institute of Medical Problems of the North, Krasnoyarsk, Russian Federation
Institute of Biophysics SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Vyshedko, A. M.; Stepanova, L. V.; Kolenchukova, O. A.; Kratasyuk, V. A.

Найти похожие
5.


   
    Biological life-support systems for Mars mission / J. I. Gitelson // Advances in Space Research. - 1992. - Vol. 12, Is. 5. - P167-192 . - ISSN 0273-1177
Кл.слова (ненормированные):
air conditioning -- Alcaligenes -- article -- astronomy -- biomass -- Chlorella -- classification -- comparative study -- equipment design -- human -- instrumentation -- microclimate -- plant -- solar energy -- space flight -- waste management -- water management -- Air Conditioning -- Alcaligenes -- Biomass -- Chlorella -- Ecological Systems, Closed -- Equipment Design -- Humans -- Life Support Systems -- Mars -- Plants -- Solar Energy -- Space Flight -- Spacecraft -- Waste Management -- Water Purification
Аннотация: Mars mission like the Lunar base is the first venture to maintain human life beyond earth biosphere. So far, all manned space missions including the longest ones used stocked reserves and can not be considered egress from biosphere. В© 1991.

Scopus
Держатели документа:
Institute of Biophysics, U.S.S.R. Academy, Sciences Siberian Branch, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gitelson, J.I.

Найти похожие
6.


   
    Biological-physical-chemical aspects of a human life support system for a lunar base / J. I. Gitelson [et al.] // Acta Astronautica. - 1995. - Vol. 37, Is. C. - P385-394 . - ISSN 0094-5765
Кл.слова (ненормированные):
animal -- aquaculture -- article -- biomass -- construction work and architectural phenomena -- Cyprinodontiformes -- filtration -- growth, development and aging -- human -- microbiology -- microclimate -- moon -- nutritional value -- photoperiodicity -- plant -- space flight -- standard -- Tilapia -- waste management -- water management -- wheat -- Animals -- Aquaculture -- Biomass -- Cyprinodontiformes -- Ecological Systems, Closed -- Facility Design and Construction -- Filtration -- Humans -- Life Support Systems -- Moon -- Nutritive Value -- Photoperiod -- Plants, Edible -- Space Flight -- Tilapia -- Triticum -- Waste Management -- Water Microbiology -- Water Purification
Аннотация: To create a life support system based on biological and physical-chemical processes is the optimum solution providing full-valued condidtions for existence and efficient work of people at a lunar base. Long-standing experinece in experimental research or closed ecosystems and their components allows us to suggest a realistic functional structure of the lunar base and to estimate qualitatively its parameters. The original restrictions are as follows: 1) the basic source of energy to support the biological processes has to be the solar radiation; 2) the initial amount of basic biological elelments forming the turnover of substances (C, O, H, P, K, N) has to be delivered from Earth; 3). Moon materials are not to be used in the biological turnover inside the base; 4) the base is to supply the crew fully with atmosphere and water, and with 90% (A scenario) or 40% (B scenario) of food. Experimental data about the plant productivity under the "Moon" rhythm of light and darkness allow us to suggest that the A scenario requires per one human: plant area - 40 m2 irradiated during the lunar day by 250-300 W/m2 PAR producing 1250 g of dry biomass a terrestrial day; a heterotrophic component of "biological incineration" of inedible plant biomass (800 g/day) including the aquaculture of fish to produce animal products and contaminating the environment less than birds and mammals, and the culture of edible mushrooms; a component of physical-chemical correction for the LSS envi ronment including the subsystems of: deep oxidation of organic impurities in the atmosphere and of water, organic wastes of human activity and that biological components (420 g/day) Co2 concentration in "Moon" nights, damping O2 in "Moon" days, etc. The stock of presotred or delivered from Earth substances (food additions, seeds, etc.) to be involved in biological turnover is to be about 50 kg/year per man. Increase of the mass of prestored substances per man up to 220 kg/year would reduce twice the plant area and consumed amount of radiant energy to exclude the components of "biological incineration" and physical-chemical destruction of organic wastes. В© 1995.

Scopus
Держатели документа:
Institute of Biophysics (Russian Academy of Sciences, Siberian Branch) Krasnoyarsk, Russian Federation
Ruhr-University of Bochum, C.E.B.A.S. Center of Excellence., Bochum, Germany
Institute of Medical-Biological Problems, Moscow, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gitelson, J.I.; V, B.; Grigoriev, A.I.; Lisovsky, G.M.; Manukovsky, N.S.; Sinyak, Y.u.E.; Ushakova, S.A.

Найти похожие
7.


   
    Bioluminescent SNP genotyping technique: Development and application for detection of melanocortin 1 receptor gene polymorphisms / E. E. Bashmakova [et al.] // Talanta. - 2018. - Vol. 189. - P111-115, DOI 10.1016/j.talanta.2018.06.057 . - ISSN 0039-9140
Кл.слова (ненормированные):
Ca2+-regulated photoprotein obelin -- Genotyping -- Melanocortin 1 receptor gene -- Single nucleotide polymorphisms (SNP) -- Bioluminescence -- Clinical research -- Curricula -- Diagnosis -- Genes -- Oncology -- Biomedical research -- Clinical characteristics -- Development and applications -- Genotyping -- Healthy individuals -- Photoproteins -- Receptor genes -- Single-nucleotide polymorphisms -- Dermatology
Аннотация: SNP genotyping based on the reaction of specific primer extension with the following bioluminescent detection of its products was shown to be potentially applicable for biomedical exploration. The paper describes its elaboration and first application in extensive biomedical research concerning MC1R gene variants’ frequency and associations with clinical characteristics in melanoma patients of Eastern Siberia (Krasnoyarsk region, Russia). Polymorphisms rs 1805007 (R151C), rs 1805008 (R160W), and rs 1805009 (D294H) were detected in 174 DNA samples from patients with histologically proved diagnosis of cutaneous melanoma and in 200 samples from healthy individuals. All the results on bioluminescent SNP genotyping were confirmed by Sanger sequencing. Some features characteristic of the population were found, i.e. melanoma is mostly associated with R160W or R151C while variant D294H is extremely rare; simultaneous carriage of any two investigated variants is also strongly associated with melanoma; R151C is associated with ulceration and consequently the disease course is more aggressive, etc. The design of the technique allows fast evaluation of any known diagnostically important SNP frequencies and associations across population. © 2018 Elsevier B.V.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Siberian Federal University, Svobodny pr. 79, Krasnoyarsk, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/50, Krasnoyarsk, Russian Federation
Blokhin Cancer Research Center, Moscow, Russian Academy of Medical Sciences, Kashirskoye Shosse 24, Moscow, Russian Federation
Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk Lavrentiev Avenue 8, Novosibirsk, Russian Federation
State Medical University named after V.F. Voyno-Yasenetsky, Partizana Zheleznyaka St. 1, Krasnoyarsk, Russian Federation
Regional Clinical Oncology Center named after A.I. Kryzhanovsky, 1 Smolenskaya Str.16, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Bashmakova, E. E.; Krasitskaya, V. V.; Bondar, A. A.; Eremina, E. N.; Slepov, E. V.; Zukov, R. A.; Frank, L. A.

Найти похожие
8.


   
    Bios-3: Siberian experiments in bioregenerative life support / F. B. Salisbury, J. I. Gitelson, G. M. Lisovsky // BioScience. - 1997. - Vol. 47, Is. 9. - P575-585 . - ISSN 0006-3568
Кл.слова (ненормированные):
agriculture -- Chlorella -- construction work and architectural phenomena -- crop -- energy metabolism -- evaluation -- growth, development and aging -- human -- metabolism -- methodology -- microbiology -- microclimate -- NASA Discipline Life Support Systems -- Non-NASA Center -- photon -- review -- Russian Federation -- space flight -- NASA Discipline Life Support Systems -- Non-NASA Center -- Agriculture -- Chlorella -- Crops, Agricultural -- Ecological Systems, Closed -- Energy Metabolism -- Environment, Controlled -- Environmental Microbiology -- Evaluation Studies -- Facility Design and Construction -- Humans -- Life Support Systems -- Photons -- Siberia -- Space Flight -- Space Simulation

Scopus
Держатели документа:
Dept. Plants, Soils, Biometeorology, College of Agriculture, Utah State University, Logan, UT 84322-4820, United States
Institute of Biophysics, Academy of Sciences of Russia, Siberian Branch, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Salisbury, F.B.; Gitelson, J.I.; Lisovsky, G.M.

Найти похожие
9.


   
    BIOS-4 AS AN EMBODIMENT OF CELSS DEVELOPMENT CONCEPTION [Text] / S. I. BARTSEV, V. V. MEZHEVIKIN, V. A. OKHONIN ; ed. G Kraft [et al.] // PHYSICAL, CHEMICAL, BIOCHEMICAL AND BIOLOGICAL TECHNIQUES AND PROCESSES. Ser. ADVANCES IN SPACE RESEARCH-SERIES : PERGAMON PRESS LTD, 1996. - Vol. 18: F2.2, F2.3, F2.5, F4.3, F4.4, F4.9, F4.10 Meetings of COSPAR Scientific Commission F, at the 13th COSPAR Scientific Assembly (JUL 11-21, 1994, HAMBURG, GERMANY), Is. 01.02.2013. - P. 201-204, DOI 10.1016/0273-1177(95)00809-S. - Cited References: 3 . - ISBN 0273-1177. - ISBN 0-08-042664-6
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Chemistry, Multidisciplinary

Аннотация: Any attempt to create LSS for practical applications must take into account the possibility of catastrophic consequences if the problem of LSS reliability and stability is not solved. An integrated conception of CELSS studies development as a possible way to increase its reliability is considered. The BIOS-4 facility project is developed in the context of the conception. Three principles of highly effective experimental CELSS facility design are proposed. Some details of BIOS-4 design and its exploitation features are presented.

WOS : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
BARTSEV, S.I.; MEZHEVIKIN, V.V.; OKHONIN, V.A.; Kraft, G \ed.\; Carr, KE \ed.\; Goodwin, EH \ed.\; Ting, KC \ed.\; Finn, CK \ed.\; Tsai, KC \ed.\; Volk, T \ed.\; Henninger, DL \ed.\; Mitchell, CA \ed.\; MacElroy, RD \ed.\

Найти похожие
10.


   
    Biotesting of Effluent and River Water by Lyophilized Luminous Bacteria Biotest / A. M. Kuznetsov, E. K. Rodicheva, S. E. Medvedeva // Field Analytical Chemistry and Technology. - 1998. - Vol. 2, Is. 5. - P267-275 . - ISSN 1086-900X
Кл.слова (ненормированные):
Bioluminescence -- Effluent -- Luminous bacteria biotest -- Toxicity -- Water quality
Аннотация: Waters of the Yenisei River, certain rivers and lakes of the Altai Territory, and effluents of some industrial factories in Krasnoyarsk were studied by luminous bacteria biotest Microbiosensor B17 677F. The lyophilized luminous bacteria Photobacterium phosphoreum from the IBSO collection were used to design this biotest. The bioluminescent test is based on bioluminescence quenching resulting from the action of water samples on luminous bacteria. The test results indicated locations and zones of impaired water quality. The heaviest pollution of water in the Yenisei River was recorded in the zones 0-116 km downstream from Krasnoyarsk (Krasnoyarsk and satellite towns). The effluents of most factories were found to be toxic. Underground and surface waters of some areas of the Altai Territory had different toxicity levels; there were deviations from the norm in most water samples taken from the different lakes and rivers. The data from this study show that the luminous bacteria biotest is simple and convenient, and that the results obtained are within acceptable levels of accuracy for the evaluation of the toxicity of effluent and river water. It takes no more than 30 min to do the biotest. It can be used in ecological monitoring like the Microtox toxicity test. В© 1998 John Wiley & Sons, Inc.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kuznetsov, A.M.; Rodicheva, E.K.; Medvedeva, S.E.

Найти похожие
11.


   
    Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes / R. M. Pilla, C. E. Williamson, B. V. Adamovich [et al.] // Sci Rep. - 2020. - Vol. 10, Is. 1. - Ст. 20514, DOI 10.1038/s41598-020-76873-x. - Cited References:87. - This work was conceived at the Global Lake Ecological Observatory Network (GLEON), and benefited from continued participation and travel support from GLEON. This manuscript is dedicated to the late Alon Rimmer and Karl Havens, who provided data and contributed to earlier versions of this manuscript. Funding in support of this work came from the following sources: Belarus Republican Foundation for Fundamental Research; IGB Long-Term Research; the European Commission within the MANTEL project; the DFG within the LimnoScenES project (AD 91/22-1); OLA-IS, AnaEE-France, INRAE of Thonon-les-Bains, CIPEL, SILA, CISALB; Universidad del Valle de Guatemala; Archbold Biological Station; the Oklahoma Department of Wildlife Conservation, the Oklahoma Water Resources Board, the Grand River Dam Authority, the US Army Corps of Engineers, and the City of Tulsa; the Ministry of Business, Innovation, and Employment (UOW X1503); the Natural Environment Research Council of the UK; the IGB's International Postdoctoral Fellowship; NSERC, Canada Foundation for Innovation, Canada Research Chairs, Province of Saskatchewan; University of Regina; Queen's University Belfast; Natural Environment Research Council; US-NSF, California Air Resources Board, NASA, and US National Park Service; the Ministry of Higher Education and Research (projects No FZZE-2020-0026; No FZZE-2020-0023) and RSCF 20-64-46003; US National Science Foundation Long Term Research in Environmental Biology program (DEB-1242626); the Environmental Agency of Verona; US National Science Foundation, the Gordon and Betty Moore Foundation, the Mellon Foundation, and the University of Washington; KMFRI, LVEMP, University of Innsbruck, OeAD, IFS, and LVFO-EU; Waikato Regional Council and Bay of Plenty Regional Council; Swedish Environmental Protection Agency and the Swedish Infrastructure for Ecosystem Sciences; US National Science Foundation grants DEB-1754276 and DEB-1950170. We thank J. Klug, P. McIntyre, H. Swain, K. Tominaga, A. Voutilainen, and L. Winslow for their feedback on early drafts that substantially improved this manuscript. Additional detailed acknowledgements can be found in the Supplementary Information online. . - ISSN 2045-2322
РУБ Multidisciplinary Sciences
Рубрики:
DISSOLVED ORGANIC-CARBON
   LONG-TERM CHANGES

   CLIMATE-CHANGE

   OXYGEN

Аннотация: Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970-2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of+0.37 degrees C decade(-1), comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+0.08 kg m(-3) decade(-1)). In contrast, however, deepwater temperature trends showed little change on average (+0.06 degrees C decade(-1)), but had high variability across lakes, with trends in individual lakes ranging from -0.68 degrees C decade(-1) to+0.65 degrees C decade(-1). The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.

WOS
Держатели документа:
Miami Univ, Dept Biol, Oxford, OH 45056 USA.
Belarusian State Univ, Fac Biol, Minsk, BELARUS.
Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Ecosyst Res, Berlin, Germany.
Free Univ Berlin, Berlin, Germany.
INRAE, CARRTEL, Thonon Les Bains, France.
Univ Nevada, Global Water Ctr, Reno, NV 89557 USA.
Uppsala Univ, Dept Ecol & Genet Limnol, Uppsala, Sweden.
Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA.
Univ Valle Guatemala, Inst Investigacones, Guatemala City, Guatemala.
Univ Innsbruck, Res Dept Limnol Mondsee, Mondsee, Austria.
Florida Int Univ, Dept Biol Sci, Miami, FL 33199 USA.
Natl Pk Serv, Crater Lake Natl Pk, Crater Lake, OR USA.
Univ Oklahoma, Dept Biol, Plankton Ecol & Limnol Lab, Norman, OK 73019 USA.
Univ Oklahoma, Geog Ecol Grp, Norman, OK 73019 USA.
Griffith Univ, Australian Rivers Inst, Nathan, Qld, Australia.
Univ Florida, Florida Sea Grant & UF IFAS, Gainesville, FL USA.
Univ Oslo, Dept Biosci, Oslo, Norway.
IISD Expt Lake Area Inc, Winnipeg, MB, Canada.
Finnish Environm Inst SYKE, Freshwater Ctr, Helsinki, Finland.
Univ Eastern Finland, Dept Environm & Biol Sci, Joensuu, Finland.
Eawag Swiss Fed Inst Aquat Sci & Technol, Dept Aquat Ecol, Dubendorf, Switzerland.
CSIRO, Land & Water, Canberra, ACT, Australia.
Univ Stirling, Biol & Environm Sci, Stirling, Scotland.
Laurentian Univ, Cooperat Freshwater Ecol Unit, Ramsey Lake Rd, Sudbury, ON, Canada.
Univ Minnesota, Itasca Biol Stn & Labs, Lake Itasca, MN USA.
Univ Regina, Inst Environm Change & Soc, Regina, SK, Canada.
Queens Univ Belfast, Inst Global Food Secur, Belfast, Antrim, North Ireland.
Univ Appl Sci & Arts Southern Switzerland, Dept Environm Construct & Design, Canobbio, Switzerland.
Fed Agcy Water Management, Mondsee, Austria.
UK Ctr Ecol & Hydrol, Lake Ecosyst Grp, Lancaster, England.
Univ Calif Santa Barbara, Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA.
Ryerson Univ, Dept Chem & Biol, Toronto, ON, Canada.
Univ Hamburg, Dept Biol, Hamburg, Germany.
Irkutsk State Univ, Inst Biol, Irkutsk, Russia.
Univ Liege, Liege, Belgium.
SUNY Coll New Paltz, Dept Biol, New Paltz, NY 12561 USA.
Israel Oceanog & Limnol Res, Kinneret Limnol Lab, Migdal, Israel.
CNR Water Res Inst, Verbania, Italy.
Ontario Minist Environm Conservat & Parks, Dorset Environm Sci Ctr, Dorset, ON, Canada.
Univ Calif Davis, Dept Environm Sci & Policy, Davis, CA 95616 USA.
Fdn Edmund Mach FEM, Dept Sustainable Agroecosyst & Bioreso, Res & Innovat Ctr, San Michele All Adige, Italy.
Univ Maine, Climate Change Inst, Orono, ME USA.
Univ Laval, Ctr Etud Nord, Quebec City, PQ, Canada.
Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA.
Eawag Swiss Fed Inst Aquat Sci & Technol, Surface Waters Res & Management, Kastanienbaum, Switzerland.
Tech Univ Kenya, Dept Geosci & Environm, Nairobi, Kenya.
Univ Innsbruck, Dept Ecol, Innsbruck, Austria.
Univ Konstanz, Limnol Inst, Constance, Germany.
Dickinson Coll, Dept Environm Sci, Carlisle, PA 17013 USA.
Vrije Univ Brussel, Dept Hydrol & Hydraul Engn, Brussels, Belgium.
Eidgenoss Tech Hsch Zurich, Inst Atmospher & Climate Sci, Zurich, Switzerland.
Natl Inst Water & Atmospher Res, Hamilton, New Zealand.
Univ Alberta, Dept Biol Sci, Edmonton, AB, Canada.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia.

Доп.точки доступа:
Pilla, Rachel M.; Williamson, Craig E.; Adamovich, Boris V.; Adrian, Rita; Anneville, Orlane; Chandra, Sudeep; Colom-Montero, William; Devlin, Shawn P.; Dix, Margaret A.; Dokulil, Martin T.; Gaiser, Evelyn E.; Girdner, Scott F.; Hambright, K. David; Hamilton, David P.; Havens, Karl; Hessen, Dag O.; Higgins, Scott N.; Huttula, Timo H.; Huuskonen, Hannu; Isles, Peter D. F.; Joehnk, Klaus D.; Jones, Ian D.; Keller, Wendel Bill; Knoll, Lesley B.; Korhonen, Johanna; Kraemer, Benjamin M.; Leavitt, Peter R.; Lepori, Fabio; Luger, Martin S.; Maberly, Stephen C.; Melack, John M.; Melles, Stephanie J.; Muller-Navarra, D. C.; Pierson, Don C.; Pislegina, Helen V.; Plisnier, Pierre-Denis; Richardson, David C.; Rimmer, Alon; Rogora, Michela; Rusak, James A.; Sadro, Steven; Salmaso, Nico; Saros, Jasmine E.; Saulnier-Talbot, Emilie; Schindler, Daniel E.; Schmid, Martin; Shimaraeva, Svetlana V.; Silow, Eugene A.; Sitoki, Lewis M.; Sommaruga, Ruben; Straile, Dietmar; Strock, Kristin E.; Thiery, Wim; Timofeyev, Maxim A.; Verburg, Piet; Vinebrooke, Rolf D.; Weyhenmeyer, Gesa A.; Zadereev, Egor; Belarus Republican Foundation for Fundamental Research; IGB Long-Term Research; European CommissionEuropean CommissionEuropean Commission Joint Research Centre; DFGGerman Research Foundation (DFG) [AD 91/22-1]; OLA-IS; AnaEE-France; INRAE of Thonon-les-Bains; CIPEL; SILA; CISALB; Universidad del Valle de Guatemala; Archbold Biological Station; Oklahoma Department of Wildlife Conservation; Oklahoma Water Resources Board; Grand River Dam Authority; US Army Corps of EngineersUnited States Department of Defense; City of Tulsa; Ministry of Business, Innovation, and EmploymentNew Zealand Ministry of Business, Innovation and Employment (MBIE) [UOW X1503]; Natural Environment Research Council of the UKNERC Natural Environment Research Council; IGB's International Postdoctoral Fellowship; NSERCNatural Sciences and Engineering Research Council of Canada; Canada Foundation for InnovationCanada Foundation for InnovationCGIAR; Canada Research ChairsCanada Research ChairsCGIAR; Province of Saskatchewan; University of Regina; Queen's University Belfast; Natural Environment Research CouncilNERC Natural Environment Research Council; US-NSFNational Science Foundation (NSF); California Air Resources Board; NASANational Aeronautics & Space Administration (NASA); US National Park Service; Ministry of Higher Education and ResearchMinistry of Higher Education & Scientific Research (MHESR) [FZZE-2020-0026, FZZE-2020-0023]; RSCFRussian Science Foundation (RSF) [20-64-46003]; US National Science Foundation Long Term Research in Environmental Biology program [DEB-1242626]; Environmental Agency of Verona; US National Science FoundationNational Science Foundation (NSF); Gordon and Betty Moore FoundationGordon and Betty Moore Foundation; Mellon Foundation; University of WashingtonUniversity of Washington; KMFRI; LVEMP; University of Innsbruck; OeAD; IFSInternational Foundation for Science; LVFO-EU; Waikato Regional Council; Bay of Plenty Regional Council; Swedish Environmental Protection Agency; Swedish Infrastructure for Ecosystem Sciences; US National Science FoundationNational Science Foundation (NSF) [DEB-1754276, DEB-1950170]

Найти похожие
12.


   
    Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes / R. M. Pilla, C. E. Williamson, B. V. Adamovich [et al.] // Sci. Rep. - 2020. - Vol. 10, Is. 1. - Ст. 20514, DOI 10.1038/s41598-020-76873-x . - ISSN 2045-2322
Аннотация: Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade?1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m?3 decade?1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade?1), but had high variability across lakes, with trends in individual lakes ranging from ? 0.68 °C decade?1 to + 0.65 °C decade?1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences. © 2020, The Author(s).

Scopus
Держатели документа:
Department of Biology, Miami University, Oxford, OH, United States
Faculty of Biology, Belarusian State University, Minsk, Belarus
Department of Ecosystems Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
Freie Universitat Berlin, Berlin, Germany
CARRTEL, INRAE, Thonon-les-Bains, France
Global Water Center, University of Nevada, Reno, NV, United States
Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
Flathead Lake Biological Station, University of Montana, Polson, MT, United States
Instituto de Investigacones, Universidad del Valle de Guatemala, Guatemala, Guatemala
Research Department for Limnology Mondsee, University of Innsbruck, Mondsee, Austria
Department of Biological Sciences, Florida International University, Miami, FL, United States
Crater Lake National Park, U.S. National Park Service, Crater Lake, OR, United States
Department of Biology, Plankton Ecology and Limnology Lab and Geographical Ecology Group, University of Oklahoma, Norman, OK, United States
Australian Rivers Institute, Griffith University, Nathan, Australia
Florida Sea Grant and UF/IFAS, University of Florida, Gainesville, FL, United States
Department of Biosciences, University of Oslo, Oslo, Norway
IISD Experimental Lake Area Inc, Winnipeg, MB, Canada
Freshwater Center, Finnish Environment Institute SYKE, Helsinki, Finland
Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland
Land and Water, CSIRO, Canberra, Australia
Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
Cooperative Freshwater Ecology Unit, Laurentian University, Ramsey Lake Road, Sudbury, ON, Canada
Itasca Biological Station and Laboratories, University of Minnesota, Lake Itasca, MN, United States
Institute of Environmental Change and Society, University of Regina, Regina, SK, Canada
Institute for Global Food Security, Queen’s University Belfast, Belfast Co., Antrim, United Kingdom
Department for Environment, Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland, Canobbio, Switzerland
Federal Agency for Water Management AT, Mondsee, Austria
Lake Ecosystems Group, UK Centre for Ecology & Hydrology, Lancaster, United Kingdom
Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, United States
Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
Department of Biology, University of Hamburg, Hamburg, Germany
Institute of Biology, Irkutsk State University, Irkutsk, Russian Federation
University of Liege, Liege, Belgium
Department of Biology, SUNY New Paltz, New Paltz, NY, United States
The Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
CNR Water Research Institute, Verbania Pallanza, Italy
Dorset Environmental Science Centre, Ontario Ministry of the Environment, Conservation, and Parks, Dorset, ON, Canada
Department of Environmental Science and Policy, University of California Davis, Davis, CA, United States
Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele All’Adige, Italy
Climate Change Institute, University of Maine, Orono, ME, United States
Centre D’Etudes Nordiques, Universite Laval, Quebec, QC, Canada
School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
Surface Waters-Research and Management, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
Department of Geosciences and the Environment, The Technical University of Kenya, Nairobi, Kenya
Department of Ecology, University of Innsbruck, Innsbruck, Austria
Limnological Institute, University of Konstanz, Konstanz, Germany
Department of Environmental Science, Dickinson College, Carlisle, PA, United States
Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium
Institute for Atmospheric and Climate Science, Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland
National Institute of Water and Atmospheric Research, Hamilton, New Zealand
Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
Institute of Biophysics, Krasnoyarsk Scientific Center Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Pilla, R. M.; Williamson, C. E.; Adamovich, B. V.; Adrian, R.; Anneville, O.; Chandra, S.; Colom-Montero, W.; Devlin, S. P.; Dix, M. A.; Dokulil, M. T.; Gaiser, E. E.; Girdner, S. F.; Hambright, K. D.; Hamilton, D. P.; Havens, K.; Hessen, D. O.; Higgins, S. N.; Huttula, T. H.; Huuskonen, H.; Isles, P. D.F.; Joehnk, K. D.; Jones, I. D.; Keller, W. B.; Knoll, L. B.; Korhonen, J.; Kraemer, B. M.; Leavitt, P. R.; Lepori, F.; Luger, M. S.; Maberly, S. C.; Melack, J. M.; Melles, S. J.; Muller-Navarra, D. C.; Pierson, D. C.; Pislegina, H. V.; Plisnier, P. -D.; Richardson, D. C.; Rimmer, A.; Rogora, M.; Rusak, J. A.; Sadro, S.; Salmaso, N.; Saros, J. E.; Saulnier-Talbot, E.; Schindler, D. E.; Schmid, M.; Shimaraeva, S. V.; Silow, E. A.; Sitoki, L. M.; Sommaruga, R.; Straile, D.; Strock, K. E.; Thiery, W.; Timofeyev, M. A.; Verburg, P.; Vinebrooke, R. D.; Weyhenmeyer, G. A.; Zadereev, E.

Найти похожие
13.


   
    Degradable Polyhydroxyalkanoates as Herbicide Carriers [Text] / S. V. Prudnikova [et al.] // J. Polym. Environ. - 2013. - Vol. 21, Is. 3. - P675-682, DOI 10.1007/s10924-012-0561-z. - Cited References: 31. - We thank Dr. Christopher Brigham for critical review of the manuscript prior to submission. The study was supported by the project initiated by the Government of the Russian Federation for governmental support of scientific research conducted under the guidance of leading scientists at Russian institutions of higher learning (Agreement No. 11.G34.31.0013). . - 8. - ISSN 1566-2543
РУБ Engineering, Environmental + Polymer Science
Рубрики:
CONTROLLED-RELEASE
   SOIL

   BIODEGRADATION

   POLYESTERS

   PESTICIDE

   POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE)

   MICROSPHERES

   BACTERIA

Кл.слова (ненормированные):
Herbicide -- Haloxyfop-P-methyl -- Zellek Super -- Sustained-release formulations -- Polyhydroxyalkanoates -- Plant growth suppression
Аннотация: The biodegradable polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) has been used to design experimental sustained-release formulations of the herbicide Zellek Super in the form of films and microgranules. The kinetics of polymer degradation and the dynamics of herbicide release show that the rate and extent of herbicide release from the polymer matrix into the soil depends on the geometry of the carrier and the proportion of the pesticide loaded into it (polymer/pesticide mass ratio). Experiments with the creeping bentgrass (Agrostis stolonifera L.) show that the formulations of the herbicide Zellek Super constructed as microgranules and films can be successfully used to suppress the growth of grasses. This study is the first to demonstrate that biodegradable polyhydroxyalkanoates can be used effectively to construct environmentally friendly sustained-release PHA-herbicide systems that can be placed into the soil together with seeds.

Держатели документа:
[Prudnikova, S. V.
Sinskey, A. J.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Boyandin, A. N.
Kalacheva, G. S.] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
[Sinskey, A. J.] MIT, Cambridge, MA 02139 USA : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Prudnikova, S.V.; Boyandin, A.N.; Kalacheva, G.S.; Sinskey, A.J.; Government of the Russian Federation [11.G34.31.0013]

Найти похожие
14.


   
    Design of a luminescent biochip with nanodiamonds and bacterial luciferase [Text] / A. P. Puzyr', I. O. Pozdnyakova, V. S. Bondar' // Phys. Solid State. - 2004. - Vol. 46, Is. 4. - P761-763, DOI 10.1134/1.1711469. - Cited References: 10 . - ISSN 1063-7834
РУБ Physics, Condensed Matter

Аннотация: An "aluminum oxide film-adhesive layer-nanodiamond-luciferase" supramolecular structure is prepared on a flat plate. It is demonstrated that, in this structure, the enzyme retains the catalytic activity. The structure prepared can be treated as a luminescent biochip prototype for use in bioluminescent analysis. (C) 2004 MAIK "Nauka / Interperiodica".

Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Div, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Puzyr', A.P.; Pozdnyakova, I.O.; Bondar', V.S.

Найти похожие
15.


   
    Design of bioluminescent biosensors for assessing contamination of complex matrices / E. N. Esimbekova, V. P. Kalyabina, K. V. Kopylova [et al.] // Talanta. - 2021. - Vol. 233. - Ст. 122509, DOI 10.1016/j.talanta.2021.122509. - Cited References:87. - The reported study was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science, to the research project No. 20-44-242001 and Ministry of Science and Higher Education of Russian Federation No. FSRZ-2020-0006. . - ISSN 0039-9140. - ISSN 1873-3573
РУБ Chemistry, Analytical
Рубрики:
SAMPLE PREPARATION
   PESTICIDES

   FOOD

   BIOMOLECULES

   SENSITIVITY

Кл.слова (ненормированные):
Bioluminescent biosensor -- Enzyme inhibition-based assay -- Complex -- matrices -- Pesticides -- Heavy metals
Аннотация: The presence of potentially toxic xenobiotics in complex matrices has become rather the rule than the exception. Therefore, there is a need for highly sensitive inexpensive techniques for analyzing environmental and food matrices for toxicants. Enzymes are selectively sensitive to various toxic compounds, and, thus, they can be used as the basis for detection of contaminants in complex matrices. There are, however, a number of difficulties associated with the analysis of complex matrices using enzyme assays, including the necessity to take into account properties and effects of the natural components of the test media for accurate interpretation of results. The present study describes the six-stage procedure for designing new enzyme sensors intended for assessing the quality of complex matrices. This procedure should be followed both to achieve the highest possible sensitivity of the biosensor to potentially toxic substances and to minimize the effect of the uncontaminated components of complex mixtures on the activity of the biosensor. The proposed strategy has been tested in designing a bioluminescent biosensor for integrated rapid assessment of the safety of fruits and vegetables. The biosensor is based on the coupled enzyme system NAD(P)H:FMN-oxidoreductase and luciferase as the biorecognition element. The study describes methods and techniques for attaining the desired result in each stage. The proposed six-stage procedure for designing bioluminescent enzyme biosensors can be used to design the enzymatic biosensors based on other enzymes.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodny Prospect, Krasnoyarsk 660041, Russia.
Inst Biophys SB RAS, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Esimbekova, Elena N.; Kalyabina, Valeriya P.; Kopylova, Kseniya, V; Torgashina, Irina G.; Kratasyuk, Valentina A.; Kopylova, Kseniya; Esimbekova, Elena; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR); Government of Krasnoyarsk Territory; Krasnoyarsk Regional Fund of Science [20-44-242001]; Ministry of Science and Higher Education of Russian Federation [FSRZ-2020-0006]

Найти похожие
16.


   
    Design of bioluminescent biosensors for assessing contamination of complex matrices / E. N. Esimbekova, V. P. Kalyabina, K. V. Kopylova [et al.] // Talanta. - 2021. - Vol. 233. - Ст. 122509, DOI 10.1016/j.talanta.2021.122509. - Cited By :1 . - ISSN 0039-9140
Кл.слова (ненормированные):
Bioluminescent biosensor -- Complex matrices -- Enzyme inhibition-based assay -- Heavy metals -- Pesticides
Аннотация: The presence of potentially toxic xenobiotics in complex matrices has become rather the rule than the exception. Therefore, there is a need for highly sensitive inexpensive techniques for analyzing environmental and food matrices for toxicants. Enzymes are selectively sensitive to various toxic compounds, and, thus, they can be used as the basis for detection of contaminants in complex matrices. There are, however, a number of difficulties associated with the analysis of complex matrices using enzyme assays, including the necessity to take into account properties and effects of the natural components of the test media for accurate interpretation of results. The present study describes the six-stage procedure for designing new enzyme sensors intended for assessing the quality of complex matrices. This procedure should be followed both to achieve the highest possible sensitivity of the biosensor to potentially toxic substances and to minimize the effect of the uncontaminated components of complex mixtures on the activity of the biosensor. The proposed strategy has been tested in designing a bioluminescent biosensor for integrated rapid assessment of the safety of fruits and vegetables. The biosensor is based on the coupled enzyme system NAD(P)H:FMN-oxidoreductase and luciferase as the biorecognition element. The study describes methods and techniques for attaining the desired result in each stage. The proposed six-stage procedure for designing bioluminescent enzyme biosensors can be used to design the enzymatic biosensors based on other enzymes. © 2021 Elsevier B.V.

Scopus
Держатели документа:
Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Esimbekova, E. N.; Kalyabina, V. P.; Kopylova, K. V.; Torgashina, I. G.; Kratasyuk, V. A.

Найти похожие
17.


   
    Design of multicomponent reagents for enzymatic assays [Text] / E. N. Esimbekova [et al.] // Dokl. Biochem. Biophys. - 2015. - Vol. 461, Is. 1. - P102-105, DOI 10.1134/S1607672915020106. - Cited References:8. - The work was supported by the Program of the Russian Academy of Sciences "Molecular and Cell Biology" (project no. 6.8) as well as within the state contract between the Ministry of Education and Science of the Russian Federation and Siberian Federal University (project 1762). . - ISSN 1607-6729. - ISSN 1608-3091
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
BIOLUMINESCENT
   WATER


WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Esimbekova, E. N.; Lonshakova-Mukina, V. I.; Bezrukikh, A. E.; Kratasyuk, V. A.; Program of the Russian Academy of Sciences "Molecular and Cell Biology" [6.8]; Ministry of Education and Science of the Russian Federation; Siberian Federal University [1762]

Найти похожие
18.


   
    Developing the technology of physicochemical processing of organic waste in closed life support systems for space applications / A. A. Tikhomirov, S. V. Trifonov, E. A. Morozov // IOP Conference Series: Materials Science and Engineering : Institute of Physics Publishing, 2018. - Vol. 450: 9th International Multidisciplinary Scientific and Research Conference on Modern Issues in Science and Technology Workshop in Advanced Technologies in Aerospace, Mechanical and Automation Engineering, MISTAerospace 2018 (20 October 2018 through 28 October 2018, ) Conference code: 143027, Is. 6, DOI 10.1088/1757-899X/450/6/062017
Кл.слова (ненормированные):
Electric fields -- Environmental management -- Fighter aircraft -- Life support systems (spacecraft) -- Mass transfer -- Space applications -- Structural design -- Wastes -- Alternating current -- Combustion method -- Individual components -- Mineral nutrients -- Optimal parameter -- Physicochemical methods -- Technical implementation -- Waste processing -- Waste incineration
Аннотация: Closed life support systems for space applications need a technology of processing organic waste produced in the system that would enable incorporating the recycled waste into the mass transfer of the system. Researchers of the Institute of Biophysics SB RAS have developed a method of waste processing that meets these requirements: a physicochemical method of organic waste oxidation in the hydrogen peroxide aqueous solution under application of an alternating current electric field - wet combustion. The mineralized solution produced by this method can be used as a mineral nutrient supplement for higher plants in the life support system. The present study describes technical implementation of the wet combustion method and reports results of developing this method in the last few years. The study addresses problems associated with the design and positions of individual components and different configurations of the wet combustion reactor, showing the way to automate operation of the reactor and reporting optimal parameters of the current applied to the electrodes, which reduce time and power consumption by waste processing. © 2018 Institute of Physics Publishing. All rights reserved.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics SB RAS, Federal Research Center, Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Akademgorodok, 660036, Russian Federation
Reshetnev Siberian State University of Science and Technology, 31 Krasnoyarskiy Rabochiy pr., Krasnoyarsk, 660037, Russian Federation

Доп.точки доступа:
Tikhomirov, A. A.; Trifonov, S. V.; Morozov, E. A.

Найти похожие
19.


   
    Effect of ionizing radiation on the luminescence of mycelium of luminous fungus Neonothopanus nambi [Text] / V. S. Bondar [et al.] // Dokl. Biochem. Biophys. - 2015. - Vol. 460, Is. 1. - P30-33, DOI 10.1134/S1607672915010093. - Cited References:15. - This work was supported in part by the Support Program for Interdisciplinary Projects of the Siberian Branch of the Russian Academy of Sciences (project no. 71) and the Program of the President of the Russian Federation for Support of Leading Scientific Schools (project no. NSh-5744.2014.3). . - ISSN 1607-6729. - ISSN 1608-3091
РУБ Biochemistry & Molecular Biology + Biophysics


WOS,
Scopus
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Siberian Branch, Special Design Technol Bur Nauka, Krasnoyarsk Sci Ctr, Krasnoyarsk, Russia.
Russian Acad Sci, Siberian Branch, Voevodskii Inst Chem Kinet & Combust, Novosibirsk 630090, Russia.
Novosibirsk State Univ, Novosibirsk 630090, Russia.
ИБФ СО РАН
СКТБ "Наука" КНЦ СО РАН
Доп.точки доступа:
Bondar, V.S.; Puzyr, A.P.; Burov, A.E.; Medvedeva, S.E.; Rodicheva, E.K.; Kobzeva, T.V.; Melnikov, A.R.; Karogodina, T.Y.; Zikirin, S.B.; Stass, D.V.; Molin, Yu. N.; Gitelson, J.I.; Support Program for Interdisciplinary Projects of the Siberian Branch of the Russian Academy of Sciences [71]; Program of the President of the Russian Federation for Support of Leading Scientific Schools [NSh-5744.2014.3]

Найти похожие
20.


   
    Enzymatic bioassay of soil: Sensitivity comparison of mono-, double- And triple-enzyme systems to soil toxicants / O. S. Sutormin [и др.] // Tsitologiya. - 2018. - Vol. 60, Is. 10. - С. 826-829, DOI 10.7868/S0041377118100132 . - ISSN 0041-3771
Кл.слова (ненормированные):
Bacterial luciferase -- Bioluminescent analysis -- Coupled enzyme systems -- Ecological monitoring -- Enzymatic toxicity bioassays -- Lactate dehydrogenase -- NADH:FMN-oxidoreductase -- Soil
Аннотация: In this paper, we have investigated the possibilities of application of enzymatic systems with increasing chain length as a bioassay to evaluate the soil contamination status. The sensitivity of monoenzyme reaction as well as double- and triple-enzyme chains based on NAD(P)H:FMN-oxidoreductase and luciferase of luminous bacteria and lactate dehydrogenase to pesticides and copper ions in water and water extracts from soils were estimated. For this, the toxicological parameter IC 20 reflecting the sensitivity limit of the enzyme system to the to-xicant was used. It was revealed that elongation of the coupled enzyme chain (from mono- to triple-enzyme) increases the sensitivity of the bioassay, in some cases by several orders of magnitude. This pattern can be used as a tool to improve the properties of enzymic bioassays. The effect of extracts from uncontaminated soils of various types on enzymatic systems also differs, which makes possible to design the specialized enzymatic bioassays as well. © 2018 Sankt Peterburg.All rights reserved.

Scopus,
Смотреть статью
Держатели документа:
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics Siberian Branch of RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Sutormin, O. S.; Kolosova, E. M.; Nemtseva, A. V.; Iskorneva, I. V.; Lisitsa, A. A.; Matvienko, V. S.; Esimbekova, A. N.; Kratasyuk, V. A.

Найти похожие
 1-20    21-40   41-44 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)