Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=FRET<.>)
Общее количество найденных документов : 5
Показаны документы с 1 по 5
1.


   
    Transient-state kinetic analysis of complex formation between photoprotein clytin and GFP from jellyfish Clytia gregaria [Text] / E. V. Eremeeva, E. S. van Berkel, E. S. Vysotski // FEBS Lett. - 2016. - Vol. 590, Is. 3. - P307-316, DOI 10.1002/1873-3468.12052. - Cited References:34. - This study was supported by the grant 14-14-01119 of the Russian Science Foundation. . - ISSN 0014-5793. - ISSN 1873-3468
РУБ Biochemistry & Molecular Biology + Biophysics + Cell Biology
Рубрики:
GREEN-FLUORESCENT PROTEIN
   ENERGY-TRANSFER

   CA2+-REGULATED

Кл.слова (ненормированные):
aequorin -- bioluminescence -- coelenterazine -- FRET -- obelin -- protein-protein -- interaction
Аннотация: Luminous organisms use different protein-mediated strategies to modulate light emission color. Here, we report the transient-state kinetic studies of the interaction between photoprotein clytin from Clytia gregaria and its antenna protein, cgreGFP. We propose that cgreGFP forms a transient complex with Ca2+-bound clytin before the excited singlet state of the coelenteramide product is formed. From the spectral distribution and donor-acceptor separation distance, we infer that clytin reaction intermediates may interact only with the middle side part of cgreGFP.

WOS,
Scopus
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Photobiol Lab, Krasnoyarsk 660036, Russia.
Wageningen Univ, Biochem Lab, NL-6700 AP Wageningen, Netherlands.

Доп.точки доступа:
Eremeeva, Elena V.; van Berkel, Willem J. H.; Vysotski, Eugene S.; Russian Science Foundation [14-14-01119]

Найти похожие
2.


   
    Protein-protein complexation in bioluminescence [Text] / M. S. Titushin [et al.] // Protein Cell. - 2011. - Vol. 2, Is. 12. - P957-972, DOI 10.1007/s13238-011-1118-y. - Cited References: 114. - The work was funded by "Fellowship for Young International Scientists" of Chinese Academy of Sciences. This work was supported by the National Natural Science Foundation of China (Grant Nos: 30870483, 31070660, 31021062 and 81072449), Ministry of Science and Technology of China (Nos. 2009DFB30310, 2009CB918803 and 2011CB911103), CAS Research Grants (Nos. YZ200839 and KSCX2-EW-J-3). . - ISSN 1674-800X
РУБ Cell Biology
Рубрики:
GREEN-FLUORESCENT PROTEIN
   LUCIFERIN-BINDING-PROTEIN

   RENILLA-RENIFORMIS LUCIFERASE

   VIBRIO-FISCHERI Y1

   JELLYFISH CLYTIA-GREGARIA

   ALPHA/BETA-HYDROLASE FOLD

   AMINO-ACID-SEQUENCE

   BACTERIAL LUCIFERASE

   ENERGY-TRANSFER

   CRYSTAL-STRUCTURE

Кл.слова (ненормированные):
green-fluorescent protein (GFP) -- photoprotein -- luciferase -- lumazine protein -- Forster resonance energy transfer (FRET) -- docking
Аннотация: In this review we summarize the progress made towards understanding the role of protein-protein interactions in the function of various bioluminescence systems of marine organisms, including bacteria, jellyfish and soft corals, with particular focus on methodology used to detect and characterize these interactions. In some bioluminescence systems, protein-protein interactions involve an "accessory protein" whereby a stored substrate is efficiently delivered to the bioluminescent enzyme luciferase. Other types of complexation mediate energy transfer to an "antenna protein" altering the color and quantum yield of a bioluminescence reaction. Spatial structures of the complexes reveal an important role of electrostatic forces in governing the corresponding weak interactions and define the nature of the interaction surfaces. The most reliable structural model is available for the protein-protein complex of the Ca2+-regulated photoprotein clytin and green-fluorescent protein (GFP) from the jellyfish Clytia gregaria, solved by means of X-ray crystallography, NMR mapping and molecular docking. This provides an example of the potential strategies in studying the transient complexes involved in bioluminescence. It is emphasized that structural studies such as these can provide valuable insight into the detailed mechanism of bioluminescence.

Держатели документа:
[Titushin, Maxim S.
Liu, Zhi-Jie] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China
[Feng, Yingang] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
[Lee, John] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
[Vysotski, Eugene S.] Russian Acad Sci, Siberian Branch, Inst Biophys, Lab Photobiol, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Titushin, M.S.; Feng, Y.G.; Lee, J...; Vysotski, E.S.; Liu, Z.J.

Найти похожие
3.


   
    Green-Fluorescent Protein from the Bioluminescent Jellyfish Clytia gregaria Is an Obligate Dimer and Does Not Form a Stable Complex with the Ca2+-Discharged Photoprotein Clytin [Text] / N. P. Malikova [et al.] // Biochemistry. - 2011. - Vol. 50, Is. 20. - P4232-4241, DOI 10.1021/bi101671p. - Cited References: 50. - This work was supported by NATO Collaborative Linkage Grant 979229, Grants SB RAS No. 2 and RFBR 08-04-92209, 09-04-12022, and 09-04-00172, the MCB program of the Russian Academy of Sciences, and Bayer AG. . - ISSN 0006-2960
РУБ Biochemistry & Molecular Biology
Рубрики:
VIBRIO-FISCHERI Y1
   ENERGY-TRANSFER

   CORRELATION SPECTROSCOPY

   BACTERIAL LUCIFERASE

   REFRACTIVE-INDEX

   PHOTOBACTERIUM-LEIOGNATHI

   POLARIZED FLUORESCENCE

   EXCITATION TRANSFER

   RECOMBINANT OBELIN

   LUMAZINE PROTEIN

Аннотация: Green-fluorescent protein (GFP) is the origin of the green bioluminescence color exhibited by several marine hydrozoans and anthozoans. The mechanism is believed to be Forster resonance energy transfer (FRET) within a luciferase GFP or photoprotein-GFP complex. As the effect is found in vitro at micromolar concentrations, for FRET to occur this complex must have an affinity in the micromolar range. We present here a fluorescence dynamics investigation of the recombinant bioluminescence proteins from the jellyfish Clytia gregaria, the photoprotein clytin in its Ca2+-discharged form that is highly fluorescent (lambda(max) = 506 nm) and its GFP (cgreGFP; lambda(max) = 500 nm). Ca2+-discharged clytin shows a predominant fluorescence lifetime of 5.7 ns, which is assigned to the final emitting state of the bioluminescence reaction product, coelenteramide anion, and a fluorescence anisotropy decay or rotational correlation time of 12 ns (20 degrees C), consistent with tight binding and rotation with the whole protein. A 34 ns correlation time combined with a translational diffusion constant and molecular brightness from fluorescence fluctuation spectroscopy all confirm that cgreGFP is an obligate dimer down to nanomolar concentrations. Within the dimer, the two chromophores have a coupled excited-state transition yielding fluorescence depolarization via FRET with a transfer correlation time of 0.5 ns. The 34 ns time of cgreGFP showed no change upon addition of a 1000-fold excess of Ca2+-discharged clytin, indicating no stable complexation below 0.2 mM. It is proposed that any bioluminescence FRET complex with micromolar affinity must be one formed transiently by the cgreGFP dimer with a short-lived (millisecond) intermediate in the clytin reaction pathway.

Держатели документа:
[Lee, John] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
[Malikova, Natalia P.
Vysotski, Eugene S.] Russian Acad Sci, Siberian Branch, Photobiol Lab, Inst Biophys, Krasnoyarsk 660036, Russia
[Visser, Nina V.
van Hoek, Arie] Wageningen Univ, Biophys Lab, NL-6703 HA Wageningen, Netherlands
[Visser, Antonie J. W. G.] Wageningen Univ, Biochem Lab, NL-6703 HA Wageningen, Netherlands
[Visser, Nina V.
van Hoek, Arie
Visser, Antonie J. W. G.] Wageningen Univ, Microspect Ctr, NL-6703 HA Wageningen, Netherlands
[Skakun, Victor V.] Belarusian State Univ, Dept Syst Anal, Minsk 220050, Byelarus
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Malikova, N.P.; Visser, N.V.; van Hoek, A...; Skakun, V.V.; Vysotski, E.S.; Lee, J...; Visser, AJWG

Найти похожие
4.


   
    Bacterial luciferases from vibrio harveyi and photobacterium leiognathi demonstrate different conformational stability as detected by time-resolved fluorescence spectroscopy / E. V. Nemtseva, D. V. Gulnov, M. A. Gerasimova [et al.] // Int. J. Mol. Sci. - 2021. - Vol. 22, Is. 19. - Ст. 10449, DOI 10.3390/ijms221910449 . - ISSN 1661-6596
Кл.слова (ненормированные):
Bacterial luciferase -- Conforma-tional stability -- FRET -- Molecular dynamics -- Time-resolved spectroscopy -- Tryptophan fluorescence -- Unfolding pathway -- Urea-induced denaturation
Аннотация: Detecting the folding/unfolding pathways of biological macromolecules is one of the urgent problems of molecular biophysics. The unfolding of bacterial luciferase from Vibrio harveyi is well-studied, unlike that of Photobacterium leiognathi, despite the fact that both of them are actively used as a reporter system. The aim of this study was to compare the conformational transitions of these luciferases from two different protein subfamilies during equilibrium unfolding with urea. Intrinsic steady-state and time-resolved fluorescence spectra and circular dichroism spectra were used to determine the stages of the protein unfolding. Molecular dynamics methods were applied to find the differences in the surroundings of tryptophans in both luciferases. We found that the unfolding pathway is the same for the studied luciferases. However, the results obtained indicate more stable tertiary and secondary structures of P. leiognathi luciferase as compared to enzyme from V. harveyi during the last stage of denaturation, including the unfolding of individual subunits. The distinctions in fluorescence of the two proteins are associated with differences in the structure of the C-terminal domain of ?-subunits, which causes different quenching of tryptophan emissions. The time-resolved fluorescence technique proved to be a more effective method for studying protein unfolding than steady-state methods. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Photobiology Laboratory, Institute of Biophysics SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290, Russian Federation

Доп.точки доступа:
Nemtseva, E. V.; Gulnov, D. V.; Gerasimova, M. A.; Sukovatyi, L. A.; Burakova, L. P.; Karuzina, N. E.; Melnik, B. S.; Kratasyuk, V. A.

Найти похожие
5.


   
    Bacterial Luciferases from Vibrio harveyi and Photobacterium leiognathi Demonstrate Different Conformational Stability as Detected by Time-Resolved Fluorescence Spectroscopy / E. V. Nemtseva, D. V. Gulnov, M. A. Gerasimova [et al.] // Int. J. Mol. Sci. - 2021. - Vol. 22, Is. 19. - Ст. 10449, DOI 10.3390/ijms221910449. - Cited References:45. - The research was partially funded by the Ministry of Science and Higher Education of the Russian Federation (projects No. FSRZ-2020-0006); by the RFBR and Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science (projects No. 20-44-243002 and 20-44-240006); and by the RFBR (project No. 20-34-90118). . - ISSN 1422-0067
РУБ Biochemistry & Molecular Biology + Chemistry, Multidisciplinary
Рубрики:
TRYPTOPHAN FLUORESCENCE
   CRYSTAL-STRUCTURE

   SUBUNIT

   BIOLUMINESCENCE

Кл.слова (ненормированные):
bacterial luciferase -- urea-induced denaturation -- time-resolved -- spectroscopy -- conformational stability -- FRET -- tryptophan fluorescence -- molecular dynamics -- unfolding pathway
Аннотация: Detecting the folding/unfolding pathways of biological macromolecules is one of the urgent problems of molecular biophysics. The unfolding of bacterial luciferase from Vibrio harveyi is well-studied, unlike that of Photobacterium leiognathi, despite the fact that both of them are actively used as a reporter system. The aim of this study was to compare the conformational transitions of these luciferases from two different protein subfamilies during equilibrium unfolding with urea. Intrinsic steady-state and time-resolved fluorescence spectra and circular dichroism spectra were used to determine the stages of the protein unfolding. Molecular dynamics methods were applied to find the differences in the surroundings of tryptophans in both luciferases. We found that the unfolding pathway is the same for the studied luciferases. However, the results obtained indicate more stable tertiary and secondary structures of P. leiognathi luciferase as compared to enzyme from V. harveyi during the last stage of denaturation, including the unfolding of individual subunits. The distinctions in fluorescence of the two proteins are associated with differences in the structure of the C-terminal domain of alpha-subunits, which causes different quenching of tryptophan emissions. The time-resolved fluorescence technique proved to be a more effective method for studying protein unfolding than steady-state methods.



WOS
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Inst Biophys SB RAS, Photobiol Lab, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Inst Prot Res, Pushchino 142290, Russia.

Доп.точки доступа:
Nemtseva, Elena, V; Gulnov, Dmitry, V; Gerasimova, Marina A.; Sukovatyi, Lev A.; Burakova, Ludmila P.; Karuzina, Natalya E.; Melnik, Bogdan S.; Kratasyuk, Valentina A.; Burakova, Lyudmila; Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0006]; RFBRRussian Foundation for Basic Research (RFBR) [20-34-90118]; Krasnoyarsk Regional Fund of Science [20-44-243002, 20-44-240006]; RFBRRussian Foundation for Basic Research (RFBR)

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)