Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (1)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Microflora<.>)
Общее количество найденных документов : 35
Показаны документы с 1 по 20
 1-20    21-35 
1.


   
    Coexistence of genetically engineered Escherichia coli strains and natural microorganisms in experimental aquatic microcosms [Text] / T. V. Kargatova, E. E. Maksimova, L. Y. Popova // Microbiology. - 2001. - Vol. 70, Is. 2. - P. 211-216, DOI 10.1023/A:1010437731920. - Cited References: 17 . - ISSN 0026-2617
РУБ Microbiology
Рубрики:
SURVIVAL
   BACTERIA

   GROWTH

Кл.слова (ненормированные):
Escherichia coli -- aquatic microecosystems -- recombinant plasmid
Аннотация: In experimental aquatic microcosms (AMCs), the population of the Escherichia coli strain Z905 harboring the recombinant plasmid pPHL7 (Ap(r)Lux(+)) was found to gradually accumulate AMC-adapted cells, which retained the plasmid but differed from the original cells in some biochemical and physiological characteristics. Both the original and the AMC-adapted E. coil cells could coexist with the native AMC microflora for one year or longer. When introduced into AMCs together with native pseudomonads, the AMC-adapted E. coil Z905-33 (pPHL7) cells were more competitive than the nonadapted cells.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Div, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kargatova, T.V.; Maksimova, E.E.; Popova, L.Y.

Найти похожие
2.


   
    Formation of higher plant component microbial community in closed ecological system [Text] / L. S. Tirranen // Acta Astronaut. - 2001. - Vol. 49, Is. 1. - P. 47-52, DOI 10.1016/S0094-5765(01)00005-4. - Cited References: 13 . - ISSN 0094-5765
РУБ Engineering, Aerospace

Аннотация: Closed ecological systems (CES) place at the disposal of a researcher unique possibilities to study the role of microbial communities in individual components and of the entire system. The microbial community of the higher plant component has been found to form depending on specific conditions of the closed ecosystem: length of time the solution is reused, introduction of intrasystem waste water into the nutrient medium, effect of other component of the system, and system closure in terms of gas exchange. The higher plant component formed its own microbial complex different from that formed prior to closure. The microbial complex of vegetable polyculture is more diverse and stable than the monoculture of wheat. The composition of the components' microflora changed, species diversity decreased, individual species of bacteria and fungi whose numbers were not so great before the closure prevailed. Special attention should be paid to phytopathogenic and conditionally pathogenic species of microorganisms potentially hazardous to man or plants and the least controlled in CES. This situation can endanger creation of CES and make conjectural existence of preplanned components, man, specifically, and consequently, of CES as it is. (C) 2001 International Astronautical Federation. Published by Elsevier Science Ltd.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tirranen, L.S.

Найти похожие
3.


   
    Experimental evaluation of the processes resulting from the introduction of the transgenic microorganism Escherichia coli Z905/pPHL7 (luk(+)) into aquatic microcosms [Text] / T. V. Kargatova [et al.] ; ed. M Nelson [et al.] // SPACE LIFE SCIENCES: CLOSED ARTIFICIAL ECOSYSTEMS AND LIFE SUPPORT SYSTEMS. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON-ELSEVIER SCIENCE LTD, 2003. - Vol. 31: Meeting of F4 1 Session of the 34th Scientific Assembly of COSPAR (OCT, 2002, HOUSTON, TEXAS), Is. 7. - P. 1769-1774, DOI 10.1016/S0273-1177(03)00119-4. - Cited References: 16 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Ecology + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences
Рубрики:
SURVIVAL
   PROTEIN

Аннотация: The processes resulting from the introduction of the transgenic microorganism (TM) E. coli Z905/pPHL7 into aquatic microcosms have been modeled experimentally. It has been shown that the TM E. coli is able to adapt to a long co-existence with indigenous heterotrophic microflora in variously structured microcosms. In more complex microcosms the numerical dynamics of the introduced E. coli Z905/pPHL7 population is more stable. In the TM populations staying in the microcosms for a prolonged time, changes are recorded in the phenotypic expression of plasmid genes (ampicillin resistance and the luminescence level) and chromosome genes (morphological and physiological traits). However, in our study microcosms, the recombinant plasmid persisted in the TM cells for 6 years after die introduction, and as the population adapts to the conditions of the microcosms, the efficiency of the cloned gene expression in the cells is restored. In the microcosms with high microalgal counts (10(7) cells/ml), cells with a high threshold of sensitivity to ampicillin dominate in the population of the TM E. coli Z905/pPHL7. (C) 2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

WOS
Держатели документа:
SB RAS, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kargatova, T.V.; Boyandin, A.N.; Popova, L.Y.; Pechurkin, N.S.; Nelson, M \ed.\; Pechurkin, NS \ed.\; Dempster, WF \ed.\; Somova, LA \ed.\; Somo, , LA \ed.\

Найти похожие
4.


   
    Antibiotic resistance of heterotrophic bacteria in Shira lake: natural and anthropogenic impacts [Text] / T. I. Lobova, Y. V. Barkhatov, L. Y. Popova // Aquat. Microb. Ecol. - 2002. - Vol. 30, Is. 1. - P. 11-18, DOI 10.3354/ame030011. - Cited References: 33 . - ISSN 0948-3055
РУБ Ecology + Marine & Freshwater Biology + Microbiology
Рубрики:
MARINE-BACTERIA
   DIVERSITY

   POLLUTION

   COMMUNITY

   PATTERNS

   PLANTS

Кл.слова (ненормированные):
heterotrophic bacteria -- halotolerance -- antibiotic resistance -- anthropogenic load -- brackish lake -- mathematical modeling
Аннотация: Studies were conducted to investigate the antibiotic resistance of freshwater, halophile and moderate halotolerant bacteria isolated from the nearshore part of Shira lake, which is affected by the activity of a health resort, and from the central part of the lake in the summer (June to August) of 1999. It has been shown that the allochthonous microflora, which is brought into the lake with the resort effluent in mid-summer, is the anthropogenic factor contributing to an increase in the number of freshwater bacteria that feature multiple antibiotic resistance in the central part of the lake. It has been found that resistance to ampicillin of freshwater and halophile heterotrophic bacteria is related to the increase in the biomass of blue-green and green algae in the central part of Shira lake between mid-July and the end of August. A mathematical model has been constructed to describe the dynamics of the antibiotic resistance of heterotrophic bacteria in the close-to-resort and the central parts of Shira lake under natural and anthropogenic impacts.

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Ctr Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Lobova, T.I.; Barkhatov, Y.V.; Popova, L.Y.

Найти похожие
5.


   
    LUMINESCENT BACTERIAL SYMBIONTS AND COMMENSALS OF LUMINESCENT AND NONLUMINESCENT MARINE ANIMALS OF THE INDIAN-OCEAN [Text] / G. A. VYDRYAKOVA [et al.] // Microbiology. - 1995. - Vol. 64, Is. 5. - P. 589-592. - Cited References: 18 . - ISSN 0026-2617
РУБ Microbiology
Рубрики:
BIOLUMINESCENCE
   SEAWATER

Аннотация: Approximately 100 fish belonging to 24 families and several representatives of cephalopods, prawns, and euphausiids were investigated for the presence of luminescent bacteria. Species identification of isolated luminescent bacteria was performed, and the frequency and ratio of their occurrence in the gastrointestinal microflora of marine animals were determined. Luminescent bacteria occurred in 23 - 65% of the fish, depending on the habitat depth, and their ratio varied from 8 to 60% of the total gastrointestinal microflora of fish. The free-living luminescent bacteria were found in 50% of the seawater samples from depths down to 1000 m. The luminescent bacterium Photobacterium phosphoreum was dominant among the isolated cultures.

WOS : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
VYDRYAKOVA, G.A.; KUZNETSOV, A.M.; PRIMAKOVA, G.A.; CHUGAEVA, Y.V.; FISH, A.M.

Найти похожие
6.


   
    Population dynamics of an algal-bacterial cenosis in closed ecological system [Text] / T. I. Pisman, Y. V. Galayda, N. S. Loginova ; ed. YV Galayd // SPACE LIFE SCIENCES: CLOSED ECOLOGICAL SYSTEMS: EARTH AND SPACE APPLICATIONS. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON-ELSEVIER SCIENCE LTD, 2005. - Vol. 35: Workshop on Closed Ecological Systems (JUL, 2004, Paris, FRANCE), Is. 9. - P1579-1583, DOI 10.1016/j.asr.2005.03.073. - Cited References: 14 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Ecology + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Кл.слова (ненормированные):
microalgae-bacteria relationships -- photosynthates -- detritus -- Chlorella -- biotic cycle
Аннотация: The paper deals with microalgae-bacteria interrelationships in the "autotroph-heterotroph" aquatic biotic cycle. Explanations of why and how algal-bacterial ecosystems are formed still remain controversial. The paper presents results of experimental and theoretical investigations of the functioning of the algal-bacterial cenosis (the microalga Chlorella vulgaris and concomitant microflora). The Chlorella microbial community is dominated by representatives of the genus Pseudomonas. Experiments with non-sterile batch cultures of Chlorella on Tamiya medium showed that the biomass of microorganisms increases simultaneously with the increase in microalgal biomass. The microflora of Chlorella can grow on organic substances released by photosynthesizing Chlorella. Microorganisms can also use dying Chlorella cells, i.e. form a "producer-reducer" biocycle. To get a better insight into the cenosis-forming role of microalgae, a mathematical model of the "autotroph-heterotroph" aquatic biotic cycle has been constructed, taking into account the utilization of Chlorella photosynthates and dead cells by microorganisms and the contribution of the components to the nitrogen cycle. A theoretical study showed that the biomass of concomitant bacteria grown on glucose and detritus is larger than the biomass of bacteria utilizing only microalgal photosynthates, which agrees well with the experimental data. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Держатели документа:
Krasnoyarsk State Univ, Krasnoyarsk 660041, Russia
RAS, SB, Inst Biophys, Krasnoyarsk 660036, Russia
Krasnoyarsk State Med Acad, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Pisman, T.I.; Galayda, Y.V.; Loginova, N.S.; Galayd, YV \ed.\

Найти похожие
7.


   
    Comparative characterization of the growth of recombinant Escherichia coli strains and species of the aboriginal microflora of aquatic microecosystems under selective and nonselective conditions [Текст] / T. V. Kargatova [и др.] // Izv. Akad. Nauk Ser. Biol. - 1999. - Is. 2. - P. 152-157. - Cited References: 9 . - ISSN 0002-3329
РУБ Biology
Рубрики:
GENETICALLY-MODIFIED MICROORGANISMS
Аннотация: We have studied the kinetic characteristics of several isolates of Escherichia coli Z905 recombinant strain after introduction of the strain into model aquatic ecosystems. Most E. coli Z905 isolates grown as batch cultures under selective conditions (0.5 mu g/ml ampicillin) showed better kinetic characteristics of growth than did related species of native microflora, which originally populated laboratory microcosms.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Div, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kargatova, T.V.; Maksimova, E.E.; Krylova, T.Y.; Popova, L.Y.

Найти похожие
8.


   
    Catalase activity as a potential indicator of the reducer component of small closed ecosystems [Text] / A. B. Sarangova, L. A. Somova, T. I. Pisman ; ed. RM Wheeler [et al.] // LIFE SCIENCES: LIFE SUPPORT SYSTEMS STUDIES-I. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON PRESS LTD, 1997. - Vol. 20: F4.6, F4.8, F4.2 and F4.9 Symposia of COSPAR Scientific Commission F on Life Sciences - Life Support System Studies-I, at the 31st COSPAR Scientific Assembly (JUL 14-SEP 21, 1996, BIRMINGHAM, ENGLAND), Is. 10. - P. 1945-1948, DOI 10.1016/S0273-1177(97)00630-3. - Cited References: 8 . - ISBN 0273-1177. - ISBN 0-08-043307-3
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: Dynamics of catalase activity has been shown to reflect the growth curve of microorganisms in batch cultivation (celluloselythic bacteria Bacillus acidocaldarius and bacteria of the associated microflora Chlorella vulgaris). Gas and substrate closure of the three component ecosystems with spatially separated components "producer-consumer-reducer" (Chl, vulgaris-Paramecium caudatum-B. acidocaldarius, two bacterial strains isolated from the associated microflora Chl. vulgaris) demonstrated that the functioning of the reducer component can be estimated by the catalase activity of microorganisms of this component. (C) 1997 COSPAR. Published by Elsevier Science Ltd.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Sarangova, A.B.; Somova, L.A.; Pisman, T.I.; Wheeler, RM \ed.\; Garland, JL \ed.\; Tibbitts, TW \ed.\; Nielsen, SS \ed.\

Найти похожие
9.


   
    Light intensity and production parameters of phytocenoses cultivated on soil-like substrate under controled environment conditions [Text] / A. A. Tikhomirov [et al.] ; ed. M Nelson [et al.] // SPACE LIFE SCIENCES: CLOSED ARTIFICIAL ECOSYSTEMS AND LIFE SUPPORT SYSTEMS. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON-ELSEVIER SCIENCE LTD, 2003. - Vol. 31: Meeting of F4 1 Session of the 34th Scientific Assembly of COSPAR (OCT, 2002, HOUSTON, TEXAS), Is. 7. - P. 1775-1780, DOI 10.1016/S0273-1177(03)00120-0. - Cited References: 11 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Ecology + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences
Рубрики:
SYSTEM
Аннотация: To increase the degree of closure of biological life support systems of a new generation, we used vermicomposting to involve inedible phytomass in the intra-system mass exchange. The resulting product was a soil-like substrate, which was quite suitable for growing plants (Manukovsky et al. 1996, 1997). However, the soil-like substrate can be regarded as a candidate for inclusion in a system only after a comprehensive examination of its physical, chemical, and other characteristics. An important criterion is the ability of the soil-like substrate to supply the necessary mineral elements to the photosynthesizing component under the chosen cultivation conditions. Thus, the purpose of this work was to study the feasibility of enhancing the production activity of wheat and radish crops by varying the intensity of photosynthetically active radiation, without decreasing the harvest index. The increase of light intensity from 920 to 1150 mumol(.)m(-2.)s(-1) decreased the intensity of apparent photosynthesis of the wheat crops and slightly increased the apparent photosynthesis of the radish crops The maximum total and grain productivity (kg/m(2)) of the wheat crops was attained at the irradiance of 920 mumol(.)m(-2.)s(-1). Light intensity of 1150 mumol(.)m(2.)s(-1) decreased the productivity of wheat plants and had no significant effect on the productivity of the radish crops (kg/m(2)) as compared to 920 mumol(.)m(-2.)s(-2). The qualitative and quantitative composition of microflora of the watering solution and substrate was determined by the condition of plants, developmental phase and light intensity. By the end of wheat growth under 1150 mumol(.)m(-2.)s(-1) the numbers of bacteria of the coliform family and phytopathogenic bacteria in the watering solution and substrate were an order of magnitude larger than under other illumination conditions. The obtained data suggest that the cultivation of plants in a life support system on soil-like substrate from composts has a number of advantages over the cultivation on neutral substrates, which require continual replenishment of the plant nutrient solution from the system's store to complement the macro- and micro- elements. Yet, a number of problems arise, including those related to the controlling of the production activity of the plants by the intensity of photosynthetically active radiation. It is essential to understand why the intensity of production processes is limited at higher irradiation levels and to overcome the factors responsible for this, so that the soil-like substrate could have an even better chance in the competition for the best plant cultivation technology to be used in biological life support systems. (C) 2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

WOS
Держатели документа:
RAS SB, Inst Biophys, Krasnoyarsk 660036, Russia
Tomsk VV Kuibyshev State Univ, Tomsk 634050, Russia
Univ Clermont Ferrand, LGCB, F-63174 Aubiere, France
European Space Agcy, European Space Technol Ctr, NL-2200 AG Noordwijk, Netherlands
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Gribovskaya, I.A.; Tirranen, L.S.; Manukovsky, N.S.; Zolotukhin, I.G.; Karnachuk, R.A.; Gros, J.B.; Lasseur, C...; Nelson, M \ed.\; Pechurkin, NS \ed.\; Dempster, WF \ed.\; Somova, LA \ed.\; Somo, , LA \ed.\

Найти похожие
10.


   
    Properties of Bacterial Cellulose Composites with Silver Nanoparticles / I. P. Shidlovskiy [et al.] // Biophysics. - 2018. - Vol. 63, Is. 4. - P519-525, DOI 10.1134/S0006350918040188 . - ISSN 0006-3509
Кл.слова (ненормированные):
:bacterial cellulose -- antibacterial activity -- composites -- hydrothermal synthesis -- silver nanoparticles
Аннотация: Abstract: Composites of bacterial cellulose, which were synthesized in a culture of the strain of acetic acid bacteria Komagataeibacter xylinus VKPM B-12068, with silver nanoparticles were produced hydrothermally by varying the concentrations of AgNO3 in the medium. The presence of silver in the composites was confirmed by elemental analysis. An increase in the number of silver nanoparticles in the composite from 1.08 to 9.1 wt % (from 0.044 to 0.370 mg/cm2) was shown under increasing AgNO3 concentration in the medium from 0.0001 to 0.01 M. The structure, properties of the surface, and the physicochemical properties of the composites depending on the silver content were investigated using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and a water contact-angle measurement system. Using the disk-diffusion method, it was shown that the resulting composites have a pronounced antibacterial activity against pathogenic microflora E. coli, Ps. eruginosa, and St. aureus. © 2018, Pleiades Publishing, Inc.

Scopus,
Смотреть статью
Держатели документа:
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Shidlovskiy, I. P.; Shumilova, A. A.; Shishatskaya, E. I.; Volova, T. G.

Найти похожие
11.


   
    Efficacy of tebuconazole embedded in biodegradable poly-3-hydroxybutyrate to inhibit the development of Fusarium moniliforme in soil microecosystems / T. G. Volova [et al.] // Pest Manag. Sci. - 2017. - Vol. 73, Is. 5. - P925-935, DOI 10.1002/ps.4367. - Cited References:43. - This study was supported by the Russian Science Foundation (grant number 14-26-00039). The authors declare no competing financial interest. . - ISSN 1526-498X. - ISSN 1526-4998
РУБ Agronomy + Entomology
Рубрики:
CONTROLLED-RELEASE
   FUNGICIDE TEBUCONAZOLE

   BRASSICA-NAPUS

   OILSEED

Кл.слова (ненормированные):
tebuconazole -- poly-3-hydroxybutyrate -- degradation -- embedding -- tebuconazole release -- fungicidal effect
Аннотация: BACKGROUND: An important line of research is the development of a new generation of formulations with targeted and controlled release of the pesticide, using matrices made from biodegradable materials. In this study, slow-release formulations of the fungicide tebuconazole (TEB) have been prepared by embedding it into the matrix of poly-3-hydroxybutyrate (P3HB) in the form of films, microgranules and pellets. RESULTS: The average rates of P3HB degradation were determined by the geometry of the formulation, reaching, for 63 days, 0.095-0.116, 0.081-0.083 and 0.030-0.055 mg day(-1) for films, microgranules and pellets respectively. The fungicidal activity of P3HB/TEB against the plant pathogen Fusarium moniliforme was compared with that of the commercial formulation Raxil Ultra. A pronounced fungicidal effect of the experimental P3HB/TEB formulations was observed in 2-4 weeks after application, and it was retained for 8 weeks, without affecting significantly the development of soil aboriginal microflora. CONCLUSION: TEB release can be regulated by the process employed to fabricate the formulation and the fungicide loading, and the TEB accumulates in the soil gradually, as the polymer is degraded. The experimental forms of TEB embedded in the slowly degraded P3HB can be used as a basis for developing slow-release fungicide formulations. (c) 2016 Society of Chemical Industry

WOS,
Смотреть статью
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Sect, 50-50 Akademgorodok, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.

Доп.точки доступа:
Volova, Tatiana G.; Prudnikova, Svetlana V.; Zhila, Natalia O.; Vinogradova, Olga N.; Shumilova, Anna A.; Nikolaeva, Elena D.; Kiselev, Evgeniy G.; Shishatskaya, Ekaterina I.; Russian Science Foundation [14-26-00039]

Найти похожие
12.


   
    Biodegradable polymers - Perspectives and applications in agriculture / E. G. Kiselev, N. O. Zhila, T. G. Volova // IOP Conference Series: Earth and Environmental Science : IOP Publishing Ltd, 2021. - Vol. 689: 2020 International Conference on Germany and Russia: Ecosystems Without Borders, EcoSystConfKlgtu 2020 (5 October 2020 through 10 October 2020, ) Conference code: 167944, Is. 1. - Ст. 012036, DOI 10.1088/1755-1315/689/1/012036
Кл.слова (ненормированные):
Biodegradable polymers -- Ecosystems -- Fungi -- Glycerol -- Monounsaturated fatty acids -- Oilseeds -- Pesticides -- Substrates -- Sunflower oil -- Fenoxaprop-p-ethyl -- Natural materials -- Pesticide formulations -- Poly-3-hydroxybutyrate -- Polyhydroxyalkanoates -- Productive process -- Strategy of constructions -- Various substrates -- Palm oil
Аннотация: The paper presents a brief overview of the results of the implementation of the project "Agropreparations of the new generation: a strategy of construction and realization". The first part contains the analysis of the growth of the wild-type strain Cupriavidus necator B-10646 (formerly eutrophus) and the synthesis of polyhydroxyalkanoates by this strain on various substrates: glycerol, palm oil, Siberian oil seed, sunflower seed oils, and oleic acid. On refined glycerin, a highly productive process is implemented when scaling up, allowing to obtain 128 ± 11 g / L PHA. Evaluation of oils has shown that palm oil is the best carbon substrate. The second part presents the results of the development of environmentally friendly slow-release pesticide formulations. They are a degradable matrix of poly-3-hydroxybutyrate mixed with natural materials (peat, clay, wood flour), into which a pesticide (metribuzin, tribenuron-methyl, fenoxaprop-P-ethyl, azoxystrobin, epoxiconazole, and tebuconazole) has been. The developed preparations showed high activity against pathogenic fungi and weeds and had a much weaker negative effect on the soil microflora. Studies of the degradation of the developed preparations and the release of pesticides into the soil confirm their effectiveness over a long period of time, up to 90 days. © Published under licence by IOP Publishing Ltd.

Scopus
Держатели документа:
School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russian Federation
Laboratory of Chemoautotrophic Biosynthesis, Institute of Biophysics, SB, RAS, Federal Research Center, Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kiselev, E. G.; Zhila, N. O.; Volova, T. G.

Найти похожие
13.


   
    Metabolic activity of cryogenic soils in the subarctic zone of Siberia towards “green” bioplastics / S. V. Prudnikova, S. Y. Evgrafova, T. G. Volova // Chemosphere. - 2021. - Vol. 263. - Ст. 128180, DOI 10.1016/j.chemosphere.2020.128180 . - ISSN 0045-6535
Кл.слова (ненормированные):
metabolic activity -- P(3HB) bioplastic -- P(3HB) properties -- P(3HB)-degrading strains -- Siberian cryogenic soils -- structure of microbial community -- Aspergillus -- Bacteriology -- Biodegradable polymers -- Biodegradation -- Cryogenics -- Crystallinity -- Metabolism -- Polymer films -- Reinforced plastics -- RNA -- Soils -- Aspergillus fumigatus -- Degree of crystallinity -- Microbial communities -- Nucleotide sequences -- Poly-3-hydroxybutyrate -- Polymer biodegradation -- Soil microbial community -- Surface microstructures -- Bacteria -- bacterial RNA -- fungal RNA -- mineral -- plastic -- poly(3 hydroxybutyric acid) -- polymer -- ribosome RNA -- RNA 16S -- RNA 18S -- RNA 28S -- RNA 5.8S -- abundance -- bacterium -- biodegradation -- biomass -- community structure -- concentration (composition) -- crystallinity -- fungus -- microbial community -- microstructure -- plastic -- polymer -- soil temperature -- subarctic region -- Actinobacteria -- Agrobacterium tumefaciens -- Antarctica -- Arctic -- Article -- Aspergillus fumigatus -- Aspergillus niger -- Bacilli -- Bacillus cereus -- Bacillus pumilus -- bacterial gene -- bacterium isolate -- biodegradability -- biodegradation -- biomass -- Chryseobacterium ioostei -- colony forming unit -- community structure -- concentration (parameter) -- cryogenic soil -- crystallization -- Cupriavidus necator -- ecosystem -- Escherichia coli -- Flavobacteria -- Flavobacterium -- fungal community -- fungal gene -- Fusarium fujikuroi -- Gammaproteobacteria -- green chemistry -- Lactobacterium helveticus -- metabolism -- microbial biomass -- microbial community -- molecular weight -- Mortierella alpina -- Mycobacterium -- Mycobacterium pseudoshotsii -- Nocardioides -- nucleotide sequence -- nucleotide sequence -- Paenibacillus -- Paraburkholderia -- Penicillium -- Penicillium arenicola -- Penicillium glabrum -- Penicillium lanosum -- Penicillium restrictum -- Penicillium spinulosum -- Penicillium thomii -- phylogeny -- Pseudomonas -- Rhizopus oryzae -- Rhodococcus -- RNA sequence -- Russian Federation -- soil -- soil microflora -- soil temperature -- species composition -- Stenotrophomonas -- Streptomyces -- Streptomyces prunicolor -- surface property -- temperature dependence -- thawing -- Variovorax paradoxus -- zpseudomonas lutea -- Siberia -- Aspergillus fumigatus -- Bacillus pumilus -- Bacteria (microorganisms) -- Fungi -- Penicillium thomii -- Pseudomonas sp. -- Rhodococcus sp. -- Stenotrophomonas rhizophila -- Streptomyces prunicolor -- Variovorax paradoxus
Аннотация: The present study investigates, for the first time, the structure of the microbial community of cryogenic soils in the subarctic region of Siberia and the ability of the soil microbial community to metabolize degradable microbial bioplastic – poly-3-hydroxybutyrate [P(3HB)]. When the soil thawed, with the soil temperature between 5-7 and 9–11 °C, the total biomass of microorganisms at a 10-20-cm depth was 226–234 mg g?1 soil and CO2 production was 20–46 mg g?1 day?1. The total abundance of microscopic fungi varied between (7.4 ± 2.3) ? 103 and (18.3 ± 2.2) ? 103 CFU/g soil depending on temperature; the abundance of bacteria was several orders of magnitude greater: (1.6 ± 0.1) ? 106 CFU g?1 soil. The microbial community in the biofilm formed on the surface of P(3HB) films differed from the background soil in concentrations and composition of microorganisms. The activity of microorganisms caused changes in the surface microstructure of polymer films, a decrease in molecular weight, and an increase in the degree of crystallinity of P(3HB), indicating polymer biodegradation due to metabolic activity of microorganisms. The clear-zone technique – plating of isolates on the mineral agar with polymer as sole carbon source – was used to identify P(3HB)-degrading microorganisms inhabiting cryogenic soil in Evenkia. Analysis of nucleotide sequences of rRNA genes was performed to identify the following P(3HB)-degrading species: Bacillus pumilus, Paraburkholderia sp., Pseudomonas sp., Rhodococcus sp., Stenotrophomonas rhizophila, Streptomyces prunicolor, and Variovorax paradoxus bacteria and the Penicillium thomii, P. arenicola, P. lanosum, Aspergillus fumigatus, and A. niger fungi. © 2020 Elsevier Ltd

Scopus
Держатели документа:
Siberian Federal University, 79 Svobodny Pr, Krasnoyarsk, 660041, Russian Federation
V.N. Sukachev Institute of Forest, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/28 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Melnikov Permafrost Institute, SB RAS, 36 Merzlotnaya St., Yakutsk, 677010, Russian Federation

Доп.точки доступа:
Prudnikova, S. V.; Evgrafova, S. Y.; Volova, T. G.

Найти похожие
14.


   
    Psychrophilic and psychrotolerant heterotrophic microorganisms of Middle Siberian karst cavities [Text] / S. V. Khizhnyak [et al.] // Russ. J. Ecol. - 2003. - Vol. 34, Is. 4. - P. 231-235, DOI 10.1023/A:1024537513439. - Cited References: 12 . - ISSN 1067-4136
РУБ Ecology

Кл.слова (ненормированные):
psychrophilic and psychrotolerant microorganisms -- karst cavities -- caves -- heterotrophic microorganisms
Аннотация: The natural microflora of Middle Siberian karst cavities, which comprises psychrotolerant bacteria and fungi capable of growing at 3-15 and 3...+28degreesC, respectively, has been studied. Bacteria are ubiquitous in caves, their count varying from 10(3) to 10(7) cells/g ground. The bacteria have been identified as Pseudomonas, Arthrobacter, Bacillus, and coryneform bacteria. Fungi have been found in places exposed to increased anthropogenic impact, their count being as large as 10(6) to 10(7) cells/g ground. Mucor Penicillium, and Chrysosporium were dominant fungal genera.

WOS
Держатели документа:
Krasnoyarsk State Agrarian Univ, Krasnoyarsk 660001, Russia
Russian Acad Sci, Siberian Div, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Khizhnyak, S.V.; Tausheva, I.V.; Berezikova, A.A.; Nesterenko, E.V.; Rogozin, D.Y.

Найти похожие
15.


   
    Synthesis of biomass and utilization of plants wastes in a physical model of biological life-support system [Text] / A. A. Tikhomirov [et al.] // Acta Astronaut. - 2003. - Vol. 53: 53rd Congress of the International-Astronautical-Federation (IAF) (OCT 10, 2002, HOUSTON, TEXAS), Is. 04.10.2013. - P. 249-257, DOI 10.1016/S0094-5765(03)00137-1. - Cited References: 16 . - ISSN 0094-5765
РУБ Engineering, Aerospace

Аннотация: The paper considers problems of biosynthesis of higher plants' biomass and "bioloaical incineration" of plant wastes in a working physical model of biological LSS. The plant wastes are "biologically incinerated" in a special heterotrophic block involving Californian worms, mushrooms and straw. The block processes plant wastes (straw, haulms) to produce soil-like substrate (SLS) on which plants (wheat, radish) are grown. Gas exchange in such a system consists of respiratory gas exchange of SLS and photosynthesis and respiration of plants. Specifics of gas exchange dynamics of high plants - SLS complex has been considered. Relationship between such a gas exchange and PAR irradiance and age of plants has been established. Nitrogen and iron were found to the first to limit plants' growth on SLS when process conditions are deranged. The SLS microflora has been found to have different kinds of ammonifying and denitrifying bacteria which is indicative of intensive transformation of nitrogen-containing compounds. The number of physiological groups of microorganisms in SLS was, on the whole, steady. As a result, organic substances - products of exchange of plants and microorganisms were not accumulated in the medium, but mineralized and assimilated by the biocenosis. Experiments showed that the developed model of a manmade ecosystem realized complete utilization of plant wastes and involved them into the intrasystem turnover. (C) 2003 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia
Univ B Pascal, Clermont Ferrand, France
Estec, ESA, Environm Control & Life Support Sect, Noordwijk, Netherlands
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Manukovsky, N.S.; Lisovsky, G.M.; Kudenko, Y.A.; Kovalev, V.S.; Gribovskaya, I.V.; Tirranen, L.S.; Zolotukhin, I.G.; Gros, J.B.; Lasseur, C...

Найти похожие
16.


   
    High temperature effect on microflora of radish root-inhabited zone and nutrient solutions for radish growth [Text] / E. V. Borodina, L. S. Tirranen ; ed.: G Horneck, ME Vazquez, Vazquez, ME // SPACE LIFE SCIENCES: MISSIONS TO MARS, RADIATION BIOLOGY, AND PLANTS AS A FOUNDATION FOR LONG-TERM LIFE SUPPORT SYSTEMS IN SPACE. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON-ELSEVIER SCIENCE LTD, 2003. - Vol. 31: F0 1 and F1 3-F2 3 Symposia of COSPAR Scientific Commission F held at the 33rd COSPAR Scientific Assembly (JUL, 2000, WARSAW, POLAND), Is. 1. - P. 235-240, DOI 10.1016/S0273-1177(02)00741-X. - Cited References: 7 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: The effect of high temperatures (35 and 45 degreesC) on microflora of the root zone of radish plants grown in phytotron was evaluated by the response of microorganisms from 9 indicator groups. Phytotron air temperature elevated to 35 degreesC for 20 hours caused no significant changes in qualitative and quantitative composition of the root microflora in experimental plants. By the end of the experiment, the species diversity of microflora had changed. The amount of phytopathogenic microorganisms decreased which can be interpreted as more stable co-existence of microflora with plants. The numbers of microbes from other indicator groups was in dynamic equilibrium. The plants' condition did not deteriorate either. Exposure to the temperature of 45 degreesC for 7 hours have been found to change the numbers and species diversity in the radish root zone microflora. The microorganisms were observed to increase their total numbers at the expense of certain indicator groups. Bacteria increased spore forms at the stage of spores. Colon bacillus bacteria of increased their numbers by the end,of experiment by an order. By the end of experiment the roots of experiment plants had microscopic fungi from. Mucor, Aspergillus, Trichoderma, Cladosporium genera. The observed changes in the microbial complex seem to be associated with the changes of root emissions and general deterioration of the plants' condition. It is suggested that the response of the microorganisms can be indicative of the condition of plants under investigation. (C) 2002 Published by Elsevier Science Ltd on behalf of COSPAR.

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Borodina, E.V.; Tirranen, L.S.; Horneck, G \ed.\; Vazquez, ME \ed.\

Найти похожие
17.


   
    Mass exchange in an experimental new-generation life support system model based on biological regeneration of environment [Text] / A. A. Tikhomirov [et al.] ; ed. M Nelson [et al.] // SPACE LIFE SCIENCES: CLOSED ARTIFICIAL ECOSYSTEMS AND LIFE SUPPORT SYSTEMS. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON-ELSEVIER SCIENCE LTD, 2003. - Vol. 31: Meeting of F4 1 Session of the 34th Scientific Assembly of COSPAR (OCT, 2002, HOUSTON, TEXAS), Is. 7. - P. 1711-1720, DOI 10.1016/S0273-1177(03)00108-X. - Cited References: 13 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Ecology + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: An experimental model of a biological life support system was used to evaluate qualitative and quantitative parameters of the internal mass exchange. The photosynthesizing unit included the higher plant component (wheat and radish), and the heterotrophic unit consisted of a soil-like substrate, California worms, mushrooms and microbial microflora. The gas mass exchange involved evolution of oxygen by the photosynthesizing component and its uptake by the heterotroph component along with the formation and maintaining of the SLS structure, growth of mushrooms and California worms, human respiration, and some other processes. Human presence in the system in the form of "virtual human" that at regular intervals took part in the respirative gas exchange during the experiment. Experimental data demonstrated good oxygen/carbon dioxide balance, and the closure of the cycles of these gases was almost complete. The water cycle was nearly 100% closed. The main components in the water mass exchange were transpiration water and the watering solution with mineral elements. Human consumption of the edible plant biomass (grains and roots) was simulated by processing these products by a unique physicochemical method of oxidizing them to inorganic mineral compounds, which were then returned into the system and fully assimilated by the plants. The oxidation was achieved by "wet combustion" of organic biomass, using hydrogen peroxide following a special procedure, which does not require high temperature and pressure. Hydrogen peroxide is produced from the water inside the system. The closure of the cycle was estimated for individual elements and compounds. Stoichiometric proportions are given for the main components included in the experimental model of the system. Approaches to the mathematical modeling of the cycling processes are discussed, using the data of the experimental model. Nitrogen, as a representative of biogenic elements, shows an almost 100% closure of the cycle inside the system, The proposed experimental model of a biological system is discussed as a candidate for potential application in the investigations aimed at creating ecosystems with largely closed cycles of the internal mass exchange. The formation and maintenance of sustainable cycling of vitally important chemical elements and compounds in biological life support systems (BLSS) is an extremely pressing problem. To attain the stable functioning of biological life support systems (BLSS) and to maintain a high degree of closure of material cycles in them, it is essential to understand the character of mass exchange processes and stoichiometric proportions of the initial and synthesized components of the system. (C) 2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Krasnoyarsk, Russia
Univ Strasbourg 1, Clermont Ferrand, France
ESA, Estec, Environm Control & Life Support Sect, Noordwijk, Netherlands
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Manukovsky, N.S.; Lisovsky, G.M.; Kudenko, Y.A.; Kovalev, V.S.; Gubanov, V.G.; Barkhatov, Y.V.; Gribovskaya, I.V.; Zolotukhin, I.G.; Gros, J.B.; Lasseur, C...; Nelson, M \ed.\; Pechurkin, NS \ed.\; Dempster, WF \ed.\; Somova, LA \ed.\; Somo, , LA \ed.\

Найти похожие
18.


   
    Mass exchange in an experimental new-generation life support system model based on biological regeneration of environment [Text] / A. A. Tikhomirov [et al.] ; ed. M Nelson [et al.] // SPACE LIFE SCIENCES: CLOSED ARTIFICIAL ECOSYSTEMS AND LIFE SUPPORT SYSTEMS. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON-ELSEVIER SCIENCE LTD, 2003. - Vol. 31: Meeting of F4 1 Session of the 34th Scientific Assembly of COSPAR (OCT, 2002, HOUSTON, TEXAS), Is. 7. - P1711-1720, DOI 10.1016/S0273-1177(03)00108-X. - Cited References: 13 . - 10. - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Ecology + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: An experimental model of a biological life support system was used to evaluate qualitative and quantitative parameters of the internal mass exchange. The photosynthesizing unit included the higher plant component (wheat and radish), and the heterotrophic unit consisted of a soil-like substrate, California worms, mushrooms and microbial microflora. The gas mass exchange involved evolution of oxygen by the photosynthesizing component and its uptake by the heterotroph component along with the formation and maintaining of the SLS structure, growth of mushrooms and California worms, human respiration, and some other processes. Human presence in the system in the form of "virtual human" that at regular intervals took part in the respirative gas exchange during the experiment. Experimental data demonstrated good oxygen/carbon dioxide balance, and the closure of the cycles of these gases was almost complete. The water cycle was nearly 100% closed. The main components in the water mass exchange were transpiration water and the watering solution with mineral elements. Human consumption of the edible plant biomass (grains and roots) was simulated by processing these products by a unique physicochemical method of oxidizing them to inorganic mineral compounds, which were then returned into the system and fully assimilated by the plants. The oxidation was achieved by "wet combustion" of organic biomass, using hydrogen peroxide following a special procedure, which does not require high temperature and pressure. Hydrogen peroxide is produced from the water inside the system. The closure of the cycle was estimated for individual elements and compounds. Stoichiometric proportions are given for the main components included in the experimental model of the system. Approaches to the mathematical modeling of the cycling processes are discussed, using the data of the experimental model. Nitrogen, as a representative of biogenic elements, shows an almost 100% closure of the cycle inside the system, The proposed experimental model of a biological system is discussed as a candidate for potential application in the investigations aimed at creating ecosystems with largely closed cycles of the internal mass exchange. The formation and maintenance of sustainable cycling of vitally important chemical elements and compounds in biological life support systems (BLSS) is an extremely pressing problem. To attain the stable functioning of biological life support systems (BLSS) and to maintain a high degree of closure of material cycles in them, it is essential to understand the character of mass exchange processes and stoichiometric proportions of the initial and synthesized components of the system. (C) 2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Держатели документа:
Russian Acad Sci, Inst Biophys, Krasnoyarsk, Russia
Univ Strasbourg 1, Clermont Ferrand, France
ESA, Estec, Environm Control & Life Support Sect, Noordwijk, Netherlands : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Manukovsky, N.S.; Lisovsky, G.M.; Kudenko, Y.A.; Kovalev, V.S.; Gubanov, V.G.; Barkhatov, Y.V.; Gribovskaya, I.V.; Zolotukhin, I.G.; Gros, J.B.; Lasseur, C...; Nelson, M \ed.\; Pechurkin, NS \ed.\; Dempster, WF \ed.\; Somova, LA \ed.\; Somo, , LA \ed.\

Найти похожие
19.


   
    Synthesis of biomass and utilization of plants wastes in a physical model of biological life-support system / A. A. Tikhomirov [et al.] // Acta Astronautica. - 2003. - Vol. 53, Is. 4-10. - P249-257, DOI 10.1016/S0094-5765(03)00137-1 . - ISSN 0094-5765
Кл.слова (ненормированные):
Ecosystems -- Microorganisms -- pH -- Photosynthesis -- Plants (botany) -- Synthesis (chemical) -- Waste utilization -- Biological life support systems (BLLS) -- Gas exchange -- Plant respiration -- Biomass -- carbon dioxide -- Agaricales -- article -- biomass -- bioremediation -- growth, development and aging -- hydroponics -- incineration -- metabolism -- methodology -- microbiology -- microclimate -- photosynthesis -- plant physiology -- radish -- space flight -- waste management -- weightlessness -- wheat -- Agaricales -- Biodegradation, Environmental -- Biomass -- Carbon Dioxide -- Ecological Systems, Closed -- Environmental Microbiology -- Hydroponics -- Incineration -- Life Support Systems -- Photosynthesis -- Plant Physiology -- Raphanus -- Space Flight -- Triticum -- Waste Management -- Weightlessness
Аннотация: The paper considers problems of biosynthesis of higher plants' biomass and "biological incineration" of plant wastes in a working physical model of biological LSS. The plant wastes are "biologically incinerated" in a special heterotrophic block involving Califomian worms, mushrooms and straw. The block processes plant wastes (straw, haulms) to produce soil-like substrate (SLS) on which plants (wheat, radish) are grown. Gas exchange in such a system consists of respiratory gas exchange of SLS and photosynthesis and respiration of plants. Specifics of gas exchange dynamics of high plants - SLS complex has been considered. Relationship between such a gas exchange and PAR irradiance and age of plants has been established. Nitrogen and iron were found to the first to limit plants' growth on SLS when process conditions are deranged. The SLS microflora has been found to have different kinds of ammonifying and denitrifying bacteria which is indicative of intensive transformation of nitrogen-containing compounds. The number of physiological groups of microorganisms in SLS was, on the whole, steady. As a result, organic substances - products of exchange of plants and microorganisms were not accumulated in the medium, but mineralized and assimilated by the biocenosis. Experiments showed that the developed model of a man-made ecosystem realized complete utilization of plant wastes and involved them into the intrasystem turnover. В© 2003 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russian Federation
Universite B. Pascal, Clermont-Ferrand, France
Environ. Contr. Life Support Sect., ESA, Estec Noonvijk, Netherlands : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Manukovsky, N.S.; Lisovsky, G.M.; Kudenko, Yu.A.; Koyalev, V.S.; Gribovskaya, I.V.; Tirranen, L.S.; Zolotukhin, I.G.; Gros, J.B.; Lasseur, Ch.

Найти похожие
20.


   
    Wheat growth on neutral and soil-like substrates: Carbon dioxide exchange and microflora / J. -B. Gros [et al.] // Acta Horticulturae. - 2004. - Vol. 644. - P243-248
Кл.слова (ненормированные):
Carbon dioxide -- Closed ecological system
Аннотация: The soil-like substrate (SLS), which is a potential candidate for employment in closed ecological systems, has been tested. CO2 exchange, composition and numbers of soil microflora have been examined in .wheat-SLS. system. The results produced have been compared to analogous characteristics of .wheat-neutral substrate. system. A hydroponic method was used under wheat growing on the neutral substrate (expanded clay aggregate). Plants for both studies were grown in closed environment from seed to physiological maturity. In the .wheat-SLS. system, the net photosynthetic rate of canopy was positive in the course of 6.55 days after planting. The net photosynthetic rate of canopy in .wheat-neutral substrate. system was positive in the entire course of vegetation. According to calculations in the course of vegetation, photosynthesis has withdrawn 3.28 kg m-2 CO2 from the .wheat-SLS. system and 3.40 kg m-2 CO2 from the .wheat-neutral substrate. system. On the SLS dominant among bacteria were the spore-forming bacteria from Bacillus genus, among fungi . from Trichoderma genus. In the hydroponic cultivation on neutral substrate dominant were bacteria from Pseudomonas genus, most commonly found fungi were species from Fusarium and Botrytis genera.

Scopus
Держатели документа:
LGCB, Universte B. Pascal, BP206, FR-63174 Aubiere cedex, France
ESA, Estec 2200 AG Noordwijk, Netherlands
Academgorodok, Institute of Biophysics, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gros, J.-B.; Lasseur, C.; Tikhomirov, A.A.; Manukovsky, N.S.; Ushakova, S.A.; Zolotukhin, I.G.; Tirranen, L.S.; Borodina, E.V.; Kovalev, V.S.

Найти похожие
 1-20    21-35 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)