Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Mitrocomin<.>)
Общее количество найденных документов : 9
Показаны документы с 1 по 9
1.


   
    Specific Activities of Hydromedusan Ca2+-Regulated Photoproteins / N. P. Malikova, E. V. Eremeeva, D. V. Gulnov [et al.] // Photochem. Photobiol. - 2021, DOI 10.1111/php.13556 . - Article in press. - ISSN 0031-8655
Аннотация: Nowadays the recombinant Ca2+-regulated photoproteins originating from marine luminous organisms are widely applied to monitor calcium transients in living cells due to their ability to emit light on Ca2+ binding. Here we report the specific activities of the recombinant Ca2+-regulated photoproteins—aequorin from Aequorea victoria, obelins from Obelia longissima and Obelia geniculata, clytin from Clytia gregaria and mitrocomin from Mitrocoma cellularia. We demonstrate that along with bioluminescence spectra, kinetics of light signals and sensitivities to calcium, these photoproteins also differ in specific activities and consequently in quantum yields of bioluminescent reactions. The highest specific activities were found for obelins and mitrocomin, whereas those of aequorin and clytin were shown to be lower. To determine the factors influencing the variations in specific activities the fluorescence quantum yields for Ca2+-discharged photoproteins were measured and found to be quite different varying in the range of 0.16–0.36. We propose that distinctions in specific activities may result from different efficiencies of singlet excited state generation and different fluorescence quantum yields of coelenteramide bound within substrate-binding cavity. This in turn may be conditioned by variations in the amino acid environment of the substrate-binding cavities and hydrogen bond distances between key residues and atoms of 2-hydroperoxycoelenterazine. © 2021 American Society for Photobiology

Scopus
Держатели документа:
Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Malikova, N. P.; Eremeeva, E. V.; Gulnov, D. V.; Natashin, P. V.; Nemtseva, E. V.; Vysotski, E. S.

Найти похожие
2.


   
    Exploring Bioluminescence Function of the Ca2+-regulated Photoproteins with Site-directed Mutagenesis / E. V. Eremeeva, E. S. Vysotski // Photochem. Photobiol. - 2019. - Vol. 95, Is. 1. - P8-23, DOI 10.1111/php.12945. - Cited References:88. - This work was supported by grant 17-04-00764 of Russian Foundation for Basic Research and the state budgetallocated to the fundamental research at the Russian Academy of Sciences (project 0356-2017-0017). . - ISSN 0031-8655. - ISSN 1751-1097
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
CALCIUM-BINDING PHOTOPROTEIN
   GREEN-FLUORESCENT PROTEIN

   JELLYFISH

Кл.слова (ненормированные):
bioluminescence -- coelenterazine -- aequorin -- obelin -- clytin -- mitrocomin -- EF-hand protein
Аннотация: Site-directed mutagenesis is a powerful tool to investigate the structure-function relationship of proteins and a function of certain amino acid residues in catalytic conversion of substrates during enzymatic reactions. Hence, it is not surprising that this approach was repeatedly applied to elucidate the role of certain amino acid residues in various aspects of photoprotein bioluminescence, mostly for aequorin and obelin, and to design mutant photoproteins with altered properties (modified calcium affinity, faster or slower bioluminescence kinetics, different emission color) which would either allow the development of novel bioluminescent assays or improvement of characteristics of the already existing ones. This information, however, is scattered over different articles. In this review, we systematize the findings that were made using site-directed mutagenesis studies regarding the impact of various amino acid residues on bioluminescence of hydromedusan Ca2+-regulated photoproteins. All key residues that have been identified are pinpointed, and their influence on different aspects of photoprotein functioning such as active photoprotein complex formation, bioluminescence reaction, calcium response and light emitter formation is discussed.

WOS,
Смотреть статью
Держатели документа:
RAS, SB, Inst Biophys, Fed Res Ctr,Krasnoyarsk Sci Ctr,Photobiol Lab, Krasnoyarsk, Russia.

Доп.точки доступа:
Eremeeva, Elena V.; Vysotski, Eugene S.; Russian Foundation for Basic Research [17-04-00764]; Russian Academy of Sciences [0356-2017-0017]

Найти похожие
3.


   
    Bioluminescent and biochemical properties of Cys-free Ca2+-regulated photoproteins obelin and aequorin / E. V. Eremeeva, E. S. Vysotski // J. Photochem. Photobiol. B Biol. - 2017. - Vol. 174. - P97-105, DOI 10.1016/j.jphotobiol.2017.07.021 . - ISSN 1011-1344
Кл.слова (ненормированные):
Bioluminescence -- Coelenteramide -- Coelenterazine -- Cysteine -- Photoprotein -- Serine
Аннотация: Bioluminescence of a variety of marine coelenterates is determined by Ca2+-regulated photoproteins. A strong interest in these proteins is for their wide analytical potential as intracellular calcium indicators and labels for in vitro binding assays. The presently known hydromedusan Ca2+-regulated photoproteins contain three (aequorin and clytin) or five (obelin and mitrocomin) cysteine residues with one of them strictly conserved. We have constructed Cys-free aequorin and obelin by substitution of all cysteines to serine residues. Such mutants should be of interest for researchers by the possibility to avoid the incubation with dithiothreitol (or ?-mercaptoethanol) required for producing an active photoprotein that is important for some prospective analytical assays in which the photoprotein is genetically fused with a target protein sensitive to the reducing agents. Cys-free mutants were expressed in Escherichia coli, purified, and characterized regarding the efficiency of photoprotein complex formation, functional activity, and conformational stability. The replacement of cysteine residues has been demonstrated to affect different properties of aequorin and obelin. Cys-free aequorin displays a two-fold lower specific bioluminescence activity but preserves similar activation properties and light emission kinetics compared to the wild-type aequorin. In contrast, Cys-free obelin retains only ~ 10% of the bioluminescence activity of wild-type obelin as well as binding coelenterazine and forming active photoprotein much less effectively. In addition, the substitution of Cys residues drastically changes the bioluminescence kinetics of obelin completely eliminating a “fast” component from the light signal decay curve. At the same time, the replacement of Cys residues increases conformational flexibility of both aequorin and obelin molecules, but again, the effect is more prominent in the case of obelin. The values of thermal midpoints of unfolding (Tm) were determined to be 53.3 ± 0.2 and 44.6 ± 0.4 °C for aequorin and Cys-free aequorin, and 49.1 ± 0.1 and 28.8 ± 0.3 °C for obelin and Cys-free obelin, respectively. Thus, so far only Cys-free aequorin is suitable as a partner for fusing with a tag sensitive to reducing agents since the aequorin mutant preserves almost 50% of the bioluminescent activity and can be produced with a substantial yield. © 2017 Elsevier B.V.

Scopus,
Смотреть статью
Держатели документа:
Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Eremeeva, E. V.; Vysotski, E. S.

Найти похожие
4.


   
    Bioluminescent and biochemical properties of Cys-free Ca2+-regulated photoproteins obelin and aequorin / E. V. Eremeeva, E. S. Vysotski // J. Photochem. Photobiol. B-Biol. - 2017. - Vol. 174. - P97-105, DOI 10.1016/j.jphotobio1.2017.07.021. - Cited References:54. - This work was supported by the state budget allocated to the fundamental research at the Russian Academy of Sciences (projects 03562016-0712 and 0356-2015-0103) and the RFBR grant 17-04-00764. . - ISSN 1011-1344
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
SEQUENCE-ANALYSIS
   APO-OBELIN

   INTRINSIC FLUORESCENCE

   COELENTERAZINE

Кл.слова (ненормированные):
Bioluminescence -- Coelenterazine -- Photoprotein -- Coelenteramide -- Cysteine -- Serine
Аннотация: Bioluminescence of a variety of marine coelenterates is determined by Ca2+-regulated photoproteins. A strong interest in these proteins is for their wide analytical potential as intracellular calcium indicators and labels for in vitro binding assays. The presently known hydromedusan Ca2+-regulated photoproteins contain three (aequorin and clytin) or five (obelin and mitrocomin) cysteine residues with one of them strictly conserved. We have constructed Cys-free aequorin and obelin by substitution of all cysteines to serine residues. Such mutants should be of interest for researchers by the possibility to avoid the incubation with dithiothreitol (or p-mercaptoethanol) required for producing an active photoprotein that is important for some prospective analytical assays in which the photoprotein is genetically fused with a target protein sensitive to the reducing agents. Cys-free mutants were expressed in Escherichia coil, purified, and characterized regarding the efficiency of photoprotein complex formation, functional activity, and conformational stability. The replacement of cysteine residues has been demonstrated to affect different properties of aequorin and obelin. Cys-free aequorin displays a two-fold lower specific bioluminescence activity but preserves similar activation properties and light emission kinetics compared to the wild -type aequorin. In contrast, Cys-free obelin retains only 10% of the bioluminescence activity of wild-type obelin as well as binding coelenterazine and forming active photoprotein much less effectively. In addition, the substitution of Cys residues drastically changes the bioluminescence kinetics of obelin completely eliminating a "fast" component from the light signal decay curve. At the same time, the replacement of Cys residues increases conformational flexibility of both aequorin and obelin molecules, but again, the effect is more prominent in the case of obelin. The values of thermal midpoints of unfolding (Tm) were determined to be 53.3 0.2 and 44.6 0.4 C for aequorin and Cys-free aequorin, and 49.1 0.1 and 28.8 0.3 C for obelin and Cys-free obelin, respectively. Thus, so far only Cys-free aequorin is suitable as a partner for fusing with a tag sensitive to reducing agents since the aequorin mutant preserves almost 50% of the bioluminescent activity and can be produced with a substantial yield.

WOS,
Смотреть статью
Держатели документа:
RAS, Photobiol Lab, Inst Biophys, Fed Res Ctr,Krasnoyarsk Sci Ctr,SB, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Eremeeva, Elena V.; Vysotski, Eugene S.; Russian Academy of Sciences [03562016-0712, 0356-2015-0103]; RFBR [17-04-00764]

Найти похожие
5.


   
    Unanimous Model for Describing the Fast Bioluminescence Kinetics of Ca2+-regulated Photoproteins of Different Organisms / E. V. Eremeeva [et al.] // Photochem. Photobiol. - 2017. - Vol. 93, Is. 2. - P495-502, DOI 10.1111/php.12664. - Cited References:55. - This work was supported by RFBR grant 14-04-31092 and the state budget allocated to the fundamental research at the Russian Academy of Sciences (projects 01201351504 and 01201351502). . - ISSN 0031-8655. - ISSN 1751-1097
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
GREEN-FLUORESCENT PROTEIN
   AEQUORIN BIOLUMINESCENCE

   SEQUENCE-ANALYSIS

Аннотация: Upon binding their metal ion cofactors, Ca2+-regulated photoproteins display a rapid increase of light signal, which reaches its peak within milliseconds. In the present study, we investigate bioluminescence kinetics of the entire photoprotein family. All five recombinant hydromedusan Ca2+-regulated photoproteinsaequorin from Aequorea victoria, clytin from Clytia gregaria, mitrocomin from Mitrocoma cellularia and obelins from Obelia longissima and Obelia geniculatademonstrate the same bioluminescent kinetics pattern. Based on these findings, for the first time we propose a unanimous kinetic model describing the bioluminescence mechanism of Ca2+-regulated photoproteins.

WOS,
Смотреть статью
Держатели документа:
Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Fed Res Ctr, Photobiol Lab, Krasnoyarsk, Russia.
Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Fed Res Ctr, Theoret Biophys Lab, Krasnoyarsk, Russia.
Wageningen Univ & Res, Biochem Lab, Wageningen, Netherlands.

Доп.точки доступа:
Eremeeva, Elena V.; Bartsev, Sergey I.; van Berkel, Willem J. H.; Vysotski, Eugene S.; RFBR [14-04-31092]; Russian Academy of Sciences [01201351504, 01201351502]

Найти похожие
6.


   
    Mitrocomin from the jellyfish Mitrocoma cellularia with deleted C-terminal tyrosine reveals a higher bioluminescence activity compared to wild type photoprotein / L. P. Burakova [et al.] // J. Photochem. Photobiol. B Biol. - 2016. - Vol. 162. - P286-297, DOI 10.1016/j.jphotobiol.2016.06.054 . - ISSN 1011-1344
Аннотация: The full-length cDNA genes encoding five new isoforms of Ca2 +-regulated photoprotein mitrocomin from a small tissue sample of the outer bell margin containing photocytes of only one specimen of the luminous jellyfish Mitrocoma cellularia were cloned, sequenced, and characterized after their expression in Escherichia coli and subsequent purification. The analysis of cDNA nucleotide sequences encoding mitrocomin isoforms allowed suggestion that two isoforms might be the products of two allelic genes differing in one amino acid residue (64R/Q) whereas other isotypes appear as a result of transcriptional mutations. In addition, the crystal structure of mitrocomin was determined at 1.30 A resolution which expectedly revealed a high similarity with the structures of other hydromedusan photoproteins. Although mitrocomin isoforms reveal a high degree of identity of amino acid sequences, they vary in specific bioluminescence activities. At that, all isotypes displayed the identical bioluminescence spectra (473–474 nm with no shoulder at 400 nm). Fluorescence spectra of Ca2 +-discharged mitrocomins were almost identical to their light emission spectra similar to the case of Ca2 +-discharged aequorin, but different from Ca2 +-discharged obelins and clytin which fluorescence is red-shifted by 25–30 nm from bioluminescence spectra. The main distinction of mitrocomin from other hydromedusan photoproteins is an additional Tyr at the C-terminus. Using site-directed mutagenesis, we showed that this Tyr is not important for bioluminescence because its deletion even increases specific activity and efficiency of apo-mitrocomin conversion into active photoprotein, in contrast to C-terminal Pro of other photoproteins. Since genes in a population generally exist as different isoforms, it makes us anticipate the cloning of even more isoforms of mitrocomin and other hydromedusan photoproteins with different bioluminescence properties. © 2016 Elsevier B.V.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russian Federation
National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
iHuman Institute, ShanghaiTech University, Shanghai, China

Доп.точки доступа:
Burakova, L. P.; Natashin, P. V.; Markova, S. V.; Eremeeva, E. V.; Malikova, N. P.; Cheng, C.; Liu, Z. -J.; Vysotski, E. S.

Найти похожие
7.


   
    Characterization of hydromedusan Ca2+-regulated photoproteins as a tool for measurement of Ca2+concentration / N. P. Malikova [et al.] // . - 2014, DOI 10.1007/s00216-014-7986-2 . - ISSN 1618-2642
Кл.слова (ненормированные):
Aequorin -- Calcium -- Clytin -- Coelenterazine -- Mitrocomin -- Obelin
Аннотация: Calcium ion is a ubiquitous intracellular messenger, performing this function in many eukaryotic cells. To understand calcium regulation mechanisms and how disturbances of these mechanisms are associated with disease states, it is necessary to measure calcium inside cells. Ca2+-regulated photoproteins have been successfully used for this purpose for many years. Here we report the results of comparative studies on the properties of recombinant aequorin from Aequorea victoria, recombinant obelins from Obelia geniculata and Obelia longissima, recombinant mitrocomin from Mitrocoma cellularia, and recombinant clytin from Clytia gregaria as intracellular calcium indicators in a set of identical in vitro and in vivo experiments. Although photoproteins reveal a high degree of identity of amino acid sequences and spatial structures, and, apparently, have a common mechanism for the bioluminescence reaction, they were found to differ in the Ca2+ concentration detection limit, the sensitivity of bioluminescence to Mg2+, and the rates of the rise of the luminescence signal with a sudden change of Ca2+ concentration. In addition, the bioluminescence activities of Chinese hamster ovary cells expressing wild-type photoproteins also differed. The light signals of cells expressing mitrocomin, for example, slightly exceeded the background, suggesting that mitrocomin may be hardly used to detect intracellular Ca2+ without modifications improving its properties. On the basis of experiments on the activation of endogenous P2Y2 receptor in Chinese hamster ovary cells by ATP, we suggest that wild-type aequorin and obelin from O. longissima are more suitable for calcium detection in cytoplasm, whereas clytin and obelin from O. geniculata can be used for calcium measurement in cell compartments with high Ca2+ concentration. [Figure not available: see fulltext.] © 2014 Springer-Verlag Berlin Heidelberg.

Scopus
Держатели документа:
Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, 660036, Russian Federation
Laboratory of Bioluminescent Biotechnologies, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Malikova, N.P.; Burakova, L.P.; Markova, S.V.; Vysotski, E.S.

Найти похожие
8.


   
    The C-terminal tyrosine deletion in mitrocomin increases its bioluminescent activity [Text] / L. . Burakova [et al.] // Luminescence. - 2014. - Vol. 29. - P84-84. - Cited References: 6 . - ISSN 1522-7235. - ISSN 1522-7243
Рубрики:
PHOTOPROTEIN
   EXPRESSION

   AEQUORIN

   CLONING

   CDNA


WOS
Держатели документа:
[Burakova, Liudmila
Natashin, Pavel
Markova, Svetlana
Eremeeva, Elena
Vysotsky, Eugene] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia
[Burakova, Liudmila
Natashin, Pavel
Markova, Svetlana
Eremeeva, Elena
Vysotsky, Eugene] Siberian Fed Univ, Krasnoyarsk, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Burakova, L...; Natashin, P...; Markova, S...; Eremeeva, E...; Vysotsky, E...

Найти похожие
9.


   
    Characterization of hydromedusan Ca2+-regulated photoproteins as a tool for measurement of Ca(2+)concentration [Text] / N. P. Malikova [et al.] // Anal. Bioanal. Chem. - 2014. - Vol. 406, Is. 23. - P5715-5726, DOI 10.1007/s00216-014-7986-2. - Cited References: 67. - This work was supported by RFBR grant 12-04-00131, by the programs of the Government of the Russian Federation "Measures to Attract Leading Scientists to Russian Educational Institutions" (grant 11.G34.31.0058) and "Molecular and Cellular Biology" of the Russian Academy of Sciences, and the grant from the President of the Russian Federation "Leading Science School" (3951.2012.4). . - ISSN 1618-2642. - ISSN 1618-2650
РУБ Biochemical Research Methods + Chemistry, Analytical
Рубрики:
LIGHT-SENSITIVE PHOTOPROTEIN
   CTENOPHORE BEROE ABYSSICOLA

   GREEN-FLUORESCENT PROTEIN

   INTRACELLULAR CALCIUM

   SEQUENCE-ANALYSIS

   CA-2+-ACTIVATED PHOTOPROTEIN

   CA2+-BINDING PHOTOPROTEIN

   SEMISYNTHETIC AEQUORINS

   LUMINESCENT PROTEIN

   RECOMBINANT OBELIN

Кл.слова (ненормированные):
Calcium -- Coelenterazine -- Aequorin -- Obelin -- Clytin -- Mitrocomin
Аннотация: Calcium ion is a ubiquitous intracellular messenger, performing this function in many eukaryotic cells. To understand calcium regulation mechanisms and how disturbances of these mechanisms are associated with disease states, it is necessary to measure calcium inside cells. Ca2+-regulated photoproteins have been successfully used for this purpose for many years. Here we report the results of comparative studies on the properties of recombinant aequorin from Aequorea victoria, recombinant obelins from Obelia geniculata and Obelia longissima, recombinant mitrocomin from Mitrocoma cellularia, and recombinant clytin from Clytia gregaria as intracellular calcium indicators in a set of identical in vitro and in vivo experiments. Although photoproteins reveal a high degree of identity of amino acid sequences and spatial structures, and, apparently, have a common mechanism for the bioluminescence reaction, they were found to differ in the Ca2+ concentration detection limit, the sensitivity of bioluminescence to Mg2+, and the rates of the rise of the luminescence signal with a sudden change of Ca2+ concentration. In addition, the bioluminescence activities of Chinese hamster ovary cells expressing wild-type photoproteins also differed. The light signals of cells expressing mitrocomin, for example, slightly exceeded the background, suggesting that mitrocomin may be hardly used to detect intracellular Ca2+ without modifications improving its properties. On the basis of experiments on the activation of endogenous P2Y(2) receptor in Chinese hamster ovary cells by ATP, we suggest that wild-type aequorin and obelin from O. longissima are more suitable for calcium detection in cytoplasm, whereas clytin and obelin from O. geniculata can be used for calcium measurement in cell compartments with high Ca2+ concentration.

WOS
Держатели документа:
[Malikova, Natalia P.
Burakova, Ludmila P.
Markova, Svetlana V.
Vysotski, Eugene S.] Russian Acad Sci, Inst Biophys, Siberian Branch, Photobiol Lab, Krasnoyarsk 660036, Russia
[Malikova, Natalia P.
Burakova, Ludmila P.
Markova, Svetlana V.
Vysotski, Eugene S.] Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Lab Bioluminescent Biotechnol, Krasnoyarsk 660041, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Malikova, N.P.; Burakova, L.P.; Markova, S.V.; Vysotski, E.S.; RFBR [12-04-00131]; Government of the Russian Federation [11.G34.31.0058]; Russian Academy of Sciences; Russian Federation "Leading Science School" [3951.2012.4]

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)