Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Mixing<.>)
Общее количество найденных документов : 19
Показаны документы с 1 по 19
1.


   
    Turbulent mixing in the water layer just below the ice and its role in development of diatomic algae in Lake Baikal [Текст] / N. G. Granin [и др.] // Dokl. Akad. Nauk. - 1999. - Vol. 366, Is. 6. - P. 835-839. - Cited References: 15 . - ISSN 0869-5652
РУБ Multidisciplinary Sciences
Рубрики:
LIFE-CYCLE

WOS
Держатели документа:
Russian Acad Sci, Inst Limnol, Irkutsk 664003, Russia
Olster Univ, Olstrer, Ireland
Russian Acad Sci, Inst Biophys, Krasnoyarsk, Russia
Baikal Museum, Listvyanka, Russia
Russian Acad Sci, Inst Solar Earth Phys, Irkutsk 664003, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Granin, N.G.; Jewson, D...; Gnatovskii, R.Y.; Levin, L.A.; Zhdanov, A.A.; Averin, A.I.; Gorbunova, L.A.; Tsekhanovskii, V.V.; Doroshchenko, L.F.; Min'ko, N.P.; Grachev, M.A.

Найти похожие
2.


   
    The investigation on the dynamics of frontal zones in the ocean based on the numerical modelling, using the AVHRR satellite data [Text] / A. V. Kartushinsky ; ed. P Schlussel [et al.] // CLIMATE CHANGE PROCESSES IN THE STRATOSPHERE, EARTH-ATMOSPHERE-OCEAN SYSTEMS, AND OCEANOGRAPHIC PROCESSES FROM SATELLITE DATA. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON-ELSEVIER SCIENCE LTD, 2004. - Vol. 33: 2nd World Space Congress/34th COSPAR Scientific Assembly (OCT 10-19, 2002, HOUSTON, TX), Is. 7. - P1173-1178, DOI 10.1016/S0273-1177(03)00370-3. - Cited References: 19 . - 6. - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Environmental Sciences + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences + Remote Sensing
Рубрики:
VARIABILITY
Кл.слова (ненормированные):
frontal temperature zones -- model -- numerical experiments -- current velocity -- turbulent diffusion -- heat flow
Аннотация: The main purpose of the work is to investigate the frontal temperature zones using the mathematical model of the oceanic temperature field. The forecast of the frontal temperature zone variability is based on satellite data. The model calculates the temperature under different starting conditions and allows for the mean monthly intensity of solar radiation, components of current velocities, and turbulent diffusion. The input data are the mean monthly current velocities and the radiation heat flows. The model is used to calculate the dynamics of the frontal temperature zones in separate parts of the ocean. Based on the results of numerical experiments presented in the paper we estimated the spatial and temporal ranges of the frontal zone variation affected by the advection of currents, horizontal turbulent heat exchange, and the radiation heat flow in separate parts of the ocean. As examples we consider the basic frontal zones in the Atlantic and the Pacific Oceans. The work also shows possible applications of parametrization of spatial horizontal components of the frontal zones functionally related to the processes of heat advection and diffusion in the absence of exact information about the magnitudes of the current velocities and turbulent mixing. (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

Держатели документа:
Krasnoyarsk State Univ, Inst Biophys, Russian Acad Sci, Krasnoyarsk 660036, Russia : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kartushinsky, A.V.; Schlussel, P \ed.\; Stuhlmann, R \ed.\; Campbell, JW \ed.\

Найти похожие
3.


   
    The investigation on the dynamics of frontal zones in the ocean based on the numerical modelling, using the AVHRR satellite data [Text] / A. V. Kartushinsky ; ed. P Schlussel [et al.] // CLIMATE CHANGE PROCESSES IN THE STRATOSPHERE, EARTH-ATMOSPHERE-OCEAN SYSTEMS, AND OCEANOGRAPHIC PROCESSES FROM SATELLITE DATA. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON-ELSEVIER SCIENCE LTD, 2004. - Vol. 33: 2nd World Space Congress/34th COSPAR Scientific Assembly (OCT 10-19, 2002, HOUSTON, TX), Is. 7. - P. 1173-1178, DOI 10.1016/S0273-1177(03)00370-3. - Cited References: 19 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Environmental Sciences + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences + Remote Sensing
Рубрики:
VARIABILITY
Кл.слова (ненормированные):
frontal temperature zones -- model -- numerical experiments -- current velocity -- turbulent diffusion -- heat flow
Аннотация: The main purpose of the work is to investigate the frontal temperature zones using the mathematical model of the oceanic temperature field. The forecast of the frontal temperature zone variability is based on satellite data. The model calculates the temperature under different starting conditions and allows for the mean monthly intensity of solar radiation, components of current velocities, and turbulent diffusion. The input data are the mean monthly current velocities and the radiation heat flows. The model is used to calculate the dynamics of the frontal temperature zones in separate parts of the ocean. Based on the results of numerical experiments presented in the paper we estimated the spatial and temporal ranges of the frontal zone variation affected by the advection of currents, horizontal turbulent heat exchange, and the radiation heat flow in separate parts of the ocean. As examples we consider the basic frontal zones in the Atlantic and the Pacific Oceans. The work also shows possible applications of parametrization of spatial horizontal components of the frontal zones functionally related to the processes of heat advection and diffusion in the absence of exact information about the magnitudes of the current velocities and turbulent mixing. (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

WOS
Держатели документа:
Krasnoyarsk State Univ, Inst Biophys, Russian Acad Sci, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kartushinsky, A.V.; Schlussel, P \ed.\; Stuhlmann, R \ed.\; Campbell, JW \ed.\

Найти похожие
4.


   
    The dissolved "yellow" matter as a natural indicator in hydrological investigations / F. Ya. Sid'ko [et al.] // Water Resources. - 1996. - Vol. 23, Is. 1. - P111-114 . - ISSN 0097-8078
Аннотация: The proportions of spectral indices of light absorption by water, dissolved "yellow" matter, phytoplankton pigments, and other suspended hydrosol particles contained in the water of Enisei River and Krasnoyarsk Reservoir were experimentally estimated. An optical method for determination of relative content and spatial distribution of water masses of mixing currents was proposed. В© 1996 MAHK Hayka/Interperiodica Publishing.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Sid'ko, F.Ya.; Aponasenko, A.D.; Filimonov, V.S.; Lopatin, V.N.; Sid'ko, A.F.

Найти похожие
5.


   
    Some generalizations based on stratification and vertical mixing in meromictic Lake Shira, Russia, in the period 2002-2009 / D. Y. Rogozin [et al.] // Aquatic Ecology. - 2010. - Vol. 44, Is. 3. - P485-496, DOI 10.1007/s10452-010-9328-6 . - ISSN 1386-2588
Кл.слова (ненормированные):
1-D model -- Meromixis -- Mixolimnion -- Oxic-anoxic interface -- Thermocline -- Weather conditions -- brackish water -- meromictic lake -- numerical model -- one-dimensional modeling -- overturn -- physicochemical property -- salinity -- seasonality -- stratification -- temperate environment -- vertical mixing -- water temperature -- weather -- Khakassia -- Lake Shira -- Russian Federation
Аннотация: In a brackish, temperate, 24-m-deep Lake Shira, the profiles of salinity, temperature, oxygen and sulfide concentrations were measured on a seasonal basis from 2002 to 2009. The lake was shown to be meromictic with autumnal overturn restricted to mixolimnion. The depth of mixolimnion and position of oxic-anoxic interface varied annually. The spring mixing processes contribute to the formation of mixolimnion in autumn. The exceptionally windy spring of 2007 caused the deepening of mixolimnion in the winter of 2008. The winter position of oxic-anoxic interface was affected by the position of lower boundary of mixolimnion in all winters. The salinity in the winter mixolimnion increased compared with the autumn because of freezing out of salts from the upper water layers meters during ice formation and their dissolution in water below. The profiles of salinity and temperature were simulated by the mathematical 1-D model of temperature and salinity conditions taking into account ice formation. The simulated profiles generally coincided with the measured ones. The coincidence implies that simplified one-dimensional model can be applied to roughly describe salinity and density profiles and mixing behavior of Lake Shira. В© 2010 The Author(s).

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok 50-50, 660036 Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodny 79, 660071 Krasnoyarsk, Russian Federation
Institute of Computational Modeling of Siberian Branch of Russian Academy of Sciences, Akademgorodok 50-50, 660036 Krasnoyarsk, Russian Federation
The Netherlands Institute of Ecology, Center for Aquatic Ecology, Nieuwersluis, Netherlands : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Rogozin, D.Y.; Genova, S.N.; Gulati, R.D.; Degermendzhy, A.G.

Найти похожие
6.


   
    Production of a Composite Based on Alumina Nanofibers and Detonation Nanodiamonds for Creating Phenol Indication Systems / N. O. Ronzhin, E. D. Posokhina, E. V. Mikhlina [et al.] // Dokl. Chem. - 2019. - Vol. 489, Is. 1. - P267-271, DOI 10.1134/S001250081911003X . - ISSN 0012-5008
Аннотация: Abstract: A composite of alumina nanofibers (ANF) and modified detonation nanodiamonds (MDND) was produced by mixing aqueous suspensions of the components in a weight ratio of 5 : 1 with subsequent incubation of the mixture for 15 min at 32°C. It was assumed that the formation of the composite is ensured by the difference of the zeta potentials of the components, which is negative for MDND and positive for ANF. Vacuum filtration of the mixture through a fluoroplastic filter (pore diameter 0.6 ?m) formed disks 40 mm in diameter, which were then heat-treated at 300°C to impart structural stability to the composite. Scanning electron microscopy detected that the obtained composite has a network structure, in which MDND particles are distributed over the surface of ANF. It was determined that the MDND particles incorporated in the composite catalyze the phenol–4-aminoantipyrine–H2O2 oxidative azo coupling reaction to form a colored product (quinoneimine). The applicability of the composite to repeated phenol detection in aqueous samples was demonstrated. © 2019, Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Institute of Biophysics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, AkademgorodokKrasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Computational Modeling, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, AkademgorodokKrasnoyarsk, 660036, Russian Federation
Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, AkademgorodokKrasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Ronzhin, N. O.; Posokhina, E. D.; Mikhlina, E. V.; Simunin, M. M.; Nemtsev, I. V.; Ryzhkov, I. I.; Bondar, V. S.

Найти похожие
7.


   
    Production of a Composite Based on Alumina Nanofibers and Detonation Nanodiamonds for Creating Phenol Indication Systems / N. O. Ronzhin, E. D. Posokhina, E. V. Mikhlina [et al.] // Dokl. Chem. - 2019. - Vol. 489. - P267-271, DOI 10.1134/S001250081911003X. - Cited References:13. - This work was supported by the Russian Foundation for Basic Research (project no. 18-29-19078 mk). . - ISSN 0012-5008. - ISSN 1608-3113
РУБ Chemistry, Multidisciplinary
Рубрики:
NANOPARTICLES
   GRAPHENE

Аннотация: A composite of alumina nanofibers (ANF) and modified detonation nanodiamonds (MDND) was produced by mixing aqueous suspensions of the components in a weight ratio of 5 : 1 with subsequent incubation of the mixture for 15 min at 32 degrees C. It was assumed that the formation of the composite is ensured by the difference of the zeta potentials of the components, which is negative for MDND and positive for ANF. Vacuum filtration of the mixture through a fluoroplastic filter (pore diameter 0.6 mu m) formed disks 40 mm in diameter, which were then heat-treated at 300 degrees C to impart structural stability to the composite. Scanning electron microscopy detected that the obtained composite has a network structure, in which MDND particles are distributed over the surface of ANF. It was determined that the MDND particles incorporated in the composite catalyze the phenol-4-aminoantipyrine-H2O2 oxidative azo coupling reaction to form a colored product (quinoneimine). The applicability of the composite to repeated phenol detection in aqueous samples was demonstrated.

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Inst Biophys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Siberian Branch, Inst Computat Modeling, Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Ronzhin, N. O.; Posokhina, E. D.; Mikhlina, E. V.; Simunin, M. M.; Nemtsev, I. V.; Ryzhkov, I. I.; Bondar, V. S.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [18-29-19078 mk]

Найти похожие
8.


   
    Modeling of CO2 fluxes between atmosphere and boreal forest / Y. V. Barkhatov [et al.] ; ed.: Z Yang, Z Yang // 18TH BIENNIAL ISEM CONFERENCE ON ECOLOGICAL MODELLING FOR GLOBAL CHANGE AND COUPLED HUMAN AND NATURAL SYSTEM. Ser. Procedia Environmental Sciences : ELSEVIER SCIENCE BV, 2012. - Vol. 13: 18th Biennial ISEM Conference on Ecological Modelling for Global Change and Coupled Human and Natural Systems (SEP 20-23, 2011, Beijing, PEOPLES R CHINA). - P621-625, DOI 10.1016/j.proenv.2012.01.053. - Cited References: 17 . - 5. - ISBN 1878-0296
РУБ Ecology + Environmental Sciences
Рубрики:
CARBON-DIOXIDE FLUXES
   SIBERIA

   BUDGET

   SINKS

   RATIO

   O-2

Кл.слова (ненормированные):
Global carbon cycle -- Siberian boreal forests -- mathematical modeling -- atmospheric boundary layer budget method
Аннотация: Difficulties in estimating terrestrial ecosystem CO2 fluxes on regional scales have significantly limited our understanding of the global carbon cycle. We present a method of using tall-tower-based CO2 concentrations for estimating CO2 fluxes over a forested region. With long-term measurements of the CO2 mixing ratio at a 300-m-tall tower, regional CO2 fluxes were estimated for several months, from the first obtained data. Estimates of a monthly-integrated surface CO2 flux over the region were obtained by the analysis of average gradients and estimates of the rate of vertical mixing between the atmospheric boundary layer (ABL) and the free troposphere. For the comparison of the ABL budget method and field measurements a zero-dimensional mathematical model of the ecosystem of Siberian boreal forests was used. The model is a system of ordinary differential equations with additional conditions superimposed on the parameters. The main occurring processes are described - photosynthesis, respiration, seasonal changes of active phytomass, water balance of trees, the influence of light, humidity, and temperature on photosynthesis and respiration. (C) 2011 Published by Elsevier B. V. Selection and/or peer-review under responsibility of School of Environment, Beijing Normal University.

Держатели документа:
[Barkhatov, Y. V.
Belolipetsky, P. V.
Degermendzhi, A. G.
Shchemel, A. L.] Inst Biophys SB RAS, Krasnoyarsk 660036, Russia : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Barkhatov, Y.V.; Belolipetsky, P.V.; Degermendzhi, A.G.; Belolipetskii, V.M.; Verkhovets, S.V.; Timokhina, A.V.; Panov, A.V.; Shchemel, A.L.; Vedrova, E.F.; Trephilova, O.V.; Yang, Z \ed.\

Найти похожие
9.


   
    Growing of Pleurotus florida on substrates with inedible potato biomass [Текст] / N. S. Manukovsky, V. S. Kovalev, I. V. Gribovskaya // Mikol. Fitopatol. - 2002. - Vol. 36, Is. 4. - P. 48-54. - Cited References: 14 . - ISSN 0026-3648
РУБ Mycology

Аннотация: The possibility to grow oyster mushroom Pleurotus florida Fovose on the substrate prepared from inedible potato biomass was tested. It was shown that mycelium growth rate was increased by 61-69 % after boiling or soaking of inedible potato biomass and mixing it with wheat straw. The increase in growth rate can be accounted for the decrease of potassium content in the substrate from 5,53 % to 0.87-0.88 %. Mixing inedible potato biomass with wheat straw has had a positive impact on the oyster mushroom fruiting and the convertion of spent mushroom compost into biohumus.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Krasnoyarsk, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Manukovsky, N.S.; Kovalev, V.S.; Gribovskaya, I.V.

Найти похожие
10.


   
    Effects of water column processes on the use of sediment traps to measure zooplankton non-predatory mortality: a mathematical and empirical assessment / O. P. Dubovskaya [et al.] // J. Plankton Res. - 2018. - Vol. 40, Is. 1. - P91-106, DOI 10.1093/plankt/fbx066. - Cited References:49. - This work was a part of the joint German-Russian Project "Mortality of Zooplankton in lake ecosystems and its potential contribution to carbon mineralization in pelagic zone" supported by the German Research Foundation (DFG no. GR-1540/29-1) and the Russian Foundation for Basic Research (RFBR no. 16-54-12048). The work also was partly supported by Russian Federal Tasks of Fundamental Research (project no. 51.1.1) and by grant (no. 9249.2016.5) from the RF President Council on Grants for leading RF scientific schools. . - ISSN 0142-7873. - ISSN 1464-3774
РУБ Marine & Freshwater Biology + Oceanography
Рубрики:
NONCONSUMPTIVE MORTALITY
   CRUSTACEAN ZOOPLANKTON

   VERTICAL-DISTRIBUTION

Кл.слова (ненормированные):
zooplankton -- Arctodiaptomus salinus -- non-predatory mortality -- sediment -- trap -- carcasses -- stratified lake
Аннотация: Zooplankton populations can at times suffer mass mortality due to non-predatory mortality (NPM) factors, and the resulting carcasses can be captured by sediment traps to estimate NPM rate. This approach assumes sinking to be the primary process in removing carcasses, but in reality, carcasses can also be removed by ingestion, turbulent mixing and microbial degradation in the water column. We present mathematical formulations to calculate NPM from sediment trap data by accounting for carcass removal by processes in addition to sinking, and demonstrate their application in a study in Lake Shira, Russia. Carcass abundance of the major calanoid copepod Arctodiaptomus salinus decreased with depth, indicating the effect of carcass removal from the water column. The estimated NPM values (0.0003-0.103 d(-1)) were comparable with previously reported physiological death rates. We further used independent data to partition carcass removal due to detritivory, turbulent mixing and microbial degradation. Estimated ingestion by the amphipod Gammarus lacustris could account for the disappearance of copepod carcasses above the traps. Wind-driven turbulence could also extend the carcass exposure time to microbial degradation. Collectively, these water column processes would facilitate the remineralization of carcasses in the water column, and diminish the carcass carbon flux to the benthos.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Inst Biophys,Fed Res Ctr,Dept Expt Hydroecol, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, 79 Svobodny Ave, Krasnoyarsk 660041, Russia.
Leibniz Inst Freshwater Ecol & Inland Fisherie, Dept Ecohydrol, Muggelseedamm 310, D-12587 Berlin, Germany.
Natl Acad Sci Belarus Bioresources, Pract Ctr, Dept Hydrobiol, 27 Acad Skaya St, Minsk 220072, Byelarus.
Swansea Univ, Dept Biosci, Singleton Pk, Swansea SA2 8PP, W Glam, Wales.

Доп.точки доступа:
Dubovskaya, Olga P.; Tolomeev, Aleksandr P.; Kirillin, Georgiy; Buseva, Zhanna; Tang, Kam W.; Gladyshev, Michail I.; German Research Foundation (DFG) [GR-1540/29-1]; Russian Foundation for Basic Research (RFBR) [16-54-12048]; Russian Federal Tasks of Fundamental Research [51.1.1]; RF President Council on Grants for leading RF scientific schools [9249.2016.5]

Найти похожие
11.


   
    Dynamics of purple sulfur bacteria in a meromictic saline Lake Shunet (Khakassia, Siberia) in 2007–2013 / D. Y. Rogozin, V. V. Zykov, M. O. Tarnovskii // Microbiology. - 2016. - Vol. 85, Is. 1. - P93-101, DOI 10.1134/S0026261716010100 . - ISSN 0026-2617
Кл.слова (ненормированные):
long-term dynamics -- meromictic lake -- purple sulfur bacteria -- stratification
Аннотация: According to the results of seasonal monitoring, in 2007–2013 purple sulfur bacteria morphologically similar to Thiocapsa sp. Shira_1 (AJ633676 in EMBL/GenBank) predominated in the anoxygenic phototrophic community of the water column of the meromictic Lake Shira (Khakassia, Siberia). No pronounced seasonal periodicity in the total cell number in the water column was revealed during the period of observation. In some years cell number during the period when the lake was covered with ice was reliably higher than in summer. The absence of seasonal periodicity was probably due to the low amplitude of seasonal variations in temperature and illumination in the redox zone, resulting from its relatively deep location (12–16 m). The year-to-year dynamics was characterized by a reliable decrease of the total cell number in 2009–2010 and maxima in 2007 and 2011–2012. Canonical correlation analysis revealed that water temperature in the redox zone was the best predictor of the PSB abundance in Lake Shira. Water temperature, in turn, depended on the depth of mixing of the water column. Intense mixing in 2009–2011 was probably responsible for decreased PSB abundance in the lake. On the other hand, the absence of deep winter mixing, resulting in stable conditions in the chemocline, favored the preservation of relatively high PSB biomass. Prediction of circulation depth, which depends mainly on the weather conditions and dynamics of the water level, is required for prediction of PSB abundance in Lake Shira. These results may be useful for paleolimnological reconstructions of the history of the lake based on the remnants of purple sulfur bacteria in bottom sediments. © 2016, Pleiades Publishing, Ltd.

Scopus,
WOS
Держатели документа:
Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Rogozin, D. Y.; Zykov, V. V.; Tarnovskii, M. O.

Найти похожие
12.


   
    Disturbance of meromixis in saline Lake Shira (Siberia, Russia): Possible reasons and ecosystem response / D. Y. Rogozin [et al.] // Limnologica. - 2017. - Vol. 66. - P12-23, DOI 10.1016/j.limno.2017.06.004. - Cited References:43. - We acknowledge the financial support by the Russian Foundation for Basic Research, grant No 16-05-00091. The research was partially supported by the Council on grants from the President of the Russian Federation for support of leading scientific schools (grant NSh-9249.2016.5). Many thanks to colleagues from analytical laboratory of Institute of Biophysics SB RAS for sulphide determination. We thank the employees of Middle Siberian Department of Russian Hydro Meteorological Service in Krasnoyarsk for providing the data on weather and Lake Shira level. We are grateful to Dr. Martin Schmid and two anonymous reviewers for valuable comments which helped us to improve the article considerably. . - ISSN 0075-9511. - ISSN 1873-5851
РУБ Limnology
Рубрики:
SHUNET SOUTH SIBERIA
   MEROMICTIC LAKE

   VERTICAL STRATIFICATION

   WINTER

Кл.слова (ненормированные):
Meromixis -- Mixolimnion -- Stratification -- Stability -- Mixing -- Food chain -- Purple sulfur bacteria
Аннотация: Saline Lake Shira (Southern Siberia, Russia) was meromictic through the observation period 2002-2015. During the under-ice periods of 2015 and 2016, complete mixing of the water column was recorded for the first time, and hydrogen sulphide temporarily disappeared from the water column of the lake; i.e. in those years the lake turned to holomixis. In the summer of 2015, a sharp increase in chlorophyll a, organic carbon, zooplankton, and phytoflagellates was observed in the lake, which was probably due to the release of nutrients from the monimolimnion. Purple sulfur bacteria completely disappeared from the lake after the first mixing in 2015, and did not reappear despite the restoration of meromixis in 2017. Thus, it was demonstrated that purple sulfur bacteria are sensitive to the weakening of the stratification of Lake Shira. Based on the data of the seasonal monitoring of temperature and salinity profiles over the period 2002-2017, it was presumed that the main cause of deep mixing in 2015 was the weakening of the salinity gradient due to strong wind impact and early ice retreat in the spring of 2014. In addition, it was shown that in previous years a significant contribution to the maintenance of meromixis was made by an additional influx of fresh water, which caused a rise in the lake level in the period 2002-2007. Thus, we identified a relationship between the stratification regime of the lake and the change in its level, which provides valuable information both for the forecast of Water quality and for reconstruction of the Holocene climate humidity in this region of Southern Siberia from the sediment cores of Lake Shira.

WOS,
Смотреть статью
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Akademgorodok 50-50, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodny 79, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Siberian Branch, Inst Comp Modeling, Akademgorodok 50-44, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Rogozin, D. Y.; Tarnovsky, M. O.; Belolipetskii, V. M.; Zykov, V. V.; Zadereev, E. S.; Tolomeev, A. P.; Drobotov, A. V.; Barkhatov, Y. V.; Gaevsky, N. A.; Gorbaneva, T. B.; Kolmakova, A. A.; Degermendzhi, A. G.; Russian Foundation for Basic Research [16-05-00091]; Russian Federation [NSh-9249.2016.5]

Найти похожие
13.


   
    Dissolution and mixing of flavin mononucleotide in microfluidic chips for bioassay / K. I. Belousov [et al.] // J. Phys. Conf. Ser. - 2016. - Vol. 741, Is. 1, DOI 10.1088/1742-6596/741/1/012058 . - ISSN 1742-6588
Кл.слова (ненормированные):
Bioassay -- Biomolecules -- Dissolution -- Flow of fluids -- Fluidic devices -- Microfluidics -- Nanostructures -- Optoelectronic devices -- Oscillating flow -- Photonics -- Analysis of liquids -- Concentration distributions -- Constant flow rates -- Flavin mono nucleotides (FMN) -- Flavin mononucleotides -- Frequency of oscillation -- Uniform distribution -- Variable flow rate -- Mixing
Аннотация: Dissolution and mixing of flavin mononucleotide (FMN), which activates a luminescent reaction, were considered in various designs of microfluidic chip for pollution analysis of liquid samples. The aim was to determine the velocity mode of fluid flow ensured the uniform distribution of the FMN in the reaction chamber. Simulation of concentration distribution of FMN in various designs of microfluidic chips was conducted. It was shown that the passive mixing techniques based on the constant flow rate didn't provide mixing of FMN in acceptable time (3 seconds). The most efficient mixing was achieved using variable flow rate with a gradually increasing frequency of oscillation. © Published under licence by IOP Publishing Ltd.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Department of Material Science and Nanotechnology, ITMO University, St. Petersburg, Russian Federation
Department of Biophysics, Siberian Federal University, Krasnoyarsk, Russian Federation
Nanobiotech Lab, St. Petersburg Academic University, St. Petersburg, Russian Federation
Laboratory of Photobiology, Institute of Biophysics SB RAS, Krasnoyarsk, Russian Federation
Laboratory of Information and Measurement Biosensor and Chemosensor Microsystems, Institute for Analytical Instrumentation RAS, St. Petersburg, Russian Federation

Доп.точки доступа:
Belousov, K. I.; Denisov, I. A.; Lukyanenko, K. A.; Yakimov, A. S.; Bukatin, A. S.; Kukhtevich, I. V.; Sorokin, V. V.; Esimbekova, E. N.; Belobrov, P. I.; Evstrapov, A. A.

Найти похожие
14.


   
    Characterization of polymeric microparticles based on resorbable polyesters of oxyalkanoic acids as a platform for deposition and delivery of drugs / A. V. Goreva [et al.] // Polym. Sci. Ser. A. - 2012. - Vol. 54, Is. 2. - P94-105, DOI 10.1134/S0965545X12020022. - Cited References: 33. - This work was supported by the program for Support of Leading Scientific Schools of the Russian Federation (project no. 11.G34.31.0013.2010, Biotechnology of New Biomaterials) and the program of integrated studies of the Presidium of the Siberian Branch, Russian Academy of Sciences (project no. 93). . - 12. - ISSN 0965-545X
РУБ Polymer Science
Рубрики:
IN-VITRO RELEASE
   POLYHYDROXYBUTYRATE MICROSPHERES

   BLENDS

   RIFAMPICIN

   BIOCOMPATIBILITY

   DEGRADATION

   FORMULATION

   COMPOSITE

   CARRIERS

   MODEL

Аннотация: The effect of the preparation technique (chemical composition of a polymer, type and method of emulsion mixing, and molecular mass of a drug) on the yield, structure, and size of microparticles obtained from resorbable polyesters of microbiological origin, polyhydroxyalkanoates, is studied. It is found that the concentration of the polymer solution and the method of emulsion mixing are the most significant factors affecting the diameter of microparticles based on polyhydroxyalkanoates; the surface structure of particles depends to a higher extent on the chemical composition of the polymer. The family of microparticles from 100-200 nm to 50-70 mu m in diameter is synthesized. It is shown that the rate of drug release from microparticles in vitro into the medium is higher in the case of 3-hydroxybutyrate copolymers with 3-hydroxyvalerate than in the case of the homopolymer of 3-hydroxybutyrate. This parameter increases with the content of 3-hydroxyvalerate units in the copolymer and the porosity and mass fraction of the drug in particles with a decrease in their sizes. For in vitro systems containing a phosphate buffer, variation in the preparation parameters makes it possible to obtain microparticles with various characteristics suitable for deposition of drugs. For microparticles obtained from polyhydroxyalkanoates and having different diameters, the mathematical description of the kinetics of drug release from the polymer matrix is provided.

Держатели документа:
[Goreva, A. V.
Shishatskaya, E. I.
Volova, T. G.] Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia
[Shishatskaya, E. I.
Volova, T. G.] Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia
[Goreva, A. V.
Sinskey, A. J.] MIT, Cambridge, MA 02139 USA : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Goreva, A.V.; Shishatskaya, E.I.; Volova, T.G.; Sinskey, A.J.

Найти похожие
15.


   
    Change in the circulation regime in the stratified saline Lake Shira (Siberia, Republic of Khakassia) / V. M. Belolipetskii [et al.] // Dokl. Earth Sci. - 2017. - Vol. 474, Is. 2. - P649-652, DOI 10.1134/S1028334X17060010 . - ISSN 1028-334X
Кл.слова (ненормированные):
Arid regions -- Lakes -- Mixing -- Climate scenarios -- Continental climate -- In-situ data -- Incomplete mixing -- Simplified mathematical model -- Strong winds -- Vertical stratification -- Vertical structures -- Reservoirs (water)
Аннотация: The in-situ data on the vertical structure and stability of the vertical stratification of saline Lake Shira over the past decade (2007–2015) are analyzed. Simplified mathematical models have shown that strong wind in the autumn of 2014 together with rather thick ice in the winter of 2015 caused a change in the circulation regime of this water reservoir from meromictic (incomplete mixing) to holomictic (compete mixing). Based on the results obtained, a circulation regime for deep saline lakes located in the continental climate zone, in particular, in the arid zones of Southern Siberia (Khakassia, Transbaikal, and Altai) can be predicted under various climate scenarios of the future. © 2017, Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Belolipetskii, V. M.; Degermendzhi, A. G.; Genova, S. N.; Rogozin, D. Y.

Найти похожие
16.


   
    Assessing the reliability of quantitative fatty acid signature analysis and compound-specific isotope analysis-based mixing models for trophic studies / I. Prokopkin, O. Makhutova, E. Kravchuk [et al.] // Biomolecules. - 2021. - Vol. 11, Is. 11. - Ст. 1590, DOI 10.3390/biom11111590 . - ISSN 2218-273X
Кл.слова (ненормированные):
CSIA?based mixing model -- Daphnia -- Fatty acids -- Food -- IsoError -- QFASA -- fatty acid -- algal cell culture -- animal experiment -- Article -- Chlorella -- compound specific isotope analysis -- controlled study -- Cryptomonas -- Daphnia -- fatty acid analysis -- gas chromatography -- isotope analysis -- lipid composition -- mathematical model -- nonhuman -- quantitative fatty acid signature analysis -- reliability -- zooplankton
Аннотация: The study of the trophic relationships of aquatic animals requires correct estimates of their diets. We compared the quantitative fatty acid signature analysis (QFASA) and the isotope?mixing model IsoError, based on the compound?specific isotope analysis of fatty acids (CSIA?FA), which are potentially effective models for quantitative diet estimations. In a 21?day experiment, Daphnia was fed a mixture of two food items, Chlorella and Cryptomonas, which were supplied in nearly equal proportions. The percentages and isotope values of the FAs of the algal species and Daphnia were measured. The IsoError based on CSIA?FA gave an estimation of algae consumption using only one FA, 18:3n?3. According to this model, the proportion of consumption of Chlorella decreased while the proportion of consumption of Cryptomonas increased during the experiment. The QFASA model was used for two FA subsets—the extended?dietary subset, which included sixteen FAs, and the dietary one, which included nine FAs. According to both subsets, the portion of consumed Chlorella decreased from Day 5 to 10 and then increased at Day 21. The comparison of the two model approaches showed that the QFASA model is a more reliable method to determine the contribution of different food sources to the diet of zooplankton than the CSIA?based mixing model. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Institute of Biophysics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Prokopkin, I.; Makhutova, O.; Kravchuk, E.; Sushchik, N.; Anishchenko, O.; Gladyshev, M.

Найти похожие
17.


   
    Active mixing of immobilised enzymatic system in microfluidic chip / K. A. Lukyanenko [et al.] // Micro Nano Lett. - 2017. - Vol. 12, Is. 6. - P377-381, DOI 10.1049/mnl.2016.0646. - Cited References:17. - The research was supported by the grant of the Russian Science Foundation (project no. 15-19-10041). . - ISSN 1750-0443
РУБ Nanoscience & Nanotechnology + Materials Science, Multidisciplinary
Рубрики:
POLY(METHYL METHACRYLATE)
   SURFACE MODIFICATION

   POINT

   DEVICES

   PMMA

Аннотация: Parameters for sample introduction, dried reagents dissolution and mixing with sample for bienzyme system NAD(H):FMN-oxidoreductase and luciferase immobilised in microfluidic chip were successfully determined. Numerical simulations of reaction chamber geometry, flavin mononucleotide (FMN) escape from starch gel and mixing options were conducted to achieve higher sensitivity of bioluminescent reaction. Results of numerical simulations were verified experimentally. The active mixer for dried reagents was made from an electro-mechanical speaker's membrane which was connected to the input of the chip. Such a mixer provided better efficiency than a passive mixing, and it is simple enough for use in point-of-care devices with any systems based on immobilised enzymes in chips.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
ITMO Univ, St Petersburg 197101, Russia.
Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
Inst Analyt Instrumentat, St Petersburg 198095, Russia.

Доп.точки доступа:
Lukyanenko, Kirill A.; Belousov, Kirill I.; Denisov, Ivan A.; Yakimov, Anton S.; Esimbekova, Elena N.; Bukatin, Anton S.; Evstrapov, Anatoly A.; Belobrov, Peter I.; Russian Science Foundation [15-19-10041]

Найти похожие
18.


   
    A new composite material based on alumina nanofibers and detonation nanodiamonds: synthesis, characterization, and sensing application / N. O. Ronzhin, E. D. Posokhina, E. V. Mikhlina [et al.] // J. Nanopart. Res. - 2021. - Vol. 23, Is. 9. - Ст. 199, DOI 10.1007/s11051-021-05309-y. - Cited References:57. - This work is partially supported by the Russian Foundation for Basic Research, Project 18-29-19078 (E. V. Mikhlina, M. M. Simunin, I. Ryzhkov). . - ISSN 1388-0764. - ISSN 1572-896X
РУБ Chemistry, Multidisciplinary + Nanoscience & Nanotechnology + Materials
Рубрики:
ELECTROCHEMICAL ENERGY-STORAGE
   SELECTIVE DETECTION

   PHENOL DETECTION

Кл.слова (ненормированные):
Nanodiamonds -- Alumina nanofibers -- Composite -- Indicator system -- Phenol
Аннотация: The development of inexpensive, easy-to-produce, and easy-to-use analytical tools for detection of harmful and toxic substances is a relevant research problem with direct applications in environmental monitoring and protection. In this work, we propose a novel composite material based on alumina nanofibers and detonation nanodiamonds for detection of phenol in aqueous medium. The composite material was obtained by mixing an aqueous suspension of alumina nanofibers with a diameter of 10-15 nm and a length of several microns and a hydrosol of nanodiamonds with an average cluster size of 70 nm. The mechanisms underlying the interaction of these nanomaterials are clarified and the physicochemical properties of the composite are investigated. The SEM and TEM studies show that the obtained composite has a network structure, in which clusters of nanodiamonds (10-20 nm in diameter) are distributed over the surface of nanofibers. Coupling of nanomaterials occurs due to opposite signs of their zeta potentials, which results in electrostatic attraction and subsequent chemical bonding as indicated by the X-ray photoelectron spectroscopy and simultaneous thermal analysis. The bonding apparently occurs between functional groups (mainly carboxyl) on the surface of nanodiamonds and amphoteric hydroxyl groups on the surface of alumina nanofibers. The proposed composite allows an easy-to-perform colorimetric analysis for qualitative and quantitative determination of phenol in aqueous samples with linear response over a wide range of concentrations (0.5-106 mu M). Multiple tests have shown that the composite is reusable and retains its catalytic function for at least 1 year during storage at room temperature.

WOS
Держатели документа:
Inst Biophys SB RAS, Akademgorodok 50-50, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodny 79, Krasnoyarsk 660041, Russia.
Inst Computat Modelling SB RAS, Akademgorodok 50-44, Krasnoyarsk 660036, Russia.
Inst Chem & Chem Technol SB RAS, Akademgorodok 50-24, Krasnoyarsk 660036, Russia.
Fed Res Ctr KSC SB RAS, Akademgorodok 50-38, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Ronzhin, Nikita O.; Posokhina, Ekaterina D.; Mikhlina, Elena, V; Mikhlin, Yuri L.; Simunin, Mikhail M.; Tarasova, Lyudmila S.; Vorobyev, Sergey A.; Bondar, Vladimir S.; Ryzhkov, Ilya I.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [18-29-19078]

Найти похожие
19.


   
    A model study of the effect of weather forcing on the ecology of a meromictic Siberian lake / I. G. Prokopkin, E. S. Zadereev // J. Oceanology Limnology. - 2018, DOI 10.1007/s00343-018-7329-9 . - Article in press. - ISSN 2096-5508
Кл.слова (ненормированные):
food web -- meromictic lake -- numerical model -- sensitivity analysis -- stratification -- weather forcing
Аннотация: We used a Lake Shira numerical model to estimate the response of the ecosystem of a saline meromictic lake to variations in weather parameters during the growing season. The sensitivity analysis of the model suggests that compared to other external (nutrient inflows) and internal (spring biomasses of food-web components) factors, weather parameters are among the most influential for both mixolimnetic (phyto- and zooplankton) and monimolimnetic (purple sulfur bacteria, sulfur reducing bacteria and hydrogen sulfide) food-web components. Calculations with different weather scenarios shows how changes in the water temperature and mixing depth affect mixolimnetic and monimolimnetic food-web components and the depth of the oxic-anoxic interface in a meromictic lake. When weather forcing stimulates an increase in the biomass of food-web components in the mixolimnion, it produces cascading effects that lead to three results: 1) a higher content of detritus in the water column; 2) a higher content of hydrogen sulfide in the monimolimnion; 3) raising of the oxic-anoxic interface closer to the water-air surface. This cascading effect is complicated by the negative correlation between two light dependent primary producers located at different depths—phytoplankton in the mixolimnion and purple sulfur bacteria at the oxic-anoxic interface. Thus, weather conditions that stimulate higher phytoplankton biomass are associated with a higher detritus content and lower biomass of purple sulfur bacteria, a higher content of hydrogen sulfide and a shallower oxic-anoxic interface. The same weather conditions (higher wind, lower cloud cover, and lower air temperature) promote a scenario of less stable thermal stratification. Thus, our calculations suggest that weather parameters during the summer season strongly control the mixing depth, water temperature and the mixolimnetic food web. An effect of biogeochemical and physical interactions on the depth of the oxicanoxic interface is also detectable. However, intra- and interannual climate and weather effects will be more important for the control of meromixis stability. © 2018, Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics SB RAS, Krasnoyarsk Scientific Center, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Svobodnii av. 79, Krasnoyarsk, 660079, Russian Federation

Доп.точки доступа:
Prokopkin, I. G.; Zadereev, E. S.

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)