Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Serine<.>)
Общее количество найденных документов : 6
Показаны документы с 1 по 6
1.


   
    Dynamics of amino acid composition of the medium during culture of isolated liver and kidneys by the controlled perfusion method / V. A. Barashkov [et al.] // Bulletin of Experimental Biology and Medicine. - 1976. - Vol. 80, Is. 11. - P1305-1307 . - ISSN 0007-4888
Кл.слова (ненормированные):
amino acid -- dog -- in vitro study -- kidney perfusion -- liver perfusion -- theoretical study
Аннотация: The dynamics of the amino acid composition of the medium was investigated during perfusion of the dog liver and kidney for 6 h with a mixture of autogenous plasma and medium No.199 in the ratio of 2:3. During culture of the kidney for 6 h the histidine concentration in the medium increased by 2.2 times compared with initially, the concentration of glutamic acid by 1.7 times, and of alanine and lysine by 1.6 times, whereas the concentrations of arginine, serine, and aspartic acid fell by 3.3 times and those of glutamine with threonine by 2.5 times. During perfusion of the liver the concentration of glutamic acid rose by 2.9 times, of alanine by 2.3 times, cystine by 2.0 times, and glycine by 1.5 times. The concentration of tyrosine fell by half, and that of phenylalanine and serine by 1.4 times. The arginine concentration fell so quickly during perfusion of the liver that by the second hour after the beginning of perfusion no arginine could be found in the medium. The method of amino acid analysis during organ culture as described can be used as a method of developing and correcting culture media.

Scopus
Держатели документа:
Siberian Div., Dept. Biophys., L.V. Kirenskii Inst. Phys., Acad. Sci. USSR, Krasnoyarsk, Russia : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Barashkov, V.A.; Gitel'zon, I.I.; Nefedov, V.P.; Trubachev, I.N.

Найти похожие
2.


   
    Dynamics of amino acid composition of the medium in isolated organ culture by the controlled perfusion method / V. A. Barashkov [et al.] // Bulletin of Experimental Biology and Medicine. - 1975. - Vol. 80, Is. 7. - P759-761 . - ISSN 0007-4888
Кл.слова (ненормированные):
amino acid -- tissue culture medium -- dog -- in vitro study -- organ culture -- organ perfusion -- theoretical study
Аннотация: The dynamics of the amino acid composition of the perfusion fluid was investigated during adequate perfusion of isolated dog organs (the thorax and a complex consisting of the thoracic organs, kidneys, and liver). The concentration of amino acids such as histidine, lysine, and alanine in the perfusion fluid 6 h after the beginning of perfusion of the organ complex was higher, whereas that of arginine, serine, aspartic acid, threonine with glutamine, isoleucine, proline, leucine, and valine was much lower than initially. In experiments on the isolated thorax the dynamics of the amino acid composition of the medium was studied during perfusion for 4 h. The concentration of alanine, lysine, and histidine in the medium increased, whereas those of serine, aspartic acid, isoleucine, tyrosine, and phenylalanine decreased.

Scopus
Держатели документа:
Siberian Div., Dept. Biophys., L.V. Kirenskii Inst. Phys., Acad. Sci. USSR, Krasnoyarsk, Russia : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Barashkov, V.A.; Gitel'zon, I.I.; Nefedov, V.P.; Trubachev, I.N.

Найти похожие
3.


   
    Role of conservative residue Cys158 in the formation of an active photoprotein complex of obelin [Text] / V. S. Bondar [et al.] // Biochem.-Moscow. - 2001. - Vol. 66, Is. 9. - P1014-1018, DOI 10.1023/A:1012377827626. - Cited References: 21 . - ISSN 0006-2979
РУБ Biochemistry & Molecular Biology
Рубрики:
CDNA
   EXPRESSION

   AEQUORIN

   SEQUENCE

   CLONING

Кл.слова (ненормированные):
photoproteins -- obelin -- apoobelin mutants -- bioluminescence
Аннотация: Using site directed mutagenesis, the conservative residue Cys158 of recombinant apoobelin was substituted for sera ine (C158S, S-mutant) or alanine (C158A, A-mutant). These point mutations resulted in significant changes in the apoobelin structure accompanied by slowing of photoprotein complex formation, decrease of its stability, and changing of its bioluminescence characteristics. The enzymatic properties of the photoprotein decreased in the series: wild-type protein > S-mutant > A-mutant. This is consistent with rank of nucleophilicity SH > OH > CH3 of cysteine, serine, and alanine side chain functional groups, respectively. Possible mechanisms of the involvement of the apoobelin Cys158 SH-group in the formation of the enzyme-substrate complex are considered.

Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Bondar, V.S.; Purtov, K.V.; Malikova, N.P.; Frank, L.A.; Illarionov, B.A.

Найти похожие
4.


   
    All Ca2+-binding loops of light-sensitive ctenophore photoprotein berovin bind magnesium ions: The spatial structure of Mg2 +-loaded apo-berovin / L. P. Burakova [et al.] // J. Photochem. Photobiol. B Biol. - 2016. - Vol. 154. - P57-66, DOI 10.1016/j.jphotobiol.2015.11.012 . - ISSN 1011-1344
Кл.слова (ненормированные):
Aequorin -- Bioluminescence -- Calcium -- Coelenterazine -- Obelin
Аннотация: Light-sensitive photoprotein berovin accounts for a bright bioluminescence of ctenophore Beroe abyssicola. Berovin is functionally identical to the well-studied Ca2+-regulated photoproteins of jellyfish, however in contrast to those it is extremely sensitive to the visible light. Berovin contains three EF-hand Ca2+-binding sites and consequently belongs to a large family of the EF-hand Ca2+-binding proteins. Here we report the spatial structure of apo-berovin with bound Mg2+ determined at 1.75 A. The magnesium ion is found in each functional EF-hand loop of a photoprotein and coordinated by oxygen atoms donated by the side-chain groups of aspartate, carbonyl groups of the peptide backbone, or hydroxyl group of serine with characteristic oxygen-Mg2+ distances. As oxygen supplied by the side-chain of the twelfth residue of all Ca2+-binding loops participates in the magnesium ion coordination, it was suggested that Ca2+-binding loops of berovin belong to the mixed Ca2+/Mg2+ rather than Ca2+-specific type. In addition, we report an effect of physiological concentration of Mg2+ on bioluminescence of berovin (sensitivity to Ca2+, rapid-mixed kinetics, light-sensitivity, thermostability, and apo-berovin conversion into active protein). The different impact of physiological concentration of Mg2+ on berovin bioluminescence as compared to hydromedusan photoproteins was attributed to different affinities of the Ca2 +-binding sites of these photoproteins to Mg2+. © 2015 Elsevier B.V. All rights reserved.

Scopus,
WOS
Держатели документа:
Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Akademgorodok 50, Krasnoyarsk, Russian Federation
National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, China
IHuman Institute, ShanghaiTech University, 99 Haike Road, Shanghai, China

Доп.точки доступа:
Burakova, L. P.; Natashin, P. V.; Malikova, N. P.; Niu, F.; Pu, M.; Vysotski, E. S.; Liu, Z.-J.
Свободных экз. нет
Найти похожие
5.


   
    Bioluminescent and biochemical properties of Cys-free Ca2+-regulated photoproteins obelin and aequorin / E. V. Eremeeva, E. S. Vysotski // J. Photochem. Photobiol. B Biol. - 2017. - Vol. 174. - P97-105, DOI 10.1016/j.jphotobiol.2017.07.021 . - ISSN 1011-1344
Кл.слова (ненормированные):
Bioluminescence -- Coelenteramide -- Coelenterazine -- Cysteine -- Photoprotein -- Serine
Аннотация: Bioluminescence of a variety of marine coelenterates is determined by Ca2+-regulated photoproteins. A strong interest in these proteins is for their wide analytical potential as intracellular calcium indicators and labels for in vitro binding assays. The presently known hydromedusan Ca2+-regulated photoproteins contain three (aequorin and clytin) or five (obelin and mitrocomin) cysteine residues with one of them strictly conserved. We have constructed Cys-free aequorin and obelin by substitution of all cysteines to serine residues. Such mutants should be of interest for researchers by the possibility to avoid the incubation with dithiothreitol (or ?-mercaptoethanol) required for producing an active photoprotein that is important for some prospective analytical assays in which the photoprotein is genetically fused with a target protein sensitive to the reducing agents. Cys-free mutants were expressed in Escherichia coli, purified, and characterized regarding the efficiency of photoprotein complex formation, functional activity, and conformational stability. The replacement of cysteine residues has been demonstrated to affect different properties of aequorin and obelin. Cys-free aequorin displays a two-fold lower specific bioluminescence activity but preserves similar activation properties and light emission kinetics compared to the wild-type aequorin. In contrast, Cys-free obelin retains only ~ 10% of the bioluminescence activity of wild-type obelin as well as binding coelenterazine and forming active photoprotein much less effectively. In addition, the substitution of Cys residues drastically changes the bioluminescence kinetics of obelin completely eliminating a “fast” component from the light signal decay curve. At the same time, the replacement of Cys residues increases conformational flexibility of both aequorin and obelin molecules, but again, the effect is more prominent in the case of obelin. The values of thermal midpoints of unfolding (Tm) were determined to be 53.3 ± 0.2 and 44.6 ± 0.4 °C for aequorin and Cys-free aequorin, and 49.1 ± 0.1 and 28.8 ± 0.3 °C for obelin and Cys-free obelin, respectively. Thus, so far only Cys-free aequorin is suitable as a partner for fusing with a tag sensitive to reducing agents since the aequorin mutant preserves almost 50% of the bioluminescent activity and can be produced with a substantial yield. © 2017 Elsevier B.V.

Scopus,
Смотреть статью
Держатели документа:
Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Eremeeva, E. V.; Vysotski, E. S.

Найти похожие
6.


   
    Bioluminescent and biochemical properties of Cys-free Ca2+-regulated photoproteins obelin and aequorin / E. V. Eremeeva, E. S. Vysotski // J. Photochem. Photobiol. B-Biol. - 2017. - Vol. 174. - P97-105, DOI 10.1016/j.jphotobio1.2017.07.021. - Cited References:54. - This work was supported by the state budget allocated to the fundamental research at the Russian Academy of Sciences (projects 03562016-0712 and 0356-2015-0103) and the RFBR grant 17-04-00764. . - ISSN 1011-1344
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
SEQUENCE-ANALYSIS
   APO-OBELIN

   INTRINSIC FLUORESCENCE

   COELENTERAZINE

Кл.слова (ненормированные):
Bioluminescence -- Coelenterazine -- Photoprotein -- Coelenteramide -- Cysteine -- Serine
Аннотация: Bioluminescence of a variety of marine coelenterates is determined by Ca2+-regulated photoproteins. A strong interest in these proteins is for their wide analytical potential as intracellular calcium indicators and labels for in vitro binding assays. The presently known hydromedusan Ca2+-regulated photoproteins contain three (aequorin and clytin) or five (obelin and mitrocomin) cysteine residues with one of them strictly conserved. We have constructed Cys-free aequorin and obelin by substitution of all cysteines to serine residues. Such mutants should be of interest for researchers by the possibility to avoid the incubation with dithiothreitol (or p-mercaptoethanol) required for producing an active photoprotein that is important for some prospective analytical assays in which the photoprotein is genetically fused with a target protein sensitive to the reducing agents. Cys-free mutants were expressed in Escherichia coil, purified, and characterized regarding the efficiency of photoprotein complex formation, functional activity, and conformational stability. The replacement of cysteine residues has been demonstrated to affect different properties of aequorin and obelin. Cys-free aequorin displays a two-fold lower specific bioluminescence activity but preserves similar activation properties and light emission kinetics compared to the wild -type aequorin. In contrast, Cys-free obelin retains only 10% of the bioluminescence activity of wild-type obelin as well as binding coelenterazine and forming active photoprotein much less effectively. In addition, the substitution of Cys residues drastically changes the bioluminescence kinetics of obelin completely eliminating a "fast" component from the light signal decay curve. At the same time, the replacement of Cys residues increases conformational flexibility of both aequorin and obelin molecules, but again, the effect is more prominent in the case of obelin. The values of thermal midpoints of unfolding (Tm) were determined to be 53.3 0.2 and 44.6 0.4 C for aequorin and Cys-free aequorin, and 49.1 0.1 and 28.8 0.3 C for obelin and Cys-free obelin, respectively. Thus, so far only Cys-free aequorin is suitable as a partner for fusing with a tag sensitive to reducing agents since the aequorin mutant preserves almost 50% of the bioluminescent activity and can be produced with a substantial yield.

WOS,
Смотреть статью
Держатели документа:
RAS, Photobiol Lab, Inst Biophys, Fed Res Ctr,Krasnoyarsk Sci Ctr,SB, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Eremeeva, Elena V.; Vysotski, Eugene S.; Russian Academy of Sciences [03562016-0712, 0356-2015-0103]; RFBR [17-04-00764]

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)