Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (5)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Soils<.>)
Общее количество найденных документов : 42
Показаны документы с 1 по 20
 1-20    21-40   41-42 
1.


   
    An elementary multistage discrete model of soil organic matter transformations with a continuous scale of stability / S. I. Bartsev, A. A. Pochekutov // Ecol. Model. - 2019. - Vol. 393. - P61-65, DOI 10.1016/j.ecolmodel.2018.12.012 . - ISSN 0304-3800
Кл.слова (ненормированные):
Kinetics of soil organic matter transformations -- Model of soil organic matter transformations -- Soil organic matter -- Biogeochemistry -- Biological materials -- Decay (organic) -- Organic compounds -- Soils -- Continuous scale -- Discrete modeling -- Elementary model -- Law of mass action -- Multistage process -- Realistic model -- Soil organic matters -- Transformation process -- Mathematical transformations -- biotransformation -- chemical alteration -- decomposition -- numerical model -- reaction kinetics -- soil organic matter
Аннотация: The proposed elementary mathematical model of formation and decomposition of soil organic matter (SOM) is based on using equations of chemical kinetics to describe the multistage process of SOM transformation. The model both describes each step of transformation in accordance with the law of mass action and postulates the trend of increasing stability of the matter towards further transformation, which is common for all steps. Analysis of the model demonstrates that it is extremely difficult to construct a realistic model of SOM dynamics by assembling elementary models of the type presented in this study into the full description of SOM transformation processes. © 2018 Elsevier B.V.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Institute of Fundamental Biology and Biotechnology of Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Bartsev, S. I.; Pochekutov, A. A.

Найти похожие
2.


   
    Autochthonous microbial cenosis as a potential source of antagonistic strains for biological struggle against wheat fusarium in biotechnical life support systems / S. V. Khizhnyak, S. A. Petrushkina, V. E. Chernov [и др.] // Aviakosmicheskaya Ekol. Med. - 2020. - Vol. 54, Is. 3. - С. 84-91, DOI 10.21687/0233-528X-2020-54-3-84-91 . - ISSN 0233-528X
Кл.слова (ненормированные):
Biological protection of plants against diseases -- Biotechnical life support systems -- Fusarium -- Wheat
Аннотация: The paper dwells upon the use of autochthonous microbial cinosis as a source of antagonistic strains for bioprotection of wheat against Fusarium in biotechnical life support systems (BT LSS). Six bacterial strains antagonistic to 9 phytopathogenic fungi Fusarium responsible for seedling blight of wheat in BT LSS were isolated from hydroponic solutions and artificial soils and subject to the genetic typing. Five strains represent bacteria g. Bacillus, one strain - Chryseobacterium. The 16S rRNA sequencing showed 94 to 100 % genetic affinity with typical cultures. All spore-forming strains-antagonists were capable of germinating and going through the whole development cycle In the presence of swelling wheat seeds. The isolates did not demonstrate antagonism to each other and can grow in a mixed culture. Spectra and levels of the antiobiotic activity of the antagonists, along with the Fusarium sensitivity to their antibiotic action, differed statistically (p < 0.001). None of the antagonists was capable of suppressing the entire Fusarium spectrum detected in BT LSS individually. At the same time, treatment of seeds with a mixture of antagonists suppressed totally fungal development in wheat artificially inoculated by Fusarium conidia from a BT LSS roll culture, and had a statistical stimulating effect (p = 0.01) on seedlings. © 2020 Slovo Ltd. All rights reserved.

Scopus
Держатели документа:
Krasnoyarsk State Agrarian University, Russian Federation
Military Medical Academy named after S.M. Kirov, St. Petersburg, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center «Krasnoyarsk Science Center SB RAS», Russian Federation
Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Khizhnyak, S. V.; Petrushkina, S. A.; Chernov, V. E.; Ushakova, S. A.; Tikhomirov, A. A.

Найти похожие
3.


   
    Biodegradation of polyhydroxyalkanoate films in natural environments / A. N. Boyandin [et al.] // Macromolecular Symposia. - 2012. - Vol. 320, Is. 1. - P38-42, DOI 10.1002/masy.201251004 . - ISSN 1022-1360
Кл.слова (ненормированные):
biodegradation -- biopolymers -- microbial degradation -- polyhydroxyalkanoates -- Acinetobacters -- Acremonium -- Alcaligenes -- Burkholderia -- Degradation rate -- Degrading activities -- Degrading bacteria -- Enterobacter -- Hydroxyvalerate -- Mass loss -- Microbial degradation -- Micromycetes -- Natural environments -- Paecilomyces -- Poly-3-hydroxybutyrate -- Poly-hydroxyalkanoate -- Polyhydroxyalkanoates -- SIBERIA -- South China sea -- Stenotrophomonas -- Trichoderma -- Tropical soils -- Viet Nam -- Xanthomonas -- Bacteria -- Bacteriology -- Biopolymers -- Degradation -- Seawater -- Soils -- Tropics -- Biodegradation
Аннотация: Biodegradation of film specimens from polyhydroxyalkanoates (PHAs) of two types - poly-3-hydroxybutyrate (PHB) and poly-3-hydroxybutyrate-co-3- hydroxyvalerate (PHBV) - was analysed in different environments: tropical sea waters of the South China Sea (Nha Trang, Vietnam) and soils in the environs of Hanoi (Vietnam), Nha Trang (Vietnam) and Krasnoyarsk (Siberia, Russia). In seawater, the mass loss of the specimens of both types was almost equal. However, in tropical soils, PHB degraded quicker than PHBV. In the Siberian soil, the degradation rate of the PHBV was generally higher than that of PHBV. Analysis of molecular mass of PHA specimens showed its decreasing during biodegradation. In the tropical sea conditions, PHA degrading microorganisms were represented by bacteria of Enterobacter, Bacillus and Gracilibacillus genera. Among PHA degrading bacteria, Burkholderia, Alcaligenes, Bacillus, Mycobacterium and Streptomyces genera were identified in Vietnamese soils, and Variovorax, Stenotrophomonas, Acinetobacter, Pseudomonas, Bacillus and Xanthomonas genera in Siberian soils. Micromycetes of Gongronella, Paecilomyces, Penicillium and Trichoderma genera exhibited PHA degrading activity in Vietnamese soils, and Paecilomyces, Penicillium, Acremonium, Verticillium and Zygosporium genera - in Siberian soils. Copyright В© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Scopus
Держатели документа:
Institute of Biophysics, SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk, 660041, Russian Federation
Joint Vietnam-Russian Tropical Research and Technological Centre, Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Viet Nam
Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8 Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
Massachusetts Institute of Technology, Cambridge, MA 02139, United States : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Boyandin, A.N.; Rudnev, V.P.; Ivonin, V.N.; Prudnikova, S.V.; Korobikhina, K.I.; Filipenko, M.L.; Volova, T.G.; Sinskey, A.J.

Найти похожие
4.


   
    Biological activity of carbonic nano-structures—comparison via enzymatic bioassay / A. S. Sachkova [et al.] // J. Soils Sed. - 2018, DOI 10.1007/s11368-018-2134-9 . - Article in press. - ISSN 1439-0108
Кл.слова (ненормированные):
Antioxidant activity -- Bioactive compounds -- Fullerenol -- Humic substances -- Reactive oxygen species -- Toxicity
Аннотация: Purpose: The aim of the work is to compare the biological activity of carbonic nano-structures of natural and artificial origination, namely, humic substances (HS) and fullerenols. Materials and methods: The representative of the fullerenol group, С60Оy(OH)x where у + x = 20–22, was chosen. Enzyme-based luminescent bioassay was applied to evaluate toxicity and antioxidant properties of HS and fullerenol (F); chemiluminescent luminol method was used to study a content of reactive oxygen species (ROS) in the solutions. Toxicity of the bioactive compounds was evaluated using effective concentrations ЕС50; detoxification coefficients DOxT were applied to study and compare antioxidant activity of the compounds. Antioxidant activity and ranges of active concentrations of the bioactive compounds were determined in model solutions of organic and inorganic oxidizers—1,4-benzoquinone and potassium ferricianide. Results and discussion: Values of ЕС50 revealed higher toxicity of HS than F (0.005 and 0.108 g L?1, respectively); detoxifying concentrations of F were found to be lower. Antioxidant ability of HS was demonstrated to be time-dependent; the 50-min preliminary incubation in oxidizer solutions was suggested as optimal for the detoxification procedure. On the contrary, F’ antioxidant effect demonstrated independency on time. Antioxidant effect of HS did not depend on amphiphilic characteristics of the media (values of DOxT were 1.3 in the solutions of organic and inorganic oxidizers), while this of F was found to depend: it was maximal (DOxT = 2.0) in solutions of organic oxidizer, 1,4-benzoquinone. Conclusions: Both HS and F demonstrated toxicity and low-concentration antioxidant ability; however, quantitative characteristics of their effects were different. The differences were explained with HS polyfunctionality, higher ability to decrease ROS content, non-rigidity, and diffusion restrictions in their solutions. Antioxidant effect of the bioactive compounds was presumably attributed to catalytic redox activity of their ?-fragments. The paper demonstrates a high potential of luminescent enzymatic bioassay to study biological activity of nano-structures of natural and artificial origination. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

Scopus,
Смотреть статью,
WOS
Держатели документа:
National Research Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
Institute of Biophysics FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Physics FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Irkutsk National Research Technical University, Irkutsk, 664074, Russian Federation

Доп.точки доступа:
Sachkova, A. S.; Kovel, E. S.; Churilov, G. N.; Stom, D. I.; Kudryasheva, N. S.

Найти похожие
5.


   
    Biological and physicochemical methods for utilization of plant wastes and human exometabolites for increasing internal cycling and closure of life support systems / I. G. Zolotukhin [et al.] // Advances in Space Research. - 2005. - Vol. 35, Is. 9 SPEC. ISS. - P1559-1562, DOI 10.1016/j.asr.2005.01.006 . - ISSN 0273-1177
Кл.слова (ненормированные):
BLSS -- Desalting -- Higher plants -- NaCl utilization -- SLS -- Biomass -- Crops -- Decomposition -- Electrodialysis -- Harvesting -- Metabolites -- Soils -- Wastes -- BLSS -- Higher plants -- NaCl utilization -- SLS -- Plants (botany) -- Biomass -- Decay -- Deionization -- Harvesting -- Plants -- Soil -- Wastes -- Wheat -- sodium chloride -- article -- biomass -- bioremediation -- culture medium -- feces -- growth, development and aging -- human -- metabolism -- methodology -- microbiology -- microclimate -- urine -- waste management -- wheat -- Biodegradation, Environmental -- Biomass -- Culture Media -- Ecological Systems, Closed -- Feces -- Humans -- Life Support Systems -- Sodium Chloride -- Soil Microbiology -- Triticum -- Urine -- Waste Management
Аннотация: Wheat was cultivated on soil-like substrate (SLS) produced by the action of worms and microflora from the inedible biomass of wheat. After the growth of the wheat crop, the inedible biomass was restored in SLS and exposed to decomposition ("biological" combustion) and its mineral compounds were assimilated by plants. Grain was returned to the SLS in the amount equivalent to human solid waste produced by consumption of the grain. Human wastes (urine and feces) after physicochemical processing turned into mineralized form (mineralized urine and mineralized feces) and entered the plants' nutrient solution amounts equal to average daily production. Periodically (once every 60-70 days) the nutrient solution was partly (up to 50%) desalinated by electrodialysis. Due to this NaCl concentration in the nutrient solution was sustained at a fixed level of about 0.26%. The salt concentrate obtained could be used in the human nutrition through NaCl extraction and the residuary elements were returned through the mineralized human liquid wastes into matter turnover. The control wheat cultivation was carried out on peat with use of the Knop nutrient solution. Serial cultivation of several wheat vegetations within 280 days was conducted during the experiment. Grain output varied and yield/harvest depended, in large part, upon the amount of inedible biomass returned to SLS and the speed of its decomposition. After achieving a stationary regime, (when the quantity of wheat inedible biomass utilized during vegetation in SLS is equal to the quantity of biomass introduced into SLS before vegetation) grain harvest in comparison with the control was at most 30% less, and in some cases was comparable to the control harvest values. The investigations carried out on the wheat example demonstrated in principle the possibility of long-term functioning of the LSS photosynthesizing link based on optimizations of biological and physicochemical methods of utilization of the human and plants wastes. The possibilities for the use of these technologies for the creation integrated biological-physicochemical LSS with high closure degree of internal matter turnover are discussed in this paper. В© 2005 Published by Elsevier Ltd on behalf of COSPAR.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Akademgorodok, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Zolotukhin, I.G.; Tikhomirov, A.A.; Kudenko, Yu.A.; Gribovskaya, I.V.

Найти похожие
6.


   
    Bioluminescent enzyme inhibition-based assay for the prediction of toxicity of pollutants in urban soils / E. M. Kolosova, O. S. Sutormin, L. V. Stepanova [et al.] // Environ. Technol. Innov. - 2021. - Vol. 24. - Ст. 101842, DOI 10.1016/j.eti.2021.101842 . - ISSN 2352-1864
Кл.слова (ненормированные):
Bioassay -- Bioluminescence -- Industrial contamination -- Soil pollution -- Urbostratozems -- Arsenic -- Chemical analysis -- Enzyme activity -- Enzyme inhibition -- Fluorine compounds -- Soil surveys -- Soil testing -- Soils -- Toxicity -- Arsenic concentration -- Chemical and biologicals -- Comprehensive information -- Contaminated soils -- Environmental assessment methods -- Enzymatic bioassays -- Luminescent bacteria -- Sample preparation -- Soil pollution
Аннотация: There is a need for rapid simple and informative environmental assessment methods. The present investigation is aimed at assessing the possibility of using the combined enzyme system of luminescent bacteria: NAD(P)H:FMN-oxidoreductase + luciferase (Red + Luc) for predicting the potential toxicity of industrial urbostratozems sampled in the city of Krasnoyarsk. Three groups of urbostratozems polluted with fluorine, arsenic and lead, were tested by the methods of chemical analysis and enzymatic bioassay. Only the assessment of the arsenic-contaminated soil samples showed the dependence between the reduced activity of the enzyme system and the arsenic concentration variations. The results reveal that the sensitivity of the Red + Luc enzyme system to the soil pollutants depends on the properties of the studied soil samples. Moreover, the solubility of lead in the soil samples affects the accuracy of the enzymatic bioassays for soil toxicity testing. The results of the enzymatic bioassay of the fluoride-contaminated soil samples are ambiguous. The obtained data show the relevance of the sample preparation during integral bioassays. In addition, soil properties should be taken into account as well. The current study emphasizes the importance of conducting chemical and biological testing as a combined set to obtain comprehensive information about the anthropogenic load. © 2021 Elsevier B.V.

Scopus
Держатели документа:
Department of Biophysics, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Krasnoyarsk Agricultural Research Institute, Federal Research Center ‘Krasnoyarsk Science Center Siberian Branch of the Russian Academy of Sciences’, Krasnoyarsk, 660036, Russian Federation
Department of Aquatic and Terrestrial Ecosystems, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Photobiology Laboratory, Institute of Biophysics, Federal Research Center ‘Krasnoyarsk Science Center Siberian Branch of the Russian Academy of Sciences’, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Kolosova, E. M.; Sutormin, O. S.; Stepanova, L. V.; Shpedt, A. A.; Rimatskaya, N. V.; Sukovataya, I. E.; Kratasyuk, V. A.

Найти похожие
7.


   
    Bioluminescent enzyme inhibition-based assay for the prediction of toxicity of pollutants in urban soils / E. M. Kolosova, O. S. Sutormin, L. V. Stepanova [et al.] // Environ. Technol. Innov. - 2021. - Vol. 24. - Ст. 101842, DOI 10.1016/j.eti.2021.101842. - Cited References:46. - This work was supported by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk Region, Russia, and Krasnoyarsk Regional Foundation for Supporting Scientific and Technological Activities, Russia [grant number 18-47-240005] in the field of statistical analysis and interpretation of the data; and the work related to the sample collection was supported by the Ministry of Science and Higher Education of the Russian Federation [grant number FSRZ-2020-0006]. . - ISSN 2352-1864
РУБ Biotechnology & Applied Microbiology + Engineering, Environmental
Рубрики:
FLUORIDE
   BIOASSAYS

   POLLUTION

   METALS

   WATER

Кл.слова (ненормированные):
Urbostratozems -- Soil pollution -- Industrial contamination -- Bioassay -- Bioluminescence
Аннотация: There is a need for rapid simple and informative environmental assessment methods. The present investigation is aimed at assessing the possibility of using the combined enzyme system of luminescent bacteria: NAD(P)H:FMN-oxidoreductase + luciferase (Red + Luc) for predicting the potential toxicity of industrial urbostratozems sampled in the city of Krasnoyarsk. Three groups of urbostratozems polluted with fluorine, arsenic and lead, were tested by the methods of chemical analysis and enzymatic bioassay. Only the assessment of the arsenic-contaminated soil samples showed the dependence between the reduced activity of the enzyme system and the arsenic concentration variations. The results reveal that the sensitivity of the Red + Luc enzyme system to the soil pollutants depends on the properties of the studied soil samples. Moreover, the solubility of lead in the soil samples affects the accuracy of the enzymatic bioassays for soil toxicity testing. The results of the enzymatic bioassay of the fluoride-contaminated soil samples are ambiguous. The obtained data show the relevance of the sample preparation during integral bioassays. In addition, soil properties should be taken into account as well. The current study emphasizes the importance of conducting chemical and biological testing as a combined set to obtain comprehensive information about the anthropogenic load. (C) 2021 Elsevier B.V. All rights reserved.

WOS
Держатели документа:
Siberian Fed Univ, Dept Biophys, 79 Svobodny St, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Krasnoyarsk Agr Res Inst, Fed Res Ctr Krasnoyarsk Sci Ctr Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Dept Aquat & Terr Ecosyst, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Photobiol Lab, Inst Biophys, Fed Res Ctr `Krasnoyarsk Sci Ctr Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kolosova, Elizaveta M.; Sutormin, Oleg S.; Stepanova, L. V.; Shpedt, Aleksandr A.; Rimatskaya, N. V.; Sukovataya, Irina E.; Kratasyuk, Valentina A.; Russian Foundation for Basic Research, the Government of the Krasnoyarsk Region, Russia; Krasnoyarsk Regional Foundation for Supporting Scientific and Technological Activities, Russia [18-47-240005]; Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0006]

Найти похожие
8.


   
    Constructing slow-release formulations of herbicide metribuzin using its co-extrusion with biodegradable polyester poly-ε-caprolactone / A. N. Boyandin, E. A. Kazantseva // J. Environ. Sci. Health Part B Pestic. Food Contamin. Agric. Wastes. - 2021, DOI 10.1080/03601234.2021.1911206 . - Article in press. - ISSN 0360-1234
Кл.слова (ненормированные):
extrusion -- herbicide -- long-term -- pesticide -- Polycaprolactone -- Biodegradable polymers -- Biodegradation -- Degradation -- Extrusion -- Melting -- Plastic coatings -- Polyesters -- Soils -- Weed control -- Biodegradable polyesters -- Degradation rate -- First-order models -- Long-term release -- Low cost methods -- Partial degradation -- Release kinetics -- Soil applications -- Herbicides
Аннотация: Different technologies to prepare long term pesticide forms include polymer coating, preparing composites and encapsulating pesticides in nanoparticles. A simple and low-cost method was proposed to obtain slow-release formulations by co-extrusion of a pesticide with a biodegradable polymer at a temperature above the melting points of both components. A herbicide metribuzin and low-melting polyester poly-?-caprolactone were chosen for this work. Formulations containing 10%, 20%, and 40% herbicide were prepared. During 7 days of their exposition in water, it was released from 81% to 96% of initially loaded metribuzin; the highest release was detected for 40%-loaded forms. Biodegradation of the constructs and pesticide release were further studied in the model soil. Degradation rates of the specimens increased with an increase in pesticide content, from 9% to 20% over 14 weeks for the 10%/20%-loaded and the 40%-loaded specimens, respectively. The release of metribuzin reached, respectively, 37–38% and 55%. The herbicide content in soil was lower due to its partial degradation in soil; it reached 23–25% and 33%, respectively, from initially loaded into the polymer matrix. Release kinetics of metribuzin in water as in soil best fitted the First-order model. The used approach is promising for obtaining long-term release formulations for soil applications. © 2021 Taylor & Francis Group, LLC.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Boyandin, A. N.; Kazantseva, E. A.

Найти похожие
9.


   
    Constructing Slow-Release Metribuzin Formulations by Co-extrusion of the Pesticide with Poly-?-Caprolactone / A. N. Boyandin, E. A. Kazantseva // Macromol. Sympos. - 2021. - Vol. 395, Is. 1. - Ст. 2000283, DOI 10.1002/masy.202000283 . - ISSN 1022-1360
Кл.слова (ненормированные):
extrusion -- herbicides -- long-term -- pesticides -- polycaprolactone -- Biodegradable polymers -- Biodegradation -- Degradation -- Extrusion -- Melting -- Soils -- Weed control -- Biodegradable polyesters -- Caprolactone -- Degradation rate -- Long-term release -- Low cost methods -- Pesticide formulations -- Soil applications -- Soil degradation -- Herbicides
Аннотация: A simple and low-cost method of obtaining slow-release pesticide formulations is proposed by co-extrusion of a herbicide metribuzin with a low-melting biodegradable polyester poly-?-caprolactone, at a temperature above the melting points of both components. Formulations containing 10%, 20%, and 40% herbicide are prepared. Metribuzin release in water during 7 days of exposition reached 81% from the formulations with the 10% loading and 96% from the specimens with the 40% herbicide loading. Biodegradation and pesticide release from the polymer constructs are studied in the model soil for 14 weeks. Degradation rates of the specimens increased with an increase in pesticide content: between 9% for the 10%-loaded specimen and 20% for the 40%-loaded specimen over 14 weeks. The release of metribuzin from the specimens with the 10–20% and 40% loadings reached 37–38% and 55%, respectively; thus, taking into account soil degradation of the herbicide, the herbicide content in soil reached 23–25% and 33%, respectively, of the initially loaded into the polymer matrix. The used approach is promising to obtain long-term release formulations for soil application. © 2021 Wiley-VCH GmbH

Scopus
Держатели документа:
Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Boyandin, A. N.; Kazantseva, E. A.

Найти похожие
10.


   
    Content of metals in compartments of ecosystem of a Siberian pond / M. I. Gladyshev [et al.] // Archives of Environmental Contamination and Toxicology. - 2001. - Vol. 41, Is. 2. - P157-162, DOI 10.1007/s002440010233 . - ISSN 0090-4341
Кл.слова (ненормированные):
aluminum -- cadmium -- calcium -- chromium -- copper -- heavy metal -- iron -- lead -- magnesium -- manganese -- nickel -- potassium -- sodium -- zinc -- aquatic ecosystem -- biological uptake -- heavy metal -- pond -- article -- bioaccumulation -- ecosystem -- fish -- nonhuman -- pond -- priority journal -- Russian Federation -- sediment -- soil pollution -- water contamination -- Animals -- Ecosystem -- Environmental Monitoring -- Fishes -- Geologic Sediments -- Invertebrates -- Metals, Heavy -- Plants -- Water Pollutants -- Russian Federation
Аннотация: During three field seasons (June-September) of 1997-99 contents of Na, K, Ca, Mg, Fe, Mn, Zn, Cu, Al, Cr, Ni, Cd, and Pb were determined in compartments of ecosystem (surrounding soils, bottom sediments, water, zoobenthos, macrophytes, and fish) of a fish and recreation pond situated at the edge of Krasnoyarsk City (Siberia, Russia). Contents of most parts of metals in soils, water, and macrophytes significantly correlated with each other. As concluded, their contents were determined by natural, general, geochemical peculiarities of the region. Heavy metals, contents of which were higher than federal upper limits of concentration, were revealed. In muscles of fish with different feeding spectra - crucian and perch - concentrations of some metals differed significantly; correlation graphs for metals also had different structures. Comparison of our data with those on diverse aquatic ecosystems of Siberia, Europe, North America, and China published in the last decade was carried out. It was concluded that a distribution of heavy metals in the compartments of an aquatic ecosystem presently have to be determined for each particular water body until general regularities are discovered.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Krasnoyarsk State Agricultural University, Mira av., 88, Krasnoyarsk, 660049, Russian Federation
Krasnoyarsk State University, Svobodny av., 79, Krasnoyarsk, 660042, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gladyshev, M.I.; Gribovskaya, I.V.; Moskvicheva, A.V.; Muchkina, E.Y.; Chuprov, S.M.; Ivanova, E.A.

Найти похожие
11.


   
    Content of metals in compartments of ecosystem of a Siberian pond [Text] / M. I. Gladyshev [et al.] // Arch. Environ. Contam. Toxicol. - 2001. - Vol. 41, Is. 2. - P. 157-162. - Cited References: 26 . - ISSN 0090-4341
РУБ Environmental Sciences + Toxicology
Рубрики:
CHIRONOMUS-RIPARIUS MEIGEN
   NELSON RIVER SYSTEM

   AQUATIC MACROPHYTES

   LARVAE DIPTERA

   HEAVY-METAL

   COPPER

   LEAD

   SEDIMENTS

   CADMIUM

   MANITOBA

Аннотация: During three field seasons (June-September) of 1997-99 contents of Na, K, Ca, Mg, Fe, Mn, Zn, Cu, Al, Cr, Ni, Cd, and Pb were determined in compartments of ecosystem (surrounding soils, bottom sediments, water, zoobenthos, macrophytes, and fish) of a fish and recreation pond situated at the edge of Krasnoyarsk City (Siberia, Russia). Contents of most parts of metals in soils, water, and macrophytes significantly correlated with each other. As concluded, their contents were determined by natural, general, geochemical peculiarities of the region. Heavy metals, contents of which were higher than federal upper limits of concentration, were revealed. In muscles of fish with different feeding spectra-crucian and perch-concentrations of some metals differed significantly; correlation graphs for metals also had different structures. Comparison of our data with those on diverse aquatic ecosystems of Siberia, Europe, North America, and China published in the last decade was carried out. It was concluded that a distribution of heavy metals in the compartments of an aquatic ecosystem presently have to be determined for each particular water body until general regularities are discovered.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
Krasnoyarsk State Agr Univ, Krasnoyarsk 660049, Russia
Krasnoyarsk State Univ, Krasnoyarsk 660042, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gladyshev, M.I.; Gribovskaya, I.V.; Moskvicheva, A.V.; Muchkina, E.Y.; Chuprov, S.M.; Ivanova, E.A.

Найти похожие
12.


   
    Direct and Indirect Detoxification Effects of Humic Substances / L. Bondareva, N. Kudryasheva // Agronomy-Basel. - 2021. - Vol. 11, Is. 2. - Ст. 198, DOI 10.3390/agronomy11020198. - Cited References:79. - This review was prepared with the partial financial support of the Program of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Russian Federation) 2020-2025. . - ISSN 2073-4395
РУБ Agronomy + Plant Sciences

Кл.слова (ненормированные):
humic substances -- detoxification -- luminous bacteria -- adaptive response
Аннотация: The review summarizes studies on the detoxification effects of water-soluble humic substances (HS), which are products of the natural transformation of organic substances in soils and bottom sediments that serve as natural detoxifying agents in water solutions. The detoxifying effects of HS on microorganisms are quite complex: HS neutralize free pollutants (indirect bioeffects) and also stimulate the protective response of organisms (direct bioeffects). Prospects and potential problems of bioluminescent bacteria-based assay to monitor toxicity of solutions in the presence of HS are discussed. The main criterion for the bioassay application is versatility and ease of use. The detoxification efficiency of HS in different pollutant solutions was evaluated, and the detoxification mechanisms are discussed. Particular attention was paid to the direct and complex direct + indirect effects of HS. The review focuses on the protective function of HS in solutions of radionuclides and salts of stable metals, with special consideration of the antioxidant properties of HS.

WOS
Держатели документа:
Fed Sci Ctr Hyg, Moscow 141014, Russia.
Russian Acad Sci, Inst Biophys, Krasnoyarsk Sci Ctr, Fed Res Ctr,Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Biophys Dept, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Bondareva, Lydia; Kudryasheva, Nadezhda; Program of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Russian Federation) 2020-2025

Найти похожие
13.


   
    Effect of soil salinization on the productivity of pasture in the arid land / N. A. Kononova, T. I. Pisman, A. P. Shevyrnogov // IOP Conf. Ser. Earth Envir. Sci. : IOP PUBLISHING LTD, 2020. - Vol. 548: 3rd International Conference on Agribusiness, Environmental Engineering (JUN 18-20, 2020, Krasnoyarsk, RUSSIA). - Ст. 072063. - (IOP Conference Series-Earth and Environmental Science), DOI 10.1088/1755-1315/548/7/072063. - Cited References:15 . -
РУБ Agricultural Engineering + Agriculture, Multidisciplinary + Ecology
Рубрики:
PLANT
   MARSH

Аннотация: This study compares the field data of the seasonal dynamics of halophytic plant productivity as dependent upon soil salinity level and soil type. The field study was carried out in the coastal area of Lake Kurinka (the Republic of Khakasia, south of Middle Siberia) between May and September of 2014 and 2016. Two plant communities with different soil salinity levels were studied. Results of the field investigation show that there is a correlation between plant growth and the soil salinity level. With high-salinity (3.72%) soils, the productivity of halophyte plants is lower than productivity with low-salinity (0.175%) soils.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kononova, N. A.; Pisman, T., I; Shevyrnogov, A. P.; Kononova, Natalia

Найти похожие
14.


   
    Effect of soil salinization on the productivity of pasture in the arid land / N. A. Kononova, T. I. Pisman, A. P. Shevyrnogov // IOP Conference Series: Earth and Environmental Science : IOP Publishing Ltd, 2020. - Vol. 548: 3rd International Conference on Agribusiness, Environmental Engineering and Biotechnologies, AGRITECH-III 2020 (18 June 2020 through 20 June 2020, ) Conference code: 162670, Is. 7. - Ст. 072063, DOI 10.1088/1755-1315/548/7/072063
Кл.слова (ненормированные):
Biodiversity -- Biotechnology -- Ecosystems -- Plants (botany) -- Productivity -- Different soils -- Field investigation -- Field studies -- Halophytic plants -- Plant communities -- Seasonal dynamics -- Soil salinity -- Soil salinization -- Soils
Аннотация: This study compares the field data of the seasonal dynamics of halophytic plant productivity as dependent upon soil salinity level and soil type. The field study was carried out in the coastal area of Lake Kurinka (the Republic of Khakasia, south of Middle Siberia) between May and September of 2014 and 2016. Two plant communities with different soil salinity levels were studied. Results of the field investigation show that there is a correlation between plant growth and the soil salinity level. With high-salinity (3.72%) soils, the productivity of halophyte plants is lower than productivity with low-salinity (0.175%) soils. © Published under licence by IOP Publishing Ltd.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Kononova, N. A.; Pisman, T. I.; Shevyrnogov, A. P.

Найти похожие
15.


   
    Enzymatic bioassay of soil: Sensitivity comparison of mono-, double- And triple-enzyme systems to soil toxicants / O. S. Sutormin [и др.] // Tsitologiya. - 2018. - Vol. 60, Is. 10. - С. 826-829, DOI 10.7868/S0041377118100132 . - ISSN 0041-3771
Кл.слова (ненормированные):
Bacterial luciferase -- Bioluminescent analysis -- Coupled enzyme systems -- Ecological monitoring -- Enzymatic toxicity bioassays -- Lactate dehydrogenase -- NADH:FMN-oxidoreductase -- Soil
Аннотация: In this paper, we have investigated the possibilities of application of enzymatic systems with increasing chain length as a bioassay to evaluate the soil contamination status. The sensitivity of monoenzyme reaction as well as double- and triple-enzyme chains based on NAD(P)H:FMN-oxidoreductase and luciferase of luminous bacteria and lactate dehydrogenase to pesticides and copper ions in water and water extracts from soils were estimated. For this, the toxicological parameter IC 20 reflecting the sensitivity limit of the enzyme system to the to-xicant was used. It was revealed that elongation of the coupled enzyme chain (from mono- to triple-enzyme) increases the sensitivity of the bioassay, in some cases by several orders of magnitude. This pattern can be used as a tool to improve the properties of enzymic bioassays. The effect of extracts from uncontaminated soils of various types on enzymatic systems also differs, which makes possible to design the specialized enzymatic bioassays as well. © 2018 Sankt Peterburg.All rights reserved.

Scopus,
Смотреть статью
Держатели документа:
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics Siberian Branch of RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Sutormin, O. S.; Kolosova, E. M.; Nemtseva, A. V.; Iskorneva, I. V.; Lisitsa, A. A.; Matvienko, V. S.; Esimbekova, A. N.; Kratasyuk, V. A.

Найти похожие
16.


   
    Functional, regulatory and indicator features of microorganisms in man-made ecosystems / L. A. Somova, N. S. Pechurkin // Advances in Space Research. - 2001. - Vol. 27, Is. 9. - P1563-1570, DOI 10.1016/S0273-1177(01)00247-2 . - ISSN 0273-1177
Кл.слова (ненормированные):
Biomass -- Carbon dioxide -- Ecosystems -- Life support systems (spacecraft) -- Photosynthesis -- Sewage treatment -- Soils -- Human microfloras -- Microorganisms -- carbon -- carbon dioxide -- artificial ecosystem -- article -- biomass -- bioreactor -- ecosystem -- human -- intestine -- metabolism -- microbiology -- microclimate -- plant root -- sewage -- wheat -- Biomass -- Bioreactors -- Carbon -- Carbon Dioxide -- Ecological Systems, Closed -- Ecosystem -- Environmental Microbiology -- Humans -- Intestines -- Life Support Systems -- Plant Roots -- Sewage -- Triticum -- Waste Disposal, Fluid
Аннотация: Functional, regulatory and indicator features of microorganisms in development and functioning of the systems and sustaining stability of three man-made ecosystem types has been studied. 1) The functional (metabolic) feature was studied in aquatic ecosystems of biological treatment of sewage waters for the reducer component. 2) The regulatory feature of bacteria for plants (producer component) was studied in simple terrestrial systems "wheat plants-rhizospheric microorganisms - artificial soil" where the behavior of the system varied with activity of the microbial component. For example with atmospheric carbon dioxide content elevated microbes promote intensification of photosynthesis processes, without binding the carbon in the plant biomass. 3) The indicator feature for the humans (consumer component) was studied in Life Support Systems (LSS). High sensitivity of human microflora to system conditions allowed its use as an indicator of the state of both system components and the entire ecosystem. В© 2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Somova, L.A.; Pechurkin, N.S.

Найти похожие
17.


   
    Host-parasite interactions in closed and open microbial cultivation system / T. I. Pisman, N. S. Pechurkin // Advances in Space Research. - 2008. - Vol. 41, Is. 5. - P773-776, DOI 10.1016/j.asr.2007.03.076 . - ISSN 0273-1177
Кл.слова (ненормированные):
Bacterium -- Coevolution -- Continuous and batch culture -- Phage -- Cultivation -- Cytology -- Nutrients -- Soils -- Continuous and batch culture -- Parasite interactions -- Bacteriophages
Аннотация: The study addresses interaction of bacteria and phages in the host-parasite system in batch and continuous cultures. The study system consists of the auxotrophic strain of Brevibacterium - Brevibacterium sp. 22L - and the bacteriophage of Brevibacterium sp., isolated from the soil by the enrichment method.1.Closed system. In the investigation of the relationship between the time of bacterial lysis and multiplicity of phage infection it has been found that at a lower phage amount per cell it takes a longer time for the lysis of the culture to become discernible. Another important factor determining cytolysis in liquid medium is the physiological state of bacterial population. Specific growth rate of bacteria at the moment of phage infection has been chosen as an indicator of the physiological state of bacteria. It has been shown that the shortest latent period and the largest output of the phage are observed during the logarithmic growth phase of bacteria grown under favorable nutrient conditions. In the stationary phase, bacterial cells become "a bad host" for the phage, whose reproduction rate decreases, and the lysis either slows down significantly or does not occur at all.2.Open system. It has been found that in continuous culture, the components of the host-parasite system can coexist over a long period of time. After phage infection, the sizes of the both populations vary for some time and then the density of the host population reaches the level close to that of the uninfected culture. The phage population copies the variations in the density of the host population, but in antiphase. It has been proven that the bacterium becomes resistant to the phage rather soon. It has been supposed that primary resistance is of physiological origin, because the percentage of cells that have survived lysis - about 0.2% of the initial bacterial population - is too high for phage-resistant mutants. Bacteria and phages cultured over extended periods of time in the host-parasite system have been found to co-evolve. The stressful effect of the phage causes development of bacteria resistant to this phage, then a mutant phage capable of lysing these bacteria evolves, etc. В© 2007 COSPAR.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Pisman, T.I.; Pechurkin, N.S.

Найти похожие
18.


   
    HOT PARTICLES IN THE FLOODPLAIN OF THE YENISEI RIVER [Text] / A. . Bolsunovsky ; ed.: DH Oughton, Oughton, // RADIOACTIVE PARTICLES IN THE ENVIRONMENT. Ser. NATO Science for Peace and Security Series C - Environmental Security : SPRINGER, 2009. - NATO Advanced Research Workshop on Hot Particles Released from Different Nuclear Sources (MAY 07-10, 2007, Yalta, UKRAINE). - P111-121, DOI 10.1007/978-90-481-2949-2_6. - Cited References: 8 . - 11. - ISBN 1871-4668. - ISBN 978-90-481-2947-8
РУБ Environmental Sciences
Рубрики:
RADIONUCLIDES
   RUSSIA

Кл.слова (ненормированные):
hot particles -- Yenisei River -- floodplain soils and sediments -- plutonium complex -- cesium and plutonium isotopes -- (241)Am -- dating of particles
Аннотация: The purpose of this study was to investigate radionuclide composition of the hot particles found in the floodplain of the Yenisei River and to discuss their possible Sources. Since 1995, researchers of the Institute of Biophysics have found a considerable number of hot particles that contain up to 29,000 kBq/particle of (137)Cs in the Yenisei River floodplain. Investigations of the particles in Krasnoyarsk, Moscow, and Novosibirsk have confirmed their reactor origin and made it possible to roughly estimate their age. Based oil comparative analysis of (137)Cs/(134)Cs ratios, all the particles can be divided into two or three major groups, suggesting that over the 50-year period of the MCC operation, there have been two or three emergency situations at the MCC reactors, with nuclear fuel microparticles released into the Yenisei. Microparticles containing up to 36 Bq/particle of (241)Am were detected in soil and sediment samples collected at the Yenisei River. In some of these particles the (137)Cs/(241)Am ratio is high but in the others - low. It remains unknown how these particles have been formed. However, these microparticles Occur in floodplain soils and sediments very frequently and, thus, can be considered to be the main form in which radionuclides are present in the Yenisei River floodplain. The presence of a large number of hot particles of different origin in the floodplain of the Yenisei River from the MCC production area down to the town of Yeniseisk (and, probably, farther downstream) is a source of potential health hazard to people.

Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Bolsunovsky, A...; Oughton, DH \ed.\; Oughton, \ed.\

Найти похожие
19.


   
    Increase of atmospheric CO2: Response patterns on a simple terrestrial man-made ecosystem / L. A. Somova, N. S. Pechurkin, T. I. Pisman // Advances in Space Research. - 2003. - Vol. 31, Is. 7. - P1731-1735, DOI 10.1016/S0273-1177(03)80019-4 . - ISSN 0273-1177
Кл.слова (ненормированные):
Carbon dioxide -- Earth atmosphere -- Ecosystems -- Environmental impact -- Mathematical models -- Microorganisms -- Plants (botany) -- Soils -- Man-made ecosystems -- Space research -- biosphere -- carbon dioxide enrichment -- terrestrial ecosystem -- carbon dioxide -- nitrogen -- phosphorus -- article -- atmosphere -- biological model -- chemistry -- dose response -- drug effect -- ecosystem -- growth, development and aging -- metabolism -- microbiology -- microclimate -- plant root -- wheat -- Atmosphere -- Carbon Dioxide -- Dose-Response Relationship, Drug -- Ecosystem -- Environment, Controlled -- Models, Biological -- Nitrogen -- Phosphorus -- Plant Roots -- Soil Microbiology -- Triticum
Аннотация: Simple models of terrestrial ecosystems with a limited number of components are an efficient tool to study the main laws of functioning of populations, including microbial ones, and their communities, as components of natural ecosystems, under variable environmental conditions. Among other factors are the increase of carbon dioxide in the atmosphere and limitation of plants' growth by biogenic elements. The main types of ecosystems' responses to changes in environmental conditions (a change in CO2 concentration) have been demonstrated in a "plants - rhizospheric microorganisms - artificial soil" simple experimental system. The mathematical model of interactions between plants and microorganisms under normal and elevated atmospheric CO2 and limitation by nutrients (nitrogen and phosphorus) yielded a qualitative agreement between calculated and experimental values of limiting substances concentrations and release rates of exudates. В© 2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Somova, L.A.; Pechurkin, N.S.; Pisman, T.I.

Найти похожие
20.


   
    Metabolic activity of cryogenic soils in the subarctic zone of Siberia towards "green" bioplastics / S. V. Prudnikova, S. Y. Evgrafova, T. G. Volova // Chemosphere. - 2021. - Vol. 263. - Ст. 128180, DOI 10.1016/j.chemosphere.2020.128180. - Cited References:101. - This study (polymer synthesis and investigation) was financially supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning", and by the State assignment of the Ministry of Science and Higher Education of the Russian Federation No. FSRZ-2020-0006 (investigation of polymer degradation in soils of Evenkia). . - ISSN 0045-6535. - ISSN 1879-1298
РУБ Environmental Sciences

Кл.слова (ненормированные):
Siberian cryogenic soils -- P(3HB) bioplastic -- metabolic activity -- structure of microbial community -- P(3HB)-degrading strains -- P(3HB) -- properties
Аннотация: The present study investigates, for the first time, the structure of the microbial community of cryogenic soils in the subarctic region of Siberia and the ability of the soil microbial community to metabolize degradable microbial bioplastic - poly-3-hydroxybutyrate [P(3HB)]. When the soil thawed, with the soil temperature between 5-7 and 9-11 degrees C, the total biomass of microorganisms at a 10-20-cm depth was 226-234 mg g(-1) soil and CO2 production was 20-46 mg g(-1)W day(-1). The total abundance of microscopic fungi varied between (7.4 +/- 2.3) x 10(3) and (18.3 +/- 2.2) x 10(3) CFU/g soil depending on temperature; the abundance of bacteria was several orders of magnitude greater: (1.6 +/- 0.1) x 10(6) CFU g(-1) soil. The microbial community in the biofilm formed on the surface of P(3HB) films differed from the background soil in concentrations and composition of microorganisms. The activity of microorganisms caused changes in the surface microstructure of polymer films, a decrease in molecular weight, and an increase in the degree of crystallinity of P(3HB), indicating polymer biodegradation due to metabolic activity of microorganisms. The clear-zone technique e plating of isolates on the mineral agar with polymer as sole carbon source e was used to identify P(3HB)-degrading microorganisms inhabiting cryogenic soil in Evenkia. Analysis of nucleotide sequences of rRNA genes was performed to identify the following P(3HB)degrading species: Bacillus pumilus, Paraburkholderia sp., Pseudomonas sp., Rhodococcus sp., Stenotrophomonas rhizophila, Streptomyces prunicolor, and Variovorax paradoxus bacteria and the Penicillium thomii, P. arenicola, P. lanosum, Aspergillus fumigatus, and A. niger fungi. (C) 2020 Elsevier Ltd. All rights reserved.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.
Krasnoyarsk Sci Ctr SB RAS, Fed Res Ctr, VN Sukachev Inst Forest, 50-28 Akademgorodok, Krasnoyarsk 660036, Russia.
Krasnoyarsk Sci Ctr SB RAS, Fed Res Ctr, Inst Biophys SB RAS, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
SB RAS, Melnikov Permafrost Inst, 36 Merzlotnaya St, Yakutsk 677010, Russia.

Доп.точки доступа:
Prudnikova, Svetlana, V; Evgrafova, Svetlana Yu; Volova, Tatiana G.; Project "Agropreparations of the new generation: a strategy of construction and realization" [074-02-2018-328]; Government of the Russian Federation [220]; Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0006]

Найти похожие
 1-20    21-40   41-42 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)