Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (2)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Solutions<.>)
Общее количество найденных документов : 67
Показаны документы с 1 по 20
 1-20    21-40   41-60   61-67 
1.


   
    Feasibility of incorporating all products of human waste processing into material cycling in the btlss / Ye. A. Morozov [et al.] // Proceedings of the International Astronautical Congress, IAC. - 2017. - Vol. 4: 68th International Astronautical Congress: Unlocking Imagination, Fostering Innovation and Strengthening Security, IAC 2017 (25 September 2017 through 29 September 2017, ) Conference code: 136635. - P2143-2149
Кл.слова (ненормированные):
BTLSS -- Closure -- Cycling -- Hydroponics -- Nutrient availability -- Sediment -- Dissolution -- Energy efficiency -- Irrigation -- Life support systems (spacecraft) -- Plant shutdowns -- Sediments -- Space applications -- Waste incineration -- BTLSS -- Closure -- Cycling -- Hydroponics -- Nutrient availability -- Nutrients
Аннотация: The present study addresses the ways to increase the closure of biotechnical life support systems (BTLSS) for space applications. A promising method of organic waste processing based on wet combustion in hydrogen peroxide developed at the IBP SB RAS to produce fertilizers for higher plants is discussed. The method is relatively compact, energy efficient, productive, and eco-friendly. However, about 4-6 g/L of recalcitrant sediment containing such essential nutrients as Ca, Mg, P, Fe, Cu, Mn, and Zn precipitates after the initial process. These elements are unavailable to plants grown hydroponically, thus dropping out of the cycling as deadlock products. Possible methods of dissolving that sediment have been studied. Results of experiments show that the most promising method is additional oxidation of the sediment in HNO3 + H2O2. By using the new technological process, which only involves substances synthesized inside the BTLSS material flows, more than 90% of each nutrient can be converted into the available form in irrigation solutions, thus returning them into the material cycling. The efficiency of irrigation solutions beneficiated with the mineral nutrients after the sediment dissolution has been shown. Lettuce plants grown as the test object on the newly prepared irrigation solutions produced the yield that was higher more than twice compared to the nutrient solutions prepared without the sediment conversion into a soluble state. Composition of the gases emitted during this process has been analysed. Dynamics of oxidation of small fractions of a wax-like sediment remaining after its dissolution in the BTLSS soil-like substrate has been studied. In conclusion, the entire technological chain aimed at inclusion of deadlock products of human waste wet combustion into the BTLSS cycling has been suggested and discussed. © 2017 by the International Astronautical Federation (IAF). All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, Federal Research Center, Krasnoyarsk Science Center SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Reshetnev Siberian State University of Science and Technology, 31 "Krasnoyarskiy Rabochiy" Ave., Krasnoyarsk, 660037, Russian Federation

Доп.точки доступа:
Morozov, Ye. A.; Trifonov, S. V.; Ushakova, S. A.; Anishchenko, O. V.; Tikhomirov, A. A.

Найти похожие
2.


   
    Biological activity of carbonic nano-structures—comparison via enzymatic bioassay / A. S. Sachkova [et al.] // J. Soils Sed. - 2018, DOI 10.1007/s11368-018-2134-9 . - Article in press. - ISSN 1439-0108
Кл.слова (ненормированные):
Antioxidant activity -- Bioactive compounds -- Fullerenol -- Humic substances -- Reactive oxygen species -- Toxicity
Аннотация: Purpose: The aim of the work is to compare the biological activity of carbonic nano-structures of natural and artificial origination, namely, humic substances (HS) and fullerenols. Materials and methods: The representative of the fullerenol group, С60Оy(OH)x where у + x = 20–22, was chosen. Enzyme-based luminescent bioassay was applied to evaluate toxicity and antioxidant properties of HS and fullerenol (F); chemiluminescent luminol method was used to study a content of reactive oxygen species (ROS) in the solutions. Toxicity of the bioactive compounds was evaluated using effective concentrations ЕС50; detoxification coefficients DOxT were applied to study and compare antioxidant activity of the compounds. Antioxidant activity and ranges of active concentrations of the bioactive compounds were determined in model solutions of organic and inorganic oxidizers—1,4-benzoquinone and potassium ferricianide. Results and discussion: Values of ЕС50 revealed higher toxicity of HS than F (0.005 and 0.108 g L?1, respectively); detoxifying concentrations of F were found to be lower. Antioxidant ability of HS was demonstrated to be time-dependent; the 50-min preliminary incubation in oxidizer solutions was suggested as optimal for the detoxification procedure. On the contrary, F’ antioxidant effect demonstrated independency on time. Antioxidant effect of HS did not depend on amphiphilic characteristics of the media (values of DOxT were 1.3 in the solutions of organic and inorganic oxidizers), while this of F was found to depend: it was maximal (DOxT = 2.0) in solutions of organic oxidizer, 1,4-benzoquinone. Conclusions: Both HS and F demonstrated toxicity and low-concentration antioxidant ability; however, quantitative characteristics of their effects were different. The differences were explained with HS polyfunctionality, higher ability to decrease ROS content, non-rigidity, and diffusion restrictions in their solutions. Antioxidant effect of the bioactive compounds was presumably attributed to catalytic redox activity of their ?-fragments. The paper demonstrates a high potential of luminescent enzymatic bioassay to study biological activity of nano-structures of natural and artificial origination. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

Scopus,
Смотреть статью,
WOS
Держатели документа:
National Research Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
Institute of Biophysics FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Physics FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Irkutsk National Research Technical University, Irkutsk, 664074, Russian Federation

Доп.точки доступа:
Sachkova, A. S.; Kovel, E. S.; Churilov, G. N.; Stom, D. I.; Kudryasheva, N. S.

Найти похожие
3.


   
    Feasibility of incorporating all products of human waste processing into material cycling in the BTLSS / Y. A. Morozov [et al.] // Life Sci. Space Res. - 2018. - Vol. 18. - P29-34, DOI 10.1016/j.lssr.2018.05.002 . - ISSN 2214-5524
Кл.слова (ненормированные):
BTLSS -- Closure -- Cycling -- Hydroponics -- Nutrient availability -- Sediment
Аннотация: The present study addresses the ways to increase the closure of biotechnical life support systems (BTLSS) for space applications. A promising method of organic waste processing based on “wet combustion” in hydrogen peroxide developed at the IBP SB RAS to produce fertilizers for higher plants is discussed. The method is relatively compact, energy efficient, productive, and eco-friendly. However, about 4–6 g/L of recalcitrant sediment containing such essential nutrients as Ca, Mg, P, Fe, Cu, Mn, and Zn precipitates after the initial process. These elements are unavailable to plants grown hydroponically and, thus, drop out of the cycling as dead-end products. Possible methods of dissolving that sediment have been studied. Results of experiments show that the most promising method is additional oxidation of the sediment in HNO3 + H2O2. By using the new technological process, which only involves substances synthesized inside the BTLSS material flows, more than 90% of each nutrient can be converted into the form available to plants in irrigation solutions, thus returning them into the material cycling. The results obtained in this study show the efficacy of supplementing the irrigation solutions with the mineral nutrients after sediment dissolution. Lettuce plants grown as the test object on the newly prepared irrigation solutions produced the yield that was more than twice higher than the yield produced on the nutrient solutions prepared without the sediment conversion into a soluble form. Composition of the gases emitted during this process has been analyzed. Dynamics of oxidation of the small fractions of a wax-like sediment remaining after the initial sediment dissolution in HNO3 + H2O2 in the BTLSS soil-like substrate has been studied. The entire technological scheme aimed at the full inclusion of all human wastes into the BTLSS cycling has been suggested and discussed. A process scheme of including products of human waste processing in the biotic cycle of the BTLSS is discussed in the conclusion. © 2018 The Committee on Space Research (COSPAR)

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center” SB RAS, 50/50 Akademgorodok, Krasnoyarsk, Russian Federation
Reshetnev Siberian State University of Science and Technology, 31 “Krasnoyarskiy Rabochiy” Ave., Krasnoyarsk, Russian Federation

Доп.точки доступа:
Morozov, Y. A.; Trifonov, S. V.; Ushakova, S. A.; Anishchenko, O. V.; Tikhomirov, A. A.

Найти похожие
4.


   
    Detection of Hispidin by a Luminescent System from Basidiomycete Armillaria borealis / A. P. Puzyr [et al.] // Dokl. Biochem. Biophys. - 2018. - Vol. 480, Is. 1. - P173-176, DOI 10.1134/S1607672918030146. - Cited References:15 . - ISSN 1607-6729. - ISSN 1608-3091
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
ANTIOXIDANT
   MUSHROOM

Аннотация: In in vitro experiments, the possibility of using a luminescent system extracted from the luminous fungus Armillaria borealis has been shown to detect and determine the concentration of hispidin. A linear dependence of the luminescent response on the content of hispidin in solutions in the concentration range of 5.4 x 10(-5) - 1.4 x 10(-2) mu M was detected. The stability of the enzyme system and the high sensitivity of the bioluminescent reaction allows carrying out multiple measurements with the analyte detection limit of 1.3 x 10(-11) g. The obtained results show the prospects of creating a rapid bioluminescent method for the analysis of medical substances or extracts from various biological objects for the presence of hispidin.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Res Ctr, Inst Biophys, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Siberian Branch, Inst Computat Technol, Krasnoyarsk 660049, Russia.
Russian Acad Sci, Siberian Branch, Voevodsky Inst Chem Kinet & Combust, Novosibirsk 630090, Russia.

Доп.точки доступа:
Puzyr, A. P.; Medvedeva, S. E.; Burov, A. E.; Zernov, Yu. P.; Bondar, V. S.

Найти похожие
5.


   
    Computing-feasibility study of NASA nutrition requirements as applied to a bioregenerative life support system / V. S. Kovalev, N. S. Manukovsky, A. A. Tikhomirov // Acta Astronaut. - 2019. - Vol. 159. - P371-376, DOI 10.1016/j.actaastro.2019.04.001 . - ISSN 0094-5765
Кл.слова (ненормированные):
Constraint -- Food -- Modeling -- Nutrient -- Objective function -- Amino acids -- Animals -- Food products -- Models -- NASA -- Nutrients -- Nutrition -- Proteins -- Saturated fatty acids -- Uncertainty analysis -- Vitamins -- Bioregenerative life support systems -- Constraint -- Essential amino acids -- Independent variables -- Interpretation of models -- Long duration missions -- Lower and upper bounds -- Objective functions -- Life support systems (spacecraft)
Аннотация: In view of previous studies, a list of 46 foods designated for use in bioregenerative life support system was composed. With the help of a computer program, daily sets of foods of plant and animal origin were compiled from the list of foods. The objective function of modeling was intended to minimize the discrepancy between the calculated values of nutrients in daily food sets and NASA nutrition requirements for long-duration missions. The independent variables in the model were the masses of foods restricted by the lower and upper bounds. It was established that a food set is able to comprise 10-46 foods with violation of the NASA nutrition requirements for iron, vitamin B5 and vitamin D daily intakes. Inclusion of 9 foods in a set resulted in a further violation of the NASA standards concerning saturated fat. As the number of foods in a set has increased from 10 to 22, the objective function decreased from 1.0736 to 1.0332, followed by a gradual increase to 1.1233, when the maximum number of foods was selected from the list of foods. The source of uncertainty in the interpretation of modeling results are the standard NASA intakes of magnesium, potassium, zinc, manganese, vitamin C, thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, vitamin E, vitamin K and n-6 fatty acids, given as exact values. Varying the nutrient content of food sets did not significantly affect the value of the objective function. However, some solutions were infeasible, due to the violation of the NASA standard concerning saturated fat. Also, there were food sets in which the scores of sulfur-containing amino acids and threonine were below 100. In order to reliably maintain the scores of essential amino acids above 100 in a food set, it is necessary to maintain a mass ratio of “animal protein/total protein” equal to 2/3 in accordance with the requirement of NASA. © 2019 IAA

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Kovalev, V. S.; Manukovsky, N. S.; Tikhomirov, A. A.

Найти похожие
6.


   
    Antioxidant Activity and Toxicity of Fullerenols via Bioluminescence Signaling: Role of Oxygen Substituents / E. S. Kovel [et al.] // Int J Mol Sci. - 2019. - Vol. 20, Is. 9, DOI 10.3390/ijms20092324 . - ISSN 1422-0067
Кл.слова (ненормированные):
antioxidant activity -- bioactive compound -- bioluminescence bioassay -- fullerenol -- reactive oxygen species -- toxicity
Аннотация: Fullerenols are nanosized water-soluble polyhydroxylated derivatives of fullerenes, a specific allotropic form of carbon, bioactive compounds, and perspective basis for drug development. Our paper analyzes the antioxidant activity and toxicity of a series of fullerenols with different number of oxygen substituents. Two groups of fullerenols were under investigation: (1) C60Oy(OH)x, C60,70Oy(OH)x, where x + y = 24-28 and (2) C60,70Oy(OH)x, Fe0,5C60Oy(OH)x, Gd@C82Oy(OH)x, where x + y = 40-42. Bioluminescent cellular and enzymatic assays (luminous marine bacteria and their enzymatic reactions, respectively) were applied to monitor toxicity in the model fullerenol solutions and bioluminescence was applied as a signaling physiological parameter. The inhibiting concentrations of the fullerenols were determined, revealing the fullerenols' toxic effects. Antioxidant fullerenol' ability was studied in solutions of model oxidizer, 1,4-benzoquinone, and detoxification coefficients of general and oxidative types (DGT and DOxT) were calculated. All fullerenols produced toxic effect at high concentrations (>0.01 g L-1), while their antioxidant activity was demonstrated at low and ultralow concentrations (<0.001 g L-1). Quantitative toxic and antioxidant characteristics of the fullerenols (effective concentrations, concentration ranges, DGT, and DOxT) were found to depend on the number of oxygen substituents. Lower toxicity and higher antioxidant activity were determined in solutions of fullerenols with fewer oxygen substituents (x + y = 24-28). The differences in fullerenol properties were attributed to their catalytic activity due to reversible electron acceptance, radical trapping, and balance of reactive oxygen species in aqueous solutions. The results provide pharmaceutical sciences with a basis for selection of carbon nanoparticles with appropriate toxic and antioxidant characteristics. Based on the results, we recommend, to reduce the toxicity of prospective endohedral gadolinium-fullerenol preparations Gd@C82Oy(OH)x, decreasing the number of oxygen groups to x + y = 24-28. The potential of bioluminescence methods to compare toxic and antioxidant characteristics of carbon nanostructures were demonstrated.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Physics SB RAS, Krasnoyarsk, 660036, Russian Federation
National Research Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
Institute of Physics SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Kovel, E. S.; Sachkova, A. S.; Vnukova, N. G.; Churilov, G. N.; Knyazeva, E. M.; Kudryasheva, N. S.

Найти похожие
7.


   
    Converting gaseous pollutants toxic to plants and humans into environmentally friendly compounds in artificial ecosystems / A. A. Tikhomirov [et al.] // IOP Conference Series: Materials Science and Engineering : Institute of Physics Publishing, 2018. - Vol. 450: 9th International Multidisciplinary Scientific and Research Conference on Modern Issues in Science and Technology Workshop in Advanced Technologies in Aerospace, Mechanical and Automation Engineering, MISTAerospace 2018 (20 October 2018 through 28 October 2018, ) Conference code: 143027, Is. 6, DOI 10.1088/1757-899X/450/6/062004
Кл.слова (ненормированные):
Ecosystems -- Environmental management -- Fog -- Artificial ecosystems -- Experimental conditions -- Gaseous pollutants -- Human waste -- Liquid products -- Plant growth -- Toxic effect -- Wheat plants -- Pollution
Аннотация: The present study describes detection of potential gaseous pollutants that can produce a toxic effect on plants and humans in the system with wheat plants cultivated on solutions containing liquid products of mineralization of human waste and fish waste. These gaseous pollutants do not inhibit plant growth and development under the experimental conditions, but they may accumulate in closed ecosystems functioning for extended periods of time. Ways to convert gaseous pollutants into environmentally friendly compounds have been proposed. © 2018 Institute of Physics Publishing. All rights reserved.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics SB RAS, Federal Research Center, Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Akademgorodok, 660036, Russian Federation

Доп.точки доступа:
Tikhomirov, A. A.; Ushakova, S. A.; Tikhomirova, N. A.; Trifonov, S. V.; Kalacheva, G. S.

Найти похожие
8.


   
    Incorporation of mineralized human waste and fish waste as a source of higher plant mineral nutrition in the BTLSS mass exchange / N. A. Tikhomirova [et al.] // Life Sci. Space Res. - 2019. - Vol. 20. - P53-61, DOI 10.1016/j.lssr.2018.12.003. - Cited References:41. - The study on developing the principles and conditions of fish waste mineralization and on growing wheat plants in the conveyor mode on solutions based on mineralized human waste and fish waste was performed within the framework of subject No. 56.1.4., in accordance with State Program for IBP SB RAS for 2013-2020.; The research in mineralization of human waste and growing wheat plants in the conveyor mode on solutions based on mineralized human waste was supported by the Russian Science Foundation (Project No. 14-14-00599.) and carried out in the IBP SB RAS at FRC KRC SB RAS. . - ISSN 2214-5524. - ISSN 2214-5532
РУБ Astronomy & Astrophysics + Biology + Multidisciplinary Sciences
Рубрики:
LIFE-SUPPORT-SYSTEM
   HYDROGEN-PEROXIDE

   MARS

   INTEGRATION

   BEHAVIOR

Кл.слова (ненормированные):
Biotechnical life support system -- Human waste -- Fish waste -- Wheat
Аннотация: The present study deals with the development of the principles and conditions of fish waste mineralization using the method of wet combustion with hydrogen peroxide in alternating electromagnetic field and describes testing mineralized human waste and fish waste as sources of nutrients for plants in the biotechnical human life support system (BTLSS). The study shows that mineralization of fish waste in the wet combustion reactor should be performed in the presence of readily oxidized organic matter, represented by human waste, as an activator of oxidation. Re-mineralization of the sediment in the mixture of hydrogen peroxide and nitric acid in the wet combustion reactor converts mineral elements bound in the sediment into the form available to plants. Using mineralized fish waste as an additional source of mineral elements in the nutrient solutions for growing plants based on mineralized human waste is a way to reduce the amounts of mineral elements added to the solution to replenish it, enabling fuller closure of material loops in the BTLSS.

WOS,
Смотреть статью
Держатели документа:
Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Fed Res Ctr, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Tikhomirova, N. A.; Trifonov, S., V; Ushakova, S. A.; Morozov, E. A.; Anischenko, O., V; Tikhomirov, A. A.; Morozov, Yegor; Russian Science Foundation [14-14-00599]; State Program for IBP SB RAS for 2013-2020 [56.1.4]

Найти похожие
9.


   
    Bioluminescent Enzymatic Assay as a Tool for Studying Antioxidant Activity and Toxicity of Bioactive Compounds / N. S. Kudryasheva [et al.] // Photochem. Photobiol. - 2017. - Vol. 93, Is. 2. - P536-540, DOI 10.1111/php.12639. - Cited References:40. - The work was supported by the Russian Foundation for Basic Research, Grants 15-03-06786 and 15-43-04377-sibir; the state budget allocated to the fundamental research at the Russian Academy of Sciences (project 01201351504). . - ISSN 0031-8655. - ISSN 1751-1097
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
LUMINOUS MARINE-BACTERIA
   HUMIC SUBSTANCES

   DETOXIFICATION PROCESSES

Аннотация: A bioluminescent assay based on a system of coupled enzymatic reactions catalyzed by bacterial luciferase and NADH:FMN-oxidoreductase was developed to monitor toxicity and antioxidant activity of bioactive compounds. The assay enables studying toxic effects at the level of biomolecules and physicochemical processes, as well as determining the toxicity of general and oxidative types. Toxic and detoxifying effects of bioactive compounds were studied. Fullerenols, perspective pharmaceutical agents, nanosized particles, water-soluble polyhydroxylated fullerene-60 derivatives were chosen as bioactive compounds. Two homologous fullerenols with different number and type of substituents, C60O2-4(OH)(20-24) and Fe0.5C60(OH) O-x(y) (x + y = 40-42), were used. They suppressed bioluminescent intensity at concentrations 0.01 g L-1 and 0.001 g L-1 for C60O2-4(OH)(20-24) and Fe0.5C60(OH)(x)O-y, respectively; hence, a lower toxicity of C60O2-4(OH)(20-24) was demonstrated. Antioxidant activity of fullerenols was studied in model solutions of organic and inorganic oxidizers; changes in toxicities of general and oxidative type were determined; detoxification coefficients were calculated. Fullerenol C60O2-4(OH)(20-24) revealed higher antioxidant ability at concentrations 10(-17)-10(-5) g L-1. The difference in the toxicity and antioxidant activity of fullerenols was explained through their electron donor/acceptor properties and different catalytic activity. Principles of bioluminescent enzyme assay application for evaluating the toxic effect and antioxidant activity of bioactive compounds were summarized and the procedure steps were described.

WOS,
Смотреть статью
Держатели документа:
Inst Biophys SB RAS, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Natl Res Tomsk Polytech Univ, Tomsk, Russia.
Inst Phys SB RAS, Krasnoyarsk, Russia.

Доп.точки доступа:
Kudryasheva, Nadezhda S.; Kovel, Ekaterina S.; Sachkova, Anna S.; Vorobeva, Anna A.; Isakova, Viktoriya G.; Churilov, Grigoriy N.; Russian Foundation for Basic Research [15-03-06786, 15-43-04377-sibir]; Russian Academy of Sciences [01201351504]

Найти похожие
10.


   
    Is bacterial luminescence response to low-dose radiation associated with mutagenicity? / T. V. Rozhko [et al.] // J. Environ. Radioact. - 2017. - Vol. 177. - P261-265, DOI 10.1016/j.jenvrad.2017.07.010 . - ISSN 0265-931X
Кл.слова (ненормированные):
Bioassay -- DNA -- Low-dose radiation -- Luminous marine bacteria -- Mutations -- Bacteria -- Bioassay -- Bioluminescence -- Chemical activation -- DNA -- DNA sequences -- Genes -- Ionizing radiation -- Kinetics -- Luminescence -- Nucleic acids -- Phosphorescence -- Physiological models -- Radioisotopes -- Bacterial suspensions -- Beta-emitting radionuclides -- Low dose radiation -- Luminescence intensity -- Marine bacterium -- Mutations -- Photobacterium phosphoreum -- Physiological parameters -- Radiation -- Bacteria (microorganisms) -- Photobacterium phosphoreum
Аннотация: Luminous marine bacteria are widely used in bioassays with luminescence intensity being a physiological parameter tested. The purpose of the study was to determine whether bacterial genetic alteration is responsible for bioluminescence kinetics change under low-dose radiation exposure. The alpha-emitting radionuclide 241Am and beta-emitting radionuclide 3H were used as the sources of low-dose ionizing radiation. Changes of bioluminescence kinetics of Photobacterium phosphoreum in solutions of 241Am(NO3)3, 7 kBq/L, and tritiated water, 100 MBq/L, were studied; bioluminescence kinetics stages (absence of effect, activation, and inhibition) were determined. Bacterial suspension was sampled at different stages of the bioluminescent kinetics; the doses accumulated by the samples were close or a little higher than a tentative limit of a low-dose interval: 0.10 and 0.85 Gy for 241Am, or 0.11 and 0.18 Gy for 3H. Sequence analysis of the 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose alpha and beta radiation in the bacterial samples. Previous results on bacterial DNA exposed to low-dose gamma radiation (0.25 Gy) were analyzed and compared to those for alpha and beta irradiation. It is concluded that bioluminescence activation and/or inhibition under the applied conditions of low-dose alpha, beta and gamma radioactive exposure is not associated with DNA mutations in the gene sequences tested. © 2017 Elsevier Ltd

Scopus,
Смотреть статью,
WOS
Держатели документа:
Krasnoyarsk State Medical Academy, 1 P.Zheleznyaka, Krasnoyarsk, Russian Federation
Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, Russian Federation
SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Avenue, Novosibirsk, Russian Federation
Siberian State Technological University, LB, 29 Pobedy, Lesosibirsk, Krasnoyarsk Region, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center ‘Krasnoyarsk Science Center SB RAS’, 50/50 Akademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Rozhko, T. V.; Guseynov, O. A.; Guseynova, V. E.; Bondar, A. A.; Devyatlovskaya, A. N.; Kudryasheva, N. S.

Найти похожие
11.


   
    Contrasting relationship between macro- and microviscosity of the gelatin- and starch-based suspensions and gels [Text] / D. V. Gulnov, E. V. Nemtseva, V. A. Kratasyuk // Polym. Bull. - 2016. - Vol. 73, Is. 12. - P3421-3435, DOI 10.1007/s00289-016-1664-9. - Cited References:42. - Authors thank Alexander Kheruvimov (REC "Composite Materials and Structures", SUSU, Chelyabinsk, Russia) for assistance in rheological experiments. The research was partially supported by the grants No. 11.G34.31.0058 and 1762 from The Ministry of Education and Science of the Russian Federation and by the state budget allocated to the fundamental research at the Russian Academy of Sciences (Project No. 01201351504). . - ISSN 0170-0839. - ISSN 1436-2449
РУБ Polymer Science
Рубрики:
FLUORESCENT MOLECULAR ROTORS
   INTRACELLULAR VISCOSITY

   DRUG-DELIVERY

Кл.слова (ненормированные):
Biopolymer -- Gelatin -- Starch -- Physical gel -- Microviscosity -- Molecular -- rotor
Аннотация: The problem of correlation between rheological properties in macro- and micro- scales of media with biopolymers of polypeptide (gelatin) and polysaccharide (starch) nature is investigated. The viscosity of the biopolymer solutions with concentrations 0.5-5 wt% was estimated by standard rotational rheometry technique and with fluorescent molecular rotor at 15-50 A degrees C. Opposite trends were observed for relationship between microviscosity eta (m) and macroviscosity eta for two biopolymers: eta (m) << eta for gelatin and eta (m) >> eta for starch solutions. The temperature dependence of eta (m) followed the monoexponential decay law in all samples over the whole temperature range indicating insensitivity of microviscosity to gel mesh melting under heating. The dissimilarity of macro- and micro-rheological properties of gelatin and starch-containing media is discussed in terms of difference in architecture of the gels.

WOS,
Смотреть статью
Держатели документа:
Siberian Fed Univ, Lab Bioluminescent Biotechnol, Krasnoyarsk 660041, Russia.
Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Gulnov, Dmitry V.; Nemtseva, Elena V.; Kratasyuk, Valentina A.; Ministry of Education and Science of the Russian Federation [11.G34.31.0058, 1762]; Russian Academy of Sciences [01201351504]

Найти похожие
12.


   
    On mechanism of antioxidant effect of fullerenols / A. S. Sachkova [et al.] // Biochem. Biophys. Rep. - 2017. - Vol. 9. - P1-8, DOI 10.1016/j.bbrep.2016.10.011 . - ISSN 2405-5808
Кл.слова (ненормированные):
Antioxidant activity -- Bacterial enzymes -- Fullerenol -- Hormesis -- Luminous marine bacteria -- Ultralow concentrations
Аннотация: Fullerenols are nanosized water-soluble polyhydroxylated derivatives of fullerenes, specific allotropic form of carbon, bioactive compounds and perspective pharmaceutical agents. Antioxidant activity of fullerenols was studied in model solutions of organic and inorganic toxicants of oxidative type – 1,4-benzoquinone and potassium ferricyanide. Two fullerenol preparations were tested: С60О2–4(ОН)20–24 and mixture of two types of fullerenols С60О2–4(ОН)20–24+С70О2–4(ОН)20–24. Bacteria-based and enzyme-based bioluminescent assays were used to evaluate a decrease in cellular and biochemical toxicities, respectively. Additionally, the enzyme-based assay was used for the direct monitoring of efficiency of the oxidative enzymatic processes. The bacteria-based and enzyme-based assays showed similar peculiarities of the detoxification processes: (1) ultralow concentrations of fullerenols were active (ca 10–17–10?4 and 10–17–10? 5 g/L, respectively), (2) no monotonic dependence of detoxification efficiency on fullerenol concentrations was observed, and (3) detoxification of organic oxidizer solutions was more effective than that of the inorganic oxidizer. The antioxidant effect of highly diluted fullerenol solutions on bacterial cells was attributed to hormesis phenomenon; the detoxification was concerned with stimulation of adaptive cellular response under low-dose exposures. Sequence analysis of 16S ribosomal RNA was carried out; it did not reveal mutations in bacterial DNA. The suggestion was made that hydrophobic membrane-dependent processes are involved to the detoxifying mechanism. Catalytic activity of fullerenol (10? 8 g/L) in NADH-dependent enzymatic reactions was demonstrated and supposed to contribute to adaptive bacterial response. © 2016 The Authors

Scopus,
Смотреть статью
Держатели документа:
National Research Tomsk Polytechnic University, Tomsk, Russian Federation
Institute of Biophysics SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Physics SB RAS, Krasnoyarsk, Russian Federation
SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russian Federation

Доп.точки доступа:
Sachkova, A. S.; Kovel, E. S.; Churilov, G. N.; Guseynov, O. A.; Bondar, A. A.; Dubinina, I. A.; Kudryasheva, N. S.

Найти похожие
13.


   
    Antioxidant Activity of Fullerenols. Bioluminescent Monitoring in vitro / A. S. Sachkova [et al.] ; ed.: A. . Turner, A. . Tang // BIOSENSORS 2016 : ELSEVIER SCIENCE BV, 2017. - Vol. 27: 26th Anniversary World Congress on Biosensors (Biosensors) (MAY 25-27, 2016, Gothenburg, SWEDEN). - P230-231. - (Procedia Technology), DOI 10.1016/j.protcy.2017.04.097. - Cited References:2. - The work was supported by the Russian Foundation for Basic Research, Grants No. 15-03-06786 and 15-43-04377-sibir; the state budget to the fundamental research at the Russian Academy of Sciences (project No 01201351504) . -
РУБ Engineering, Biomedical

Кл.слова (ненормированные):
bioluminescence -- enzymatic assay -- toxicity sensor -- antioxidant activity -- fullerenol
Аннотация: Bioluminescence of isolated enzymes is a perspective phenomenon for biosensors development due to simplicity of registration of a physiological parameter - light intensity. Enzyme-based bioluminescent assay is widely used to evaluate a decrease in biochemical toxicities. Also the enzyme-based assay is used for the direct biochemical monitoring of oxidative toxicity. This work considers antioxidant properties of fullerenols, water-soluble polyhydroxylated derivatives of fullerenes and perspective pharmaceutical agents, in solutions of model inorganic and organic toxicants of oxidative type K-3[Fe(CN)(6)] and 1,4-benzoquinone. Two fullerenol preparations were used: C60O2-4(OH)(20-24) and mixture of two types of fullerenols C60O2-4(OH)(20-24)+C70O2-4(OH)(20-24). The enzyme-based assays showed the peculiarities of the detoxification processes: ultralow concentrations of fullerenols were active (ca 10(-17)-10(-5)g/L); no monotonic dependence of detoxification efficiency on fullerenol concentrations was observed, and detoxification of organic oxidizer solutions was more effective than that of the inorganic oxidizer. The antioxidant effects of highly diluted fullerenol solutions were attributed to hormesis phenomenon; the detoxification was concerned with stimulation of adaptive cellular response under low-dose exposures. (C) 2017 The Authors. Published by Elsevier Ltd.

WOS,
Смотреть статью
Держатели документа:
Natl Res Tomsk Polytech Univ, Lenin Ave 30, Tomsk 634050, Russia.
SB RAS, Inst Biophys, Akademgorodok 50-50, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodny Pr 79, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Sachkova, A. S.; Kovel, E. S.; Vorobeva, A. A.; Kudryasheva, N. S.; Turner, A... \ed.\; Tang, A... \ed.\; Russian Foundation for Basic Research [15-03-06786, 15-43-04377-sibir]; state budget to the fundamental research at the Russian Academy of Sciences [01201351504]

Найти похожие
14.


   
    Preparation, structure and magnetic properties of synthetic ferrihydrite nanoparticles / S. V. Stolyar [et al.] // Journal of Physics: Conference Series : Institute of Physics Publishing, 2018. - Vol. 994: 3rd International School and Workshop on Complex and Magnetic Soft Matter Systems: Structure and Physico - Mechanical Properties, CMSMS 2017 (28 June 2017 through 30 June 2017, ) Conference code: 135760, Is. 1, DOI 10.1088/1742-6596/994/1/012003
Кл.слова (ненормированные):
Magnetic properties -- Mechanical properties -- Nanoparticles -- Powders -- Sols -- Solutions -- Arabinogalactan -- Chemical deposition method -- Fe-ions -- Ferrihydrites -- Metallic state -- Nanoparticle sizes -- Superparamagnetics -- Ultrasonic treatments -- Nanomagnetics
Аннотация: Superparamagnetic ferrihydrite powders with average nanoparticle sizes of 2.5 nm produced by the chemical deposition method. Static and dynamic magnetic properties are measured. As a result of ultrasonic treatment in the cavitation regime of suspensions of ferrihydrite powders in a solution of the albumin protein, the Fe ions are reduced to the metallic state. A sol of ferrihydrite nanoparticles is prepared in an aqueous solution of arabinogalactan polysaccharide. © Published under licence by IOP Publishing Ltd.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, SB RAS, Krasnoyarsk, Russian Federation
International Scientific Centre for Organism Extreme States Research Attached Presidium of KSC, SB RAS, Krasnoyarsk, Russian Federation
Institute of Biophysics, SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Stolyar, S. V.; Yaroslavtsev, R. N.; Bayukov, O. A.; Balaev, D. A.; Krasikov, A. A.; Iskhakov, R. S.; Vorotynov, A. M.; Ladygina, V. P.; Purtov, K. V.; Volochaev, M. N.

Найти похожие
15.


   
    Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics / T. G. Volova [et al.] // Polym Test. - 2018. - Vol. 65. - P54-68, DOI 10.1016/j.polymertesting.2017.10.023 . - ISSN 0142-9418
Кл.слова (ненормированные):
Antibacterial activity -- Antibiotics -- Bacterial cellulose -- Composites -- Properties -- Silver nanoparticles -- Antibiotics -- Atoms -- Boron carbide -- Cell culture -- Cellulose -- Cellulose films -- Composite materials -- Escherichia coli -- Materials testing apparatus -- Metal nanoparticles -- Nanocomposite films -- Nanoparticles -- Scanning electron microscopy -- Silver compounds -- Spectrum analysis -- Synthesis (chemical) -- Tensile testing -- Water pollution -- X ray analysis -- Anti-bacterial activity -- Antibacterial properties -- Bacterial cellulose -- Mechanical characteristics -- Properties -- Silver nanoparticles -- Structure and properties -- Tensile testing machines -- Silver -- Antibiotics -- Cellulose -- Composites -- Properties -- Silver
Аннотация: The present study describes production of bacterial cellulose composites with silver nanoparticles and antibiotics and compares their properties. Bacterial cellulose (BC) composites synthesized in the culture of the strain of acetic acid bacterium Komagataeibacter xylinus VKPM B-12068 with silver nanoparticles, BC/AgNps, were produced hydrothermally, under different AgNO3 concentrations (0.0001, 0.001, and 0.01 M) in the reaction medium. The presence of silver in the BC/AgNp composites was confirmed by elemental analysis conducted using scanning electron microscopy with a system of X-ray spectral analysis. Analysis showed that the average atomic number of silver particles in composite samples depended on the concentration of AgNO3: as AgNO3 concentration in the reaction solution was increased, silver content in the composites increased from 0.044 to 0.37 mg/cm2. BC composites with amikacin and ceftriaxone were prepared by immersing dry BC films in solutions containing different concentrations of the antibiotics. The surface structure and properties and physicochemical and mechanical characteristics of composites were investigated using SEM, DSC, X-ray analysis, the system for measuring water contact angles, and electromechanical tensile testing machine. The disk-diffusion method and the shake-flask culture method used in this study showed that all experimental composites had pronounced antibacterial activity against E. coli, Ps. eruginosa, K. pneumoniae, and St. aureus, and the BC/antibiotic composites were more active than BC/AgNp ones; S. aureus was the most susceptible to the effect of BC composites. No potential cytotoxicity was detected in any of the BC/AgNp composites in the NIH 3T3 mouse fibroblast cell culture, in contrast to the BC/antibiotic composites. These results suggest that BC composites constructed in the present study hold promise as dressings for managing wounds, including contaminated ones. © 2017 Elsevier Ltd

Scopus,
Смотреть статью,
WOS
Держатели документа:
Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 43/50 Akademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T. G.; Shumilova, A. A.; Shidlovskiy, I. P.; Nikolaeva, E. D.; Sukovatiy, A. G.; Vasiliev, A. D.; Shishatskaya, E. I.

Найти похожие
16.


   
    Bioluminescent enzyme inhibition-based assay to predict the potential toxicity of carbon nanomaterials / E. N. Esimbekova [et al.] // Toxicol. Vitro. - 2017. - Vol. 45. - P128-133, DOI 10.1016/j.tiv.2017.08.022. - Cited References:55. - This study was supported by the Russian Science Foundation (project no. 16-14-10115). . - ISSN 0887-2333
РУБ Toxicology
Рубрики:
IN-VIVO
   ENGINEERED NANOPARTICLES

   NANOTUBE TOXICITY

   C-60

   FULLERENE

Кл.слова (ненормированные):
Nanotoxicity -- Enzyme inhibition-based assay -- Bioluminescence -- Luciferase -- Nanomaterials -- Nanotubes
Аннотация: A bioluminescent enzyme inhibition-based assay was applied to predict the potential toxicity of carbon nanomaterials (CNM) presented by single- and multi-walled nanotubes (SWCNT and MWCNT) and aqueous solutions of hydrated fullerene C-60 (C(60)HyFn). This assay specifically detects the influence of substances on parameters of the soluble or immobilised coupled enzyme system of luminescent bacteria: NAD(P)H:FMN-oxidoreductase + luciferase (Red + Luc). A protocol based on the optical properties of CNM for correcting the results of the bioluminescent assay was also developed. It was shown that the inhibitory activity of CNM on Red + Luc decreased in the following order: MWCNT > SWCNT > C(60)HyFn. The soluble enzyme system Red + Luc had high sensitivity to MWCNT and SWCNT, with values of the inhibition parameter IC50 equal to 0.012 and 0.16 mg/L, respectively. The immobilised enzyme system was more vulnerable to C(60)HyFn than its soluble form, with an IC50 equal to 1.4 mg/L. Due to its technical simplicity, rapid response time and high sensitivity, this bioluminescent method has the potential to be developed as a general enzyme inhibition-based assay for a wide variety of nanomaterials.

WOS,
Смотреть статью
Держатели документа:
SB RAS, Fed Res Ctr, Krasnoyarsk Sci Ctr, Inst Biophys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Esimbekova, Elena N.; Nemtseva, Elena V.; Bezrukikh, Anna E.; Jukova, Galina V.; Lisitsa, Albert E.; Lonshakova-Mukina, Viktoriya I.; Rimatskaya, Nadezhda V.; Sutormin, Oleg S.; Kratasyuk, Valentina A.; Esimbekova, Elena; Nemtseva, Elena; Russian Science Foundation [16-14-10115]

Найти похожие
17.


   
    NAD(P)H:FMN-Oxidoreductase Functioning Under Macromolecular Crowding: In Vitro Modeling / A. E. Govorun, E. N. Esimbekova, V. A. Kratasyuk // Doklad. Biochem. Biophys. - 2019. - Vol. 486, Is. 1. - P213-215, DOI 10.1134/S160767291903013X . - ISSN 1607-6729
Аннотация: The functioning of NAD(P)H:FMN‑oxidoreductase (Red) from Vibrio fischeri under conditions of macromolecular crowding (MMC) simulated in vitro by adding biopolymers (starch and gelatin) was studied. The dissociation rate constants and the activation energies of dissociation of Red to the subunits were calculated, and the process of denaturation of Red was analyzed. It is shown that the functioning of Red both under conditions of MMC and in diluted solutions is the same. This result refutes the common belief that the native conformation of enzymes in vivo is stabilized due to MMC as compared to the in vitro conditions. © 2019, Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Govorun, A. E.; Esimbekova, E. N.; Kratasyuk, V. A.

Найти похожие
18.


   
    Toxicity and antioxidant activity of fullerenol c60,70 with low number of oxygen substituents / E. S. Kovel, A. G. Kicheeva, N. G. Vnukova [et al.] // Int. J. Mol. Sci. - 2021. - Vol. 22, Is. 12. - Ст. 6382, DOI 10.3390/ijms22126382 . - ISSN 1661-6596
Кл.слова (ненормированные):
Antioxidant activity -- Bioluminescent assay -- Fullerenol -- Hormesis -- Reactive oxygen species -- Toxicity
Аннотация: Fullerene is a nanosized carbon structure with potential drug delivery applications. We studied the bioeffects of a water-soluble fullerene derivative, fullerenol, with 10-12 oxygen groups (F10-12); its structure was characterized by IR and XPS spectroscopy. A bioluminescent enzyme system was used to study toxic and antioxidant effects of F10-12 at the enzymatic level. Antioxidant characteristics of F10-12 were revealed in model solutions of organic and inorganic oxidizers. Low-concentration activation of bioluminescence was validated statistically in oxidizer solutions. Toxic and antioxidant characteristics of F10-12 were compared to those of homologous fullerenols with a higher number of oxygen groups:F24-28 and F40-42. No simple dependency was found between the toxic/antioxidant characteristics and the number of oxygen groups on the fullerene’s carbon cage. Lower toxicity and higher antioxidant activity of F24-28 were identified and presumptively attributed to its higher solubility. An active role of reactive oxygen species (ROS) in the bioeffects of F10-12 was demonstrated. Correlations between toxic/antioxidant characteristics of F10-12 and ROS content were evaluated. Toxic and antioxidant effects were related to the decrease in ROS content in the enzyme solutions. Our results reveal a complexity of ROS effects in the enzymatic assay system. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Physics SB RAS, FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Kovel, E. S.; Kicheeva, A. G.; Vnukova, N. G.; Churilov, G. N.; Stepin, E. A.; Kudryasheva, N. S.

Найти похожие
19.


   
    Toxicity and Antioxidant Activity of Fullerenol C-60,C-70 with Low Number of Oxygen Substituents / E. S. Kovel, A. G. Kicheeva, N. G. Vnukova [et al.] // Int. J. Mol. Sci. - 2021. - Vol. 22, Is. 12. - Ст. 6382, DOI 10.3390/ijms22126382. - Cited References:93. - This research was funded by RFBR, N18-29-19003; RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, N20-44-243001; and partly supported by the Program of the Federal Service for Surveillance on Consumer Rights Protection and HumanWellbeing, Fundamental Study 2020-2025 (Russian Federation). . - ISSN 1422-0067
РУБ Biochemistry & Molecular Biology + Chemistry, Multidisciplinary
Рубрики:
HUMIC SUBSTANCES
   DETOXIFICATION PROCESSES

   BIOLOGICAL-ACTIVITY

Кл.слова (ненормированные):
fullerenol -- toxicity -- antioxidant activity -- reactive oxygen species -- bioluminescent assay -- hormesis
Аннотация: Fullerene is a nanosized carbon structure with potential drug delivery applications. We studied the bioeffects of a water-soluble fullerene derivative, fullerenol, with 10-12 oxygen groups (F10-12); its structure was characterized by IR and XPS spectroscopy. A bioluminescent enzyme system was used to study toxic and antioxidant effects of F10-12 at the enzymatic level. Antioxidant characteristics of F10-12 were revealed in model solutions of organic and inorganic oxidizers. Low-concentration activation of bioluminescence was validated statistically in oxidizer solutions. Toxic and antioxidant characteristics of F10-12 were compared to those of homologous fullerenols with a higher number of oxygen groups:F24-28 and F40-42. No simple dependency was found between the toxic/antioxidant characteristics and the number of oxygen groups on the fullerene's carbon cage. Lower toxicity and higher antioxidant activity of F24-28 were identified and presumptively attributed to its higher solubility. An active role of reactive oxygen species (ROS) in the bioeffects of F10-12 was demonstrated. Correlations between toxic/antioxidant characteristics of F10-12 and ROS content were evaluated. Toxic and antioxidant effects were related to the decrease in ROS content in the enzyme solutions. Our results reveal a complexity of ROS effects in the enzymatic assay system.

WOS
Держатели документа:
FRC KSC SB RAS, Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
FRC KSC SB RAS, Inst Phys SB RAS, Krasnoyarsk 660036, Russia.
FRC KSC SB RAS, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Kovel, Ekaterina S.; Kicheeva, Arina G.; Vnukova, Natalia G.; Churilov, Grigory N.; Stepin, Evsei A.; Kudryasheva, Nadezhda S.; Kovel, Ekaterina; RFBRRussian Foundation for Basic Research (RFBR) [N18-29-19003]; RFBR, Krasnoyarsk Territory; Krasnoyarsk Regional Fund of Science [N20-44-243001]; Program of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Fundamental Study 2020-2025 (Russian Federation)

Найти похожие
20.


   
    Polymer Films of Poly-3-hydroxybutyrate Synthesized by Cupriavidus necator from Different Carbon Sources / E. Shishatskaya, I. Nemtsev, A. Lukyanenko [et al.] // J. Polym. Environ. - 2021. - Vol. 29, Is. 3. - P837-850, DOI 10.1007/s10924-020-01924-3 . - ISSN 1566-2543
Кл.слова (ненормированные):
Degradable P(3HB) -- Films -- NIH 3T3 fibroblasts -- Properties -- Structure -- Various carbon substrates -- Carbon -- Carbon films -- Cell culture -- Chlorine containing polymers -- Crystallinity -- Glucose -- Glycerol -- Scaffolds (biology) -- Semiconducting films -- Beneficial effects -- Cell scaffold -- Degree of crystallinity -- Different carbon sources -- Low crystallinity -- Poly-3-hydroxybutyrate -- Temperature characteristic -- Weight Properties -- Polymer films -- Bacteria (microorganisms) -- bacterium B -- Cupriavidus necator
Аннотация: Films were prepared from 2% solutions of biodegradable poly-3-hydroxybutyrate [P(3HB)] and investigated. The polymer was synthesized by the Cupriavidus necator B-10646 bacterium cultivated using various carbon sources (glucose and glycerol of different degrees of purity, containing 0.3 to 17.93% impurities). Glycerol as the substrate influenced molecular-weight properties and crystallinity of the polymer without affecting its temperature characteristics. The P(3HB) specimens synthesized from glycerol had reduced Mw (300–400 kDa) and degree of crystallinity (50–55%) compared to the specimens synthesized from glucose (860 kDa and 76%, respectively). The low-crystallinity P(3HB) specimens, regardless of the degree of purity of glycerol, produced a beneficial effect on the properties of polymer films, which had a better developed folded surface and increased hydrophilicity. The values of the highest roughness (Ra) of the films synthesized from glycerol were 1.8 to 4.0 times lower and the water angles 1.4–1.6 times smaller compared to the films synthesized from glucose (71.75 nm and 87.4°, respectively). Those films performed better as cell scaffolds: the number of viable NIH fibroblasts was 1.7–1.9 times higher than on polystyrene (control) or films of P(3HB) synthesized from glucose. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.

Scopus
Держатели документа:
Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
L.V. Kirenskii Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Shishatskaya, E.; Nemtsev, I.; Lukyanenko, A.; Vasiliev, A.; Kiselev, E.; Sukovatyi, A.; Volova, T.

Найти похожие
 1-20    21-40   41-60   61-67 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)