Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (1)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Substrates<.>)
Общее количество найденных документов : 65
Показаны документы с 1 по 20
 1-20    21-40   41-60   61-65 
1.


   
    A GEL MODEL FOR THE FUNCTIONING OF LUCIFERASE IN THE CELL [Text] / V. A. KRATASYUK, V. V. ABAKUMOVA, N. B. KIM // Biochem.-Moscow. - 1994. - Vol. 59, Is. 7. - P. 761-765. - Cited References: 11 . - ISSN 0006-2979
РУБ Biochemistry & Molecular Biology
Рубрики:
BIOLUMINESCENT
Кл.слова (ненормированные):
BIOLUMINESCENCE -- LUCIFERASE -- NADH, FMN-OXIDOREDUCTASE -- IMMOBILIZATION
Аннотация: A gel model for the functioning of luciferase in cells has been constructed using bacterial NADH:FMN-oxidoreductase and luciferase immobilized in starch gel disks. The characteristics of the immobilized luciferase depend on the duration of drying, the amount and concentration of the gel, the nature of the support used for drying, and the properties of the initial enzyme preparation. Functionally important enzyme groups remain intact in the immobilized preparation, and luciferase retains its high specificity with respect to aldehydes. The gel microenvironment appears to be optimal for luciferase, judging from its high activity and increased stability. Conditions allowing repeated use of the preparation have been found. The approach permits co-immobilization of luciferase with other enzymes and their substrates. The error in bioluminescence measurements using the disks is 5-10%. A procedure for stabilization of the immobilized luciferase during repeated use has been devised.

WOS : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
KRATASYUK, V.A.; ABAKUMOVA, V.V.; KIM, N.B.

Найти похожие
2.


   
    A Glucose-Utilizing Strain, Cupriavidus euthrophus B-10646: Growth Kinetics, Characterization and Synthesis of Multicomponent PHAs [Text] / T. . Volova [et al.] // PLoS One. - 2014. - Vol. 9, Is. 2. - Ст. e87551, DOI 10.1371/journal.pone.0087551. - Cited References: 64. - This study was financially supported by Project "Biotechnologies of novel biomaterials: Innovative Biopolymers and Biomedicine Devices" (Agreement No. 11.G34.31.0013 with Amendment No. 1 of 15 February 2013) in accordance with Resolution No. 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning." The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. . - ISSN 1932-6203
РУБ Multidisciplinary Sciences
Рубрики:
RALSTONIA-EUTROPHA
   BIODEGRADABLE POLYHYDROXYALKANOATES

   AEROMONAS-HYDROPHILA

   ESCHERICHIA-COLI

   MOLECULAR-WEIGHT

   SURFACE-ENERGY

   NORTH PACIFIC

   TERPOLYESTER

   BIOSYNTHESIS

   POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE-CO-3-HYDROXYHEXANOATE)

Аннотация: This study investigates kinetic and production parameters of a glucose-utilizing bacterial strain, C. eutrophus B-10646, and its ability to synthesize PHA terpolymers. Optimization of a number of parameters of bacterial culture (cell concentration in the inoculum, physiological activity of the inoculum, determined by the initial intracellular polymer content, and glucose concentration in the culture medium during cultivation) provided cell concentrations and PHA yields reaching 110 g/L and 80%, respectively, under two-stage batch culture conditions. Addition of precursor substrates (valerate, hexanoate, propionate, c-butyrolactone) to the culture medium enabled synthesis of PHA terpolymers, P(3HB/3HV/4HB) and P(3HB/3HV/3HHx), with different composition and different molar fractions of 3HB, 3HV, 4HB, and 3HHx. Different types of PHA terpolymers synthesized by C. eutrophus B-10646 were used to prepare films, whose physicochemical and physicalmechanical properties were investigated. The properties of PHA terpolymers were significantly different from those of the P3HB homopolymer: they had much lower degrees of crystallinity and lower melting points and thermal decomposition temperatures, with the difference between these temperatures remaining practically unchanged. Films prepared from all PHA terpolymers had higher mechanical strength and elasticity than P3HB films. In spite of dissimilar surface structures, all films prepared from PHA terpolymers facilitated attachment and proliferation of mouse fibroblast NIH 3T3 cells more effectively than polystyrene and the highly crystalline P3HB.

WOS
Держатели документа:
[Volova, Tatiana
Kiselev, Evgeniy
Nikolaeva, Elena
Sukovatiy, Aleksey
Shishatskaya, Ekaterina] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia
[Volova, Tatiana
Vinogradova, Olga
Shishatskaya, Ekaterina] Siberian Fed Univ, Krasnoyarsk, Russia
[Chistyakov, Anton] Russian Acad Sci, Shemyakin Ovchinnikov Inst Bioorgan Chem, Moscow, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T...; Kiselev, E...; Vinogradova, O...; Nikolaeva, E...; Chistyakov, A...; Sukovatiy, A...; Shishatskaya, E...; Project "Biotechnologies of novel biomaterials: Innovative Biopolymers and Biomedicine Devices" [11.G34.31.0013]

Найти похожие
3.


   
    A glucose-utilizing strain, cupriavidus euthrophus B-10646: Growth kinetics, characterization and synthesis of multicomponent PHAs / T. Volova [et al.] // PLoS ONE. - 2014. - Vol. 9, Is. 2, DOI 10.1371/journal.pone.0087551 . - ISSN 1932-6203
Кл.слова (ненормированные):
3 hydroxybutyrate 3 hydroxyhexanoate 3 hydroxyvalerate copolymer -- 3 hydroxybutyrate 4 hydroxybutyrate 3 hydroxyvalerate copolymer -- copolymer -- gamma butyrolactone -- glucose -- hexanoic acid -- poly(3 hydroxybutyric acid) -- polyhydroxyalkanoic acid -- polystyrene -- propionic acid -- unclassified drug -- valeric acid -- animal cell -- article -- bacterial growth -- bacterium culture -- cell adhesion -- cell proliferation -- crystal structure -- culture optimization -- Cupriavidus -- Cupriavidus euthrophus -- decomposition -- elasticity -- film -- glucose utilization -- kinetics -- mechanics -- melting point -- mouse -- nonhuman -- nucleotide sequence -- physical chemistry -- polymerization -- strength -- synthesis
Аннотация: This study investigates kinetic and production parameters of a glucose-utilizing bacterial strain, C. eutrophus B-10646, and its ability to synthesize PHA terpolymers. Optimization of a number of parameters of bacterial culture (cell concentration in the inoculum, physiological activity of the inoculum, determined by the initial intracellular polymer content, and glucose concentration in the culture medium during cultivation) provided cell concentrations and PHA yields reaching 110 g/L and 80%, respectively, under two-stage batch culture conditions. Addition of precursor substrates (valerate, hexanoate, propionate, ?-butyrolactone) to the culture medium enabled synthesis of PHA terpolymers, P(3HB/3HV/4HB) and P(3HB/ 3HV/3HHx), with different composition and different molar fractions of 3HB, 3HV, 4HB, and 3HHx. Different types of PHA terpolymers synthesized by C. eutrophus B-10646 were used to prepare films, whose physicochemical and physical-mechanical properties were investigated. The properties of PHA terpolymers were significantly different from those of the P3HB homopolymer: they had much lower degrees of crystallinity and lower melting points and thermal decomposition temperatures, with the difference between these temperatures remaining practically unchanged. Films prepared from all PHA terpolymers had higher mechanical strength and elasticity than P3HB films. In spite of dissimilar surface structures, all films prepared from PHA terpolymers facilitated attachment and proliferation of mouse fibroblast NIH 3T3 cells more effectively than polystyrene and the highly crystalline P3HB. Copyright: © 2014 Volova et al.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Moscow, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.; Kiselev, E.; Vinogradova, O.; Nikolaeva, E.; Chistyakov, A.; Sukovatiy, A.; Shishatskaya, E.

Найти похожие
4.


   
    A NEW EXPERIMENTAL APPROACH TO THE SEARCH FOR CHEMICAL DENSITY FACTORS IN THE REGULATION OF MONOCULTURE GROWTH [Text] / A. G. DEGERMENDZHY, V. V. ADAMOVICH, V. A. ADAMOVICH // J. Gen. Microbiol. - 1993. - Vol. 139. - P2027-2031. - Cited References: 7 . - 5. - ISSN 0022-1287
РУБ Microbiology

Аннотация: In monocultures of micro-organisms, growth is controlled by feedback mechanisms involving chemical factors such as limiting substrates and inhibitory metabolic products. The role of such feedback in the growth regulation of Escherichia coli O-124 was investigated by growing cells in batch culture using a medium containing glucose and mineral salts. In various phases of growth, portions of the native culture were diluted with culture filtrate, so that although cell density decreased, the chemical composition of the growth medium was unaltered. As the diluted cultures grew, variations in growth acceleration were calculated and compared with those of native (undiluted) cultures. Towards the end of the exponential phase and in the growth deceleration phase, the specific feedback level (FBL) was between -20 and -200 (h g l-1)-1. The feedback components resulting from changes in glucose concentration were calculated using experimentally determined values of mu(max) (0.55 +/- 0.05 h-1) and K(s) (2.5 +/- 0.7 mg l-1). Only 0.1-40% of FBL could be accounted for by changes in glucose concentration, indicating the presence of additional growth regulators. The method developed may become a new tool for determination of growth-regulating cell-density factors in microbial cultures.
: 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
DEGERMENDZHY, A.G.; ADAMOVICH, V.V.; ADAMOVICH, V.A.

Найти похожие
5.


   
    A QUANTUM CHEMICAL STUDY OF THE FORMATION OF 2-HYDROPEROXY-COELENTERAZINE IN THE Ca2+-REGULATED PHOTOPROTEIN OBELIN [Text] / L. Y. Antipina [et al.] // J. Struct. Chem. - 2011. - Vol. 52, Is. 5. - P870-875. - Cited References: 19. - The work was supported by RFBR (07-04-00930-a), the "Molecular and Cell Biology" Program of the Presidium of the Russian Academy of Sciences, and the Program of the Siberian Division of the Russian Academy of Sciences (project No. 2) within the implementation of the Federal Targeted Program "Scientific and Scientific Pedagogical Personnel of Innovative Russia, 2010" (P333 and P213). . - ISSN 0022-4766
РУБ Chemistry, Inorganic & Nuclear + Chemistry, Physical
Рубрики:
CALCIUM-DISCHARGED OBELIN
   SEMIEMPIRICAL METHODS

   1.7 ANGSTROM

   OPTIMIZATION

   PARAMETERS

   MECHANISM

   FLUORESCENCE

   ELEMENTS

   PROTEIN

   EMITTER

Кл.слова (ненормированные):
coelenterazine -- 2-hydroperoxy-coelenterazine -- Obelia longissima -- Renilla muelleri
Аннотация: The Ca2+-regulated photoprotein obelin determines the luminescence of the marine hydroid Obelia longissima. Bioluminescence is initiated by calcium and appears as a result of the oxidative decarboxylation related to the coelenterazine substrate. The luciferase of the luminescent marine coral Renilla muelleri (RM) also uses coelenterazine as a substrate. However, three proteins are involved in the in vivo bioluminescence of these animals: luciferase, green fluorescent protein, and Ca2+-regulated coelenterazine-binding protein (CBP). In fact, CBP that contains one strongly bound coelenterazine molecule is the RM luciferase substrate in the in vivo bioluminescent reaction. Coelenterazine becomes available for oxygen and the reaction with luciferase only after binding CBP with calcium ions. Unlike Ca2+-regulated photoproteins, the coelenterazine molecule is not activated by oxygen in the CBP molecule. In this work, by means of quantum chemical methods the behavior of substrates in these proteins is analyzed. It is shown that coelenterazine can form different tautomers: CLZ(2H) and CLZ(7H). The formation of 2-hydroperoxy-coelenterazine is studied. According to the obtained data, these proteins use different forms of the substrates for the reaction. In obelin, the substrate is in the CLZ(2H) form that affords hydrogen peroxide. In RM, coelenterazine is in the CLZ(7H) form, and therefore, CBP is not activated by oxygen.

Держатели документа:
[Antipina, L. Yu
Tomilin, F. N.
Ovchinnikov, S. G.] Russian Acad Sci, LV Kirensky Phys Inst, Siberian Div, Krasnoyarsk, Russia
[Vysotskii, E. S.] Russian Acad Sci, Inst Biophys, Siberian Div, Krasnoyarsk, Russia
[Antipina, L. Yu
Ovchinnikov, S. G.] MF Reshetnev Siberian State Aerosp Univ, Krasnoyarsk, Russia
ИФ СО РАН
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Antipina, L.Y.; Tomilin, F.N.; Vysotskii, E.S.; Ovchinnikov, S.G.

Найти похожие
6.


   
    Application of Enzyme Bioluminescence in Ecology [Text] / E. Esimbekova, V. Kratasyuk, O. Shimomura // Adv. Biochem. Eng. Biotechnol. : SPRINGER-VERLAG BERLIN, 2014. - Vol. 144. - P67-109. - (Advances in Biochemical Engineering-Biotechnology), DOI 10.1007/978-3-662-43385-0_3. - Cited References:85 . -
РУБ Biotechnology & Applied Microbiology
Рубрики:
BACTERIAL LUCIFERASE
   IN-VITRO

   PYRETHROID INSECTICIDES

   FRESH-WATER

Кл.слова (ненормированные):
Bioluminescence -- Ecological monitoring -- Enzymatic assay -- Immobilization -- Integral water toxicity -- Luciferase
Аннотация: This review examines the general principles of bioluminescent enzymatic toxicity bioassays and describes the applications of these methods and the implementation in commercial biosensors. Bioluminescent enzyme system technology (BEST) has been proposed in the bacterial coupled enzyme system, wherein NADH: FMN-oxidoreductase-luciferase substitutes for living organisms. BEST was introduced to facilitate and accelerate the development of cost-competitive enzymatic systems for use in biosensors for medical, environmental, and industrial applications. For widespread use of BEST, the multicomponent reagent "Enzymolum'' has been developed, which contains the bacterial luciferase, NADH: FMN-oxidoreductase, and their substrates, co-immobilized in starch or gelatin gel. Enzymolum is the central part of Portable Laboratory for Toxicity Detection (PLTD), which consists of a biodetector module, a sampling module, a sample preparation module, and a reagent module. PLTD instantly signals chemical-biological hazards and allows us to detect a wide range of toxic substances. Enzymolum can be integrated as a biological module into the portable biodetector-biosensor originally constructed for personal use. Based on the example of Enzymolum and the algorithm for creating new enzyme biotests with tailored characteristics, a new approach was demonstrated in biotechnological design and construction. The examples of biotechnological design of various bioluminescent methods for ecological monitoring were provided. Possible applications of enzyme bioassays are seen in the examples for medical diagnostics, assessment of the effect of physical load on sportsmen, analysis of food additives, and in practical courses for higher educational institutions and schools. The advantages of enzymatic assays are their rapidity (the period of time required does not exceed 3-5 min), high sensitivity, simplicity and safety of procedure, and possibility of automation of ecological monitoring; the required luminometer is easily available.

WOS
Держатели документа:
Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
ИБФ СО РАН

Доп.точки доступа:
Esimbekova, Elena; Kratasyuk, Valentina; Shimomura, Osamu

Найти похожие
7.


   
    Assessment of the possibility of establishing material cycling in an experimental model of the bio-technical life support system with plant and human wastes included in mass exchange / A. A. Tikhomirov [et al.] // Acta Astronautica. - 2011. - Vol. 68, Is. 9-10. - P1548-1554, DOI 10.1016/j.actaastro.2010.10.005 . - ISSN 0094-5765
Кл.слова (ненормированные):
Biological-technical life support system -- Photosynthesizing unit -- Utilization of plant and human wastes -- Biological substrates -- Chemical component -- Experimental models -- Human waste -- Life support systems -- Mass exchange -- Mass transfer process -- Material cycling -- Photosynthesizing unit -- Physicochemical methods -- Pilot model -- Plant biomass -- Plant wastes -- Recycled products -- Salicornia europaea -- Simultaneous use -- Soil-like substrate -- Utilization of plant and human wastes -- Sodium chloride -- Substrates -- Waste incineration -- Waste utilization
Аннотация: A pilot model of a bio-technical life support system (BTLSS) including human and plant wastes has been developed at the Institute of Biophysics SB RAS (Krasnoyarsk, Russia). This paper describes the structure of the photosynthesizing unit of the system, which includes wheat, chufa and vegetables. The study substantiates the simultaneous use of neutral and biological substrates for cultivating plants. A novel physicochemical method for the involvement of human wastes in the cycling has been employed, which enables the use of recycled products as nutrients for plants. Inedible plant biomass was subjected to biological combustion in the soil-like substrate (SLS) and was thus involved in the system mass exchange; NaCl contained in native urine was returned to the human through the consumption of Salicornia europaea, an edible salt-concentrating plant. Mass transfer processes in the studied BLSS have been examined for different chemical components. В© 2009 Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
SB RAS Institute of Biophysics, Akademgorodok 50/50, Krasnoyarsk 660036, Russian Federation
Blaise Pascal University, France
ESA-ESTEC, Netherlands : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Velichko, V.V.; Tikhomirova, N.A.; Kudenko, Y.A.; Gribovskaya, I.V.; Gros, J.-B.; Lasseur, C.

Найти похожие
8.


   
    Bacterial Cellulose (BC) and BC Composites: Production and Properties / TGG Volova, SVV Prudnikova, EGG Kiselev [et al.] // Nanomaterials. - 2022. - Vol. 12, Is. 2. - Ст. 192, DOI 10.3390/nano12020192. - Cited References:113. - This research was financially supported by the State Assignment of the Ministry of Science and Higher Education of the Russian Federation No. FSRZ-2020-0006. . - ISSN 2079-4991
РУБ Chemistry, Multidisciplinary + Nanoscience & Nanotechnology + Materials
Рубрики:
SILVER NANOPARTICLES
   GLUCONACETOBACTER-HANSENII

   MICROBIAL CELLULOSE

Кл.слова (ненормированные):
bacterial cellulose -- composites -- production -- properties
Аннотация: The synthesis of bacterial cellulose (BC) by Komagataeibacter xylinus strain B-12068 was investigated on various C-substrates, under submerged conditions with stirring and in static surface cultures. We implemented the synthesis of BC on glycerol, glucose, beet molasses, sprat oil, and a mixture of glucose with sunflower oil. The most productive process was obtained during the production of inoculum in submerged culture and subsequent growth of large BC films (up to 0.2 m(2) and more) in a static surface culture. The highest productivity of the BC synthesis process was obtained with the growth of bacteria on molasses and glycerol, 1.20 and 1.45 g/L per day, respectively. We obtained BC composites with silver nanoparticles (BC/AgNPs) and antibacterial drugs (chlorhexidine, baneocin, cefotaxime, and doripenem), and investigated the structure, physicochemical, and mechanical properties of composites. The disc-diffusion method showed pronounced antibacterial activity of BC composites against E. coli ATCC 25922 and S. aureus ATCC 25923.

WOS
Держатели документа:
Siberian Fed Univ, Sch Fundamental Biol & Biotechnol, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.
RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, Inst Biophys SB, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, LV Kirensky Inst Phys SB, 50-38 Akademgorodok, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Fed Res Ctr, 50 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Sch Petr & Gas Engn, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Volova, Tatiana G. G.; Prudnikova, Svetlana V. V.; Kiselev, Evgeniy G. G.; Nemtsev, Ivan V. V.; Vasiliev, Alexander D. D.; Kuzmin, Andrey P. P.; Shishatskaya, Ekaterina I. I.; Kiselev, Evgeniy; Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0006]

Найти похожие
9.


   
    Biodegradable polymers - Perspectives and applications in agriculture / E. G. Kiselev, N. O. Zhila, T. G. Volova // IOP Conference Series: Earth and Environmental Science : IOP Publishing Ltd, 2021. - Vol. 689: 2020 International Conference on Germany and Russia: Ecosystems Without Borders, EcoSystConfKlgtu 2020 (5 October 2020 through 10 October 2020, ) Conference code: 167944, Is. 1. - Ст. 012036, DOI 10.1088/1755-1315/689/1/012036
Кл.слова (ненормированные):
Biodegradable polymers -- Ecosystems -- Fungi -- Glycerol -- Monounsaturated fatty acids -- Oilseeds -- Pesticides -- Substrates -- Sunflower oil -- Fenoxaprop-p-ethyl -- Natural materials -- Pesticide formulations -- Poly-3-hydroxybutyrate -- Polyhydroxyalkanoates -- Productive process -- Strategy of constructions -- Various substrates -- Palm oil
Аннотация: The paper presents a brief overview of the results of the implementation of the project "Agropreparations of the new generation: a strategy of construction and realization". The first part contains the analysis of the growth of the wild-type strain Cupriavidus necator B-10646 (formerly eutrophus) and the synthesis of polyhydroxyalkanoates by this strain on various substrates: glycerol, palm oil, Siberian oil seed, sunflower seed oils, and oleic acid. On refined glycerin, a highly productive process is implemented when scaling up, allowing to obtain 128 ± 11 g / L PHA. Evaluation of oils has shown that palm oil is the best carbon substrate. The second part presents the results of the development of environmentally friendly slow-release pesticide formulations. They are a degradable matrix of poly-3-hydroxybutyrate mixed with natural materials (peat, clay, wood flour), into which a pesticide (metribuzin, tribenuron-methyl, fenoxaprop-P-ethyl, azoxystrobin, epoxiconazole, and tebuconazole) has been. The developed preparations showed high activity against pathogenic fungi and weeds and had a much weaker negative effect on the soil microflora. Studies of the degradation of the developed preparations and the release of pesticides into the soil confirm their effectiveness over a long period of time, up to 90 days. © Published under licence by IOP Publishing Ltd.

Scopus
Держатели документа:
School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russian Federation
Laboratory of Chemoautotrophic Biosynthesis, Institute of Biophysics, SB, RAS, Federal Research Center, Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kiselev, E. G.; Zhila, N. O.; Volova, T. G.

Найти похожие
10.


   
    Bioluminescent properties of semi-synthetic obelin and aequorin activated by coelenterazine analogues with modifications of C-2, C-6, and C-8 substituents / E. V. Eremeeva, T. Jiang, N. P. Malikova [et al.] // Int. J. Mol. Sci. - 2020. - Vol. 21, Is. 15. - Ст. 5446. - P1-21, DOI 10.3390/ijms21155446 . - ISSN 1661-6596
Кл.слова (ненормированные):
Aequorin -- Analogues -- Coelenterazine -- Obelin -- Photoprotein
Аннотация: Ca2+-regulated photoproteins responsible for bioluminescence of a variety of marine organisms are single-chain globular proteins within the inner cavity of which the oxygenated coelenterazine, 2-hydroperoxycoelenterazine, is tightly bound. Alongside with native coelenterazine, photoproteins can also use its synthetic analogues as substrates to produce flash-type bioluminescence. However, information on the effect of modifications of various groups of coelenterazine and amino acid environment of the protein active site on the bioluminescent properties of the corresponding semi-synthetic photoproteins is fragmentary and often controversial. In this paper, we investigated the specific bioluminescence activity, light emission spectra, stopped-flow kinetics and sensitivity to calcium of the semi-synthetic aequorins and obelins activated by novel coelenterazine analogues and the recently reported coelenterazine derivatives. Several semi-synthetic photoproteins activated by the studied coelenterazine analogues displayed sufficient bioluminescence activities accompanied by various changes in the spectral and kinetic properties as well as in calcium sensitivity. The poor activity of certain semi-synthetic photoproteins might be attributed to instability of some coelenterazine analogues in solution and low efficiency of 2-hydroperoxy adduct formation. In most cases, semi-synthetic obelins and aequorins displayed different properties upon being activated by the same coelenterazine analogue. The results indicated that the OH-group at the C-6 phenyl ring of coelenterazine is important for the photoprotein bioluminescence and that the hydrogen-bond network around the substituent in position 6 of the imidazopyrazinone core could be the reason of different bioluminescence activities of aequorin and obelin with certain coelenterazine analogues. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, 660036, Russian Federation
Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong 266237, China

Доп.точки доступа:
Eremeeva, E. V.; Jiang, T.; Malikova, N. P.; Li, M.; Vysotski, E. S.

Найти похожие
11.


   
    Bioluminescent Properties of Semi-Synthetic Obelin and Aequorin Activated by Coelenterazine Analogues with Modifications of C-2, C-6, and C-8 Substituents / E. V. Eremeeva, T. Y. Jiang, N. P. Malikova [et al.] // Int. J. Mol. Sci. - 2020. - Vol. 21, Is. 15. - Ст. 5446, DOI 10.3390/ijms21155446. - Cited References:50. - The reported study was funded by RFBR and NSFC according to the research project No. 20-54-53011 (E.V.E. and N.P.M.), Russian Foundation for Basic Research (No. 18-44-242001), Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science (E.S.V.), the National Natural Science Foundation of China (No. 81874308), and the Shandong Natural Science Foundation (No. ZR2018ZC0233) (M.L.). . - ISSN 1422-0067
РУБ Biochemistry & Molecular Biology + Chemistry, Multidisciplinary
Рубрики:
CA2+-REGULATED PHOTOPROTEINS
   SPECTROSCOPIC PROPERTIES

Кл.слова (ненормированные):
photoprotein -- obelin -- aequorin -- coelenterazine -- analogues
Аннотация: Ca2+-regulated photoproteins responsible for bioluminescence of a variety of marine organisms are single-chain globular proteins within the inner cavity of which the oxygenated coelenterazine, 2-hydroperoxycoelenterazine, is tightly bound. Alongside with native coelenterazine, photoproteins can also use its synthetic analogues as substrates to produce flash-type bioluminescence. However, information on the effect of modifications of various groups of coelenterazine and amino acid environment of the protein active site on the bioluminescent properties of the corresponding semi-synthetic photoproteins is fragmentary and often controversial. In this paper, we investigated the specific bioluminescence activity, light emission spectra, stopped-flow kinetics and sensitivity to calcium of the semi-synthetic aequorins and obelins activated by novel coelenterazine analogues and the recently reported coelenterazine derivatives. Several semi-synthetic photoproteins activated by the studied coelenterazine analogues displayed sufficient bioluminescence activities accompanied by various changes in the spectral and kinetic properties as well as in calcium sensitivity. The poor activity of certain semi-synthetic photoproteins might be attributed to instability of some coelenterazine analogues in solution and low efficiency of 2-hydroperoxy adduct formation. In most cases, semi-synthetic obelins and aequorins displayed different properties upon being activated by the same coelenterazine analogue. The results indicated that the OH-group at the C-6 phenyl ring of coelenterazine is important for the photoprotein bioluminescence and that the hydrogen-bond network around the substituent in position 6 of the imidazopyrazinone core could be the reason of different bioluminescence activities of aequorin and obelin with certain coelenterazine analogues.

WOS
Держатели документа:
Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Photobiol Lab, Fed Res Ctr, Krasnoyarsk 660036, Russia.
Shandong Univ, Sch Pharmaceut Sci, Dept Med Chem, Key Lab Chem Biol MOE, Jinan 250012, Peoples R China.
Shandong Univ, Helmholtz Inst Biotechnol, State Key Lab Microbial Technol, Qingdao 266237, Peoples R China.

Доп.точки доступа:
Eremeeva, Elena, V; Jiang, Tianyu; Malikova, Natalia P.; Li, Minyong; Vysotski, Eugene S.; RFBRRussian Foundation for Basic Research (RFBR); NSFCNational Natural Science Foundation of China (NSFC) [20-54-53011]; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [18-44-242001]; Krasnoyarsk Regional Fund of Science; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81874308]; Shandong Natural Science FoundationNatural Science Foundation of Shandong Province [ZR2018ZC0233]; Government of Krasnoyarsk Territory

Найти похожие
12.


   
    Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646 / T. G. Volova [et al.] // Bioresource Technology. - 2013. - Vol. 146. - P215-222, DOI 10.1016/j.biortech.2013.07.070 . - ISSN 0960-8524
Кл.слова (ненормированные):
Autotrophic synthesis -- Cupriavidus eutrophus -- Polyhydroxyalkanoates
Аннотация: Synthesis of polyhydroxyalkanoates (PHAs) by a new strain of Cupriavidus - Cupriavidus eutrophus B-10646 - was investigated under autotrophic growth conditions. Under chemostat, at the specific flow rate D=0.1h-1, on sole carbon substrate (CO2), with nitrogen, sulfur, phosphorus, potassium, and manganese used as growth limiting elements, the highest poly(3-hydroxybutyrate) [P(3HB)] yields were obtained under nitrogen deficiency. In batch autotrophic culture, in the fermenter with oxygen mass transfer coefficient 0.460h-1, P(3HB) yields reached 85% of dry cell weight (DCW) and DCW reached 50g/l. Concentrations of supplementary PHA precursor substrates (valerate, hexanoate, ?-butyrolactone) and culture conditions were varied to produce, for the first time under autotrophic growth conditions, PHA ter- and tetra-polymers with widely varying major fractions of 3-hydroxybutyrate, 4-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate monomer units. Investigation of the high-purity PHA specimens showed significant differences in their physicochemical and physicomechanical properties. В© 2013 Elsevier Ltd.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
L.V. Kirenckii Institute of Physics of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Institute of Chemistry and Chemical Technology of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.G.; Kiselev, E.G.; Shishatskaya, E.I.; Zhila, N.O.; Boyandin, A.N.; Syrvacheva, D.A.; Vinogradova, O.N.; Kalacheva, G.S.; Vasiliev, A.D.; Peterson, I.V.

Найти похожие
13.


   
    Characteristics of mineral nutrition of plants in the bio-technical life support system with human wastes included in mass exchange / N. Tikhomirova [et al.] // Acta Astronaut. - 2016. - Vol. 126. - P59-65, DOI 10.1016/j.actaastro.2016.04.020 . - ISSN 0094-5765
Кл.слова (ненормированные):
Bio-technical life support system -- Human wastes -- Ion-exchange substrate -- Wheat -- Grain growth -- Nutrients -- Nutrition -- Substrates -- Human waste -- Ion exchange substrates -- Liquid products -- Mineral nutrition -- Nutrient solution -- Reproductive organs -- Vegetative organs -- Wheat -- Ion exchange
Аннотация: The study addresses the effectiveness of using ion exchange substrates (IES) to optimize mineral nutrition of plants grown in the nutrient solutions containing oxidized human wastes for application in bio-technical life support systems. The study shows that the addition of IES to the root-inhabited substrate is favorable for the growth of wheat vegetative organs but causes a decrease in the grain yield. By contrast, the addition of IES to the nutrient solution does not influence the growth of vegetative organs but favors normal development of wheat reproductive organs. Thus, to choose the proper method of adjusting the solution with IES, one should take into account specific parameters of plant growth and development and the possibility of multiple recycling of IES based on the liquid products of mineralization of human wastes. © 2016 IAA. Published by Elsevier Ltd. All rights reserved.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Akademgorodok, 50, Krasnoyarsk, Russian Federation
Siberian State Aerospace University, Krasnoyarsky Rabochy Av., 31, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Tikhomirova, N.; Ushakova, S.; Kalacheva, G.; Tikhomirov, A.

Найти похожие
14.


   
    Closed artificial ecosystems as a means of ecosystem studies for earth and space needs / N. S. Pechurkin, I. M. Shirobokova // Advances in Space Research. - 2001. - Vol. 27, Is. 9. - P1497-1504, DOI 10.1016/S0273-1177(01)00244-7 . - ISSN 0273-1177
Кл.слова (ненормированные):
artificial ecosystem -- bioremediation -- biosphere -- ecosystem -- environmental monitoring -- model -- Bioremediation -- Ecology -- Ecosystems -- Health -- Biosphere -- Space research -- artificial ecosystem -- Biodegradation, Environmental -- Earth (Planet) -- Ecological Systems, Closed -- Ecology -- Ecosystem -- Energy Transfer -- Environmental Microbiology -- Life Support Systems -- Population Dynamics -- Yeasts
Аннотация: Closed Artificial ecosystems (CAES) have good prospects for wide use as new means for quantitative studies of different types of both natural ecosystems and man-made ones. The paper deals with the discussion of three points of CAES applications. The first one is of importance for theoretical ecology development and is connected with bringing together В«holisticВ» and В«merologicalВ» approaches in ecosystems studies. Using CAES, we can combine both approaches, taking into account the biotic turnover of limiting substrates which few in number even for complicated natural ecosystems. The second CAES use concerns the development of В«ecosystems healthВ» concept and application of a key-factor-approach for the indication and measurement of healthy unhealthy state and functioning of ecosystems or their links. The third use is more of an applied nature, oriented to the intensification of bioremediation or biodepollution processes in different types of ecosystems, including the global biosphere. В© 2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, 660036, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Pechurkin, N.S.; Shirobokova, I.M.

Найти похожие
15.


   
    Coelenterazine-dependent luciferases / S. V. Markova, E. S. Vysotski // Biochemistry Moscow. - 2015. - Vol. 80, Is. 6. - P714-732, DOI 10.1134/S0006297915060073 . - ISSN 0006-2979
Кл.слова (ненормированные):
bioluminescence -- coelenterazine -- luciferase -- luciferin -- Coelenterata -- Cypridina luciferin -- Fungi -- Hexapoda -- Mollusca -- Protozoa
Аннотация: Bioluminescence is a widespread natural phenomenon. Luminous organisms are found among bacteria, fungi, protozoa, coelenterates, worms, molluscs, insects, and fish. Studies on bioluminescent systems of various organisms have revealed an interesting feature - the mechanisms underlying visible light emission are considerably different in representatives of different taxa despite the same final result of this biochemical process. Among the several substrates of bioluminescent reactions identified in marine luminous organisms, the most commonly used are imidazopyrazinone derivatives such as coelenterazine and Cypridina luciferin. Although the substrate used is the same, bioluminescent proteins that catalyze light emitting reactions in taxonomically remote luminous organisms do not show similarity either in amino acid sequences or in spatial structures. In this review, we consider luciferases of various luminous organisms that use coelenterazine or Cypridina luciferin as a substrate, as well as modifications of these proteins that improve their physicochemical and bioluminescent properties and therefore their applicability in bioluminescence imaging in vivo. © 2015 Pleiades Publishing, Ltd.

Scopus,
WOS
Держатели документа:
Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Markova, S.V.; Vysotski, E.S.

Найти похожие
16.


   
    Cupriavidus necator B-10646 growth and polyhydroxyalkanoates production on different plant oils / T. Volova, K. Sapozhnikova, N. Zhila // Int. J. Biol. Macromol. - 2020. - Vol. 164. - P121-130, DOI 10.1016/j.ijbiomac.2020.07.095 . - ISSN 0141-8130
Кл.слова (ненормированные):
Cupriavidus necator B-10646 -- Emulsifiers -- Fatty acids -- Plant oils -- Polyhydroxyalkanoates
Аннотация: The study addresses the growth of the wild-type strain Cupriavidus necator B-10646 and synthesis of polyhydroxyalkanoates by this strain on media containing plant oils with different compositions of fatty acids: palm, Siberian oilseed, and refined and unrefined sunflower seed oils. The study showed that the best carbon substrate was palm oil. Comparison of fatty acid compositions of the starting oils and unutilized residual substrates showed that C. necator B-10646 cells consumed the fatty acids from palm oil evenly while in experiments with other oils, they utilized polyenoic fatty acids first. Higher production parameters of the culture were obtained by preparation of emulsified oil medium using Tween 80 and sodium cocoyl glutamate as emulsifiers. All polyhydroxyalkanoate specimens were terpolymers that contained 3-hydroxybutyrate as the major component and minor amounts of 3-hydroxyvalerate (0.9–1.9 mol%) and 3-hydroxyhexanoate (0.5–1.1 mol%). Molecular weight of polyhydroxyalkanoate specimens depended on the type of plant oil and emulsifier. © 2020

Scopus
Держатели документа:
Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Volova, T.; Sapozhnikova, K.; Zhila, N.

Найти похожие
17.


   
    Cupriavidus necator B-10646 growth and polyhydroxyalkanoates production on different plant oils / T. Volova, K. Sapozhnikova, N. Zhila // Int. J. Biol. Macromol. - 2020. - Vol. 164. - P121-130, DOI 10.1016/j.ijbiomac.2020.07.095. - Cited References:52. - This studywas financially supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning" (polymer synthesis fromplant oils), and by the State assignment of the Ministry of Science and Higher Education of the Russian Federation No. FSRZ-2020-0006 (polymer properties). . - ISSN 0141-8130. - ISSN 1879-0003
РУБ Biochemistry & Molecular Biology + Chemistry, Applied + Polymer Science
Рубрики:
FATTY-ACID-COMPOSITION
   PHA SYNTHASE GENE

   PALM KERNEL OIL

Кл.слова (ненормированные):
Cupriavidus necator B-10646 -- Plant oils -- Polyhydroxyalkanoates -- Fatty -- acids -- Emulsifiers
Аннотация: The study addresses the growth of the wild-type strain Cupriavidus necator B-10646 and synthesis of polyhydroxyalkanoates by this strain on media containing plant oils with different compositions of fatty acids: palm, Siberian oilseed, and refined and unrefined sunflower seed oils. The study showed that the best carbon substrate was palm oil. Comparison of fatty acid compositions of the starting oils and unutilized residual substrates showed that C. necator B-10646 cells consumed the fatty acids from palm oil evenly while in experiments with other oils, they utilized polyenoic fatty acids first. Higher production parameters of the culture were obtained by preparation of emulsified oil medium using Tween 80 and sodium cocoyl glutamate as emulsifiers. All polyhydroxyalkanoate specimens were terpolymers that contained 3-hydroxybutyrate as the major component and minor amounts of 3-hydroxyvalerate (0.9-1.9 mol%) and 3-hydroxyhexanoate (0.5-1.1 mol%). Molecular weight of polyhydroxyalkanoate specimens depended on the type of plant oil and emulsifier. (C) 2020 Elsevier B.V. All rights reserved.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.
Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Fed Res Ctr, 50-50 Akad Gorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Volova, Tatiana; Sapozhnikova, Kristina; Zhila, Natalia; Project "Agropreparations of the new generation: a strategy of construction and realization" [074-02-2018-328]; Government of the Russian Federation; State assignment of the Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0006]

Найти похожие
18.


   
    Detonation Nanodiamond-Assisted Carbon Nanotube Growth by Hot Filament Chemical Vapor Deposition / I. P. Kudarenko [et al.] // Phys. Status Solidi B-Basic Solid State Phys. - 2018. - Vol. 255, Is. 1. - Ст. 1700286, DOI 10.1002/pssb.201700286. - Cited References:28. - The work was supported by RSF project 17-72-10173. . - ISSN 0370-1972. - ISSN 1521-3951
РУБ Physics, Condensed Matter
Рубрики:
DIAMOND
   FILMS

   HFCVD

   FABRICATION

   GRAPHITE

   SCIENCE

   SIZE

   CVD

Кл.слова (ненормированные):
carbon nanotubes -- catalytic growth -- diamond -- hot filament chemical vapor -- deposition -- nanomaterials -- synthesis
Аннотация: Substrates pretreatment in suspensions of a detonation nanodiamond is widely used for nucleation of diamond growth by chemical vapor deposition (CVD). We found that iron inclusions in the nanodiamond provide catalytical growth of carbon nanotubes during CVD in a hot filament reactor (HF CVD). Carbon nanotubes grow in the area between two adjacent Si wafers. The diameters of such obtained nanotubes were in the range of 10-100 nm and the length of the tubes reaches about 10 mu m. The proposed HF CVD method has convincing potential for the fabrication of carbon nanotube coatings on a large surface area.

WOS,
Смотреть статью
Держатели документа:
Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119991, Russia.
Univ Eastern Finland, Dept Phys & Math, Joensuu 80101, Finland.
RAS, Fed Sci Res Ctr Crystallog & Photon, AV Shubnikov Inst Crystallog, Moscow 119333, Russia.
Natl Res Ctr, Kurchatov Inst, Moscow 123182, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr SB RAS, Fed Res Ctr, Inst Biophys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kudarenko, Ilya P.; Malykhin, Sergei A.; Orekhov, Andrey S.; Puzyr, Aleksey P.; Kleshch, Victor I.; Ismagilov, Rinat R.; Obraztsov, Alexander N.; RSF [17-72-10173]

Найти похожие
19.


   
    Disposable luciferase-based microfluidic chip for rapid assay of water pollution / I. Denisov [et al.] // Lumin. - 2018. - Vol. 33, Is. 6. - P1054-1061, DOI 10.1002/bio.3508 . - ISSN 1522-7235
Кл.слова (ненормированные):
bioassay -- lab-on-a-chip -- luciferase -- microfluidics -- solvent bonding
Аннотация: In the present study, we demonstrate the use of a disposable luciferase-based microfluidic bioassay chip for environmental monitoring and methods for fabrication. The designed microfluidic system includes a chamber with immobilized enzymes of bioluminescent bacteria Photobacterium leiognathi and Vibrio fischeri and their substrates, which dissolve after the introduction of the water sample and thus activate bioluminescent reactions. Limits of detection for copper (II) sulfate, 1,3-dihydroxybenzene and 1,4-benzoquinone for the proposed microfluidic biosensor measured 3 ?M, 15 mM, and 2 ?M respectively, and these values are higher or close to the level of conventional environmental biosensors based on lyophilized bacteria. Approaches for entrapment of enzymes on poly(methyl methacrylate) (PMMA) plates using a gelatin scaffold and solvent bonding of PMMA chip plates under room temperature were suggested. The proposed microfluidic system may be used with some available luminometers and future portable luminescence readers. © 2018 John Wiley & Sons, Ltd.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Biophysics SB RAS Federal Research Center'Krasnoyarsk Science Center SB RAS’, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Denisov, I.; Lukyanenko, K.; Yakimov, A.; Kukhtevich, I.; Esimbekova, E.; Belobrov, P.

Найти похожие
20.


   
    Estimating CO2 gas exchange in mixed age vegetable plant communities grown on soil-like substrates for life support systems / V. V. Velichko, A. A. Tikhomirov, S. A. Ushakova // Life Sci. Space Res. - 2018. - Vol. 16. - P47-51, DOI 10.1016/j.lssr.2017.11.001 . - ISSN 2214-5524
Кл.слова (ненормированные):
Bioconversion of plant waste -- CO2 gas exchange -- Conveyor mode -- Plant cultivation -- Soil-like substrate -- carbon dioxide -- Article -- atmosphere -- beet -- carrot -- concentration (parameters) -- Cyperus esculentus -- gas exchange -- genetic variation -- microclimate -- nonhuman -- plant age -- plant community -- plant growth -- planting density -- priority journal -- reproducibility -- soil and soil related phenomena -- soil like substrate -- vegetable
Аннотация: If soil-like substrate (SLS) is to be used in human life support systems with a high degree of mass closure, the rate of its gas exchange as a compartment for mineralization of plant biomass should be understood. The purpose of this study was to compare variations in CO2 gas exchange of vegetable plant communities grown on the soil-like substrate using a number of plant age groups, which determined the so-called conveyor interval. Two experimental plant communities were grown as plant conveyors with different conveyor intervals. The first plant community consisted of conveyors with intervals of 7 days for carrot and beet and 14 days for chufa sedge. The conveyor intervals in the second plant community were 14 days for carrot and beet and 28 days for chufa sedge. This study showed that increasing the number of age groups in the conveyor and, thus, increasing the frequency of adding plant waste to the SLS, decreased the range of variations in CO2 concentration in the “plant–soil-like substrate” system. However, the resultant CO2 gas exchange was shifted towards CO2 release to the atmosphere of the plant community with short conveyor intervals. The duration of the conveyor interval did not significantly affect productivity and mineral composition of plants grown on the SLS. © 2017

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Velichko, V. V.; Tikhomirov, A. A.; Ushakova, S. A.

Найти похожие
 1-20    21-40   41-60   61-65 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)