Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (4)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=assay<.>)
Общее количество найденных документов : 88
Показаны документы с 1 по 20
 1-20    21-40   41-60   61-80   81-88 
1.


   
    Effects of Gamma-Radiation on DNA Damage in Onion (Allium cepa L.) Seedlings / A. Y. Bolsunovsky, D. V. Dementyev, T. S. Frolova [et al.] // Dokl. Biochem. Biophys. - 2019. - Vol. 489, Is. 1. - P362-366, DOI 10.1134/S1607672919060024. - Cited References:14. - Work on assessing DNA damage in onion seedling nuclei was performed using the equipment of the Core Facility for Microscopic Analysis of Biological Objects, Siberian Branch, Russian Academy of Sciences, funded under the research at the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences. This work was supported in part by the Russian Foundation for Basic Research (project no. 18-44-240001). . - ISSN 1607-6729. - ISSN 1608-3091
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
COMET ASSAY
   REPAIR

   CELLS

Аннотация: The effect of gamma-radiation on the level of nuclear DNA damage in onion seedlings (Allium-test) was studied using the comet assay. DNA breaks were first found in cells of onion seedlings exposed to low-dose radiation (

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Inst Biophys, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Inst Cytol & Genet, Siberian Branch, Novosibirsk 630090, Russia.
Novosibirsk State Univ, Novosibirsk 630090, Russia.
Russian Acad Sci, Res Inst Med Genet, Tomsk Natl Res Med Ctr, Tomsk 634058, Russia.

Доп.точки доступа:
Bolsunovsky, A. Ya.; Dementyev, D. V.; Frolova, T. S.; Trofimova, E. A.; Iniatkina, E. M.; Vasilyev, S. A.; Sinitsyna, O. I.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [18-44-240001]; Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Найти похожие
2.


   
    The Ca2+-Regulated Photoprotein Obelin as a Tool for SELEX Monitoring and DNA Aptamer Affinity Evaluation / V. V. Krasitskaya, N. S. Goncharova, V. V. Biriukov [et al.] // Photochem. Photobiol. - 2020, DOI 10.1111/php.13274. - Cited References:25. - This work has been supported by the Russian Foundation for Basic Research (RFBR) under the grant no 18-38-00531. . - Article in press. - ISSN 0031-8655. - ISSN 1751-1097
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
CARDIAC TROPONIN-I
   BIOLUMINESCENCE

   IMMUNOASSAY

   APTASENSOR

   DIAGNOSIS

Аннотация: Bioluminescent solid-phase analysis was proposed to monitor the selection process and to determine binding characteristics of the aptamer-target complexes during design and development of the specific aptamers. The assay involves Ca2+-regulated photoprotein obelin as a simple, sensitive and fast reporter. Applicability and the prospects of the approach were exemplified by identification of DNA aptamers to cardiac troponin I, a highly specific early biomarker for acute myocardial infarction. Two structurally different aptamers specific to various epitopes of troponin I were obtained and then tested in a model bioluminescent assay.

WOS
Держатели документа:
Fed Res Ctr KSC SB RAS, Inst Biophys SB RAS, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Inst Chem Biol & Fundamental Med SB RAS, Novosibirsk, Russia.
Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk, Russia.

Доп.точки доступа:
Krasitskaya, Vasilisa V.; Goncharova, Natalia S.; Biriukov, Vladislav V.; Bashmakova, Eugenia E.; Kabilov, Marsel R.; Baykov, Ivan K.; Sokolov, Aleksey E.; Frank, Ludmila A.; Russian Foundation for Basic Research (RFBR)Russian Foundation for Basic Research (RFBR) [18-38-00531]

Найти похожие
3.


   
    Effects of Gamma-Radiation on DNA Damage in Onion (Allium cepa L.) Seedlings / A. Y. Bolsunovsky, D. V. Dementyev, T. S. Frolova [et al.] // Dokl. Biochem. Biophys. - 2019. - Vol. 489, Is. 1. - P362-366, DOI 10.1134/S1607672919060024 . - ISSN 1608-3091
Аннотация: The effect of ?-radiation on the level of nuclear DNA damage in onion seedlings (Allium-test) was studied using the comet assay. DNA breaks were first found in cells of onion seedlings exposed to low-dose radiation (? 0.1 Gy). Dose dependence of DNA damage parameters showed nonlinear behavior: a linear section in the low-dose region (below 0.1 Gy) and a dose-independent plateau in the dose range between 1 and 5 Gy. Thus, the comet assay can be used to estimate the biological effects of low-dose ?-radiation on Allium cepa seedlings.

Scopus
Держатели документа:
Institute of Biophysics, Krasnoyarsk Science Center, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, 660036, Russian Federation
Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russian Federation
Novosibirsk State University, Novosibirsk, 630090, Russian Federation
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation

Доп.точки доступа:
Bolsunovsky, A. Y.; Dementyev, D. V.; Frolova, T. S.; Trofimova, E. A.; Iniatkina, E. M.; Vasilyev, S. A.; Sinitsyna, O. I.

Найти похожие
4.


   
    Two forms of substrate for the bioluminescent reaction in three species of basidiomycetes / A. P. Puzyr [et al.] // Mycol. - 2019. - Vol. 10, Is. 2. - P84-91, DOI 10.1080/21501203.2019.1583688 . - ISSN 2150-1203
Кл.слова (ненормированные):
Cold and hot extracts -- culture liquid -- enzymatic system -- hispidin -- luminous fungi -- substrate of luminescent reaction
Аннотация: The luminescent response of the enzymatic system of Armillaria borealis on the cold and hot extracts from cell-free culture liquids of Inonotus obliquus, Pholiota sp. and A. borealis was examined. The greatest influence on the light emission produced by the luminescent system of A. borealis was provided by the temperature at which the probes were prepared for assay. Boiling a culture liquid on water bath for a few minutes promoted a multifold increase in the luminescence. The results of luminescence assay suggest that the substance involved in the bioluminescent reaction in higher fungi is presented in culture liquids and mycelia in two forms. In one form, it is ready to interact with the enzymatic system and in the second form, it becomes accessible for the reaction after heat treatment. The pool of thermoactivated substance was found to be much large than the amount of the ready accessible one. We suggest that predecessors of hispidin, which is fungal luciferin precursor, are responsible for this phenomenon. They are not involved in bioluminescence at their original state and are converted into the substrate under the influence of high temperature. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Scopus,
Смотреть статью
Держатели документа:
Institute of Biophysics, Siberian Branch of Russian Academy of Science, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Institute of Computational Technologies, Siberian Branch of Russian Academy of Science, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Puzyr, A. P.; Burov, A. E.; Medvedeva, S. E.; Burova, O. G.; Bondar, V. S.

Найти похожие
5.


   
    Role of Hsp90 and ATP in modulating apyrase activity and firefly luciferase kinetics / M. A. Kirillova [et al.] // Int. J. Biol. Macromol. - 2019. - Vol. 131. - P691-696, DOI 10.1016/j.ijbiomac.2019.03.110 . - ISSN 0141-8130
Кл.слова (ненормированные):
Bioluminescence -- Heat shock protein 90 -- High-throughput screening -- adenosine triphosphate -- apyrase -- bovine serum albumin -- firefly luciferase -- heat shock protein 90 -- stabilizing agent -- Article -- bioluminescence -- clinical study -- conformation -- controlled study -- denaturation -- enzyme activity -- enzyme kinetics -- high throughput screening -- incubation time -- nonhuman -- protein protein interaction -- protein refolding -- temperature -- thermal denaturation -- time
Аннотация: The present manuscript describes a novel bioassay consisting of apyrase and heat shock protein 90 (Hsp90) without additional co-chaperone supplementation; intended for high-throughput screening of anti-cancer drugs and prognosis of stress. In this regard, Hsp90 and adenosine 5?-triphosphate (ATP) mediated firefly luciferase (FLuc) kinetics was investigated using apyrase and FLuc as client proteins. Bioluminescent assay containing Hsp90, ATP, and apyrase led to complete loss of luminescence at 50 °C which indicates the protective role of Hsp90 against thermal denaturation. Similarly, the assay sample comprising Hsp90, ATP, and FLuc showed 2 fold increments in luminescence than their counterparts. Introduction of bovine serum albumin (BSA) to the pre-incubated assay mixture led to an initial rise in the luminescence (28%) in comparison to the sample containing Hsp90, ATP and FLuc. Therefore, FLuc based HTS assays are not suitable for clinical samples which may contain stabilizing agents. However, thermally denatured FLuc and apyrase could not regain their active conformation even when Hsp90 and ATP were introduced in the assay system. This observation justifies the role of Hsp90 to be protective rather than a reparation agent when acts without co-chaperones. © 2019

Scopus,
Смотреть статью,
WOS
Держатели документа:
Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center ‘Krasnoyarsk Science Center SB RAS’, Akademgorodok 50/50, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Kirillova, M. A.; Ranjan, R.; Esimbekova, E. N.; Kratasyuk, V. A.

Найти похожие
6.


   
    Study of the immunogenicity of the VP2 protein of canine parvovirus produced using an improved Baculovirus expression system / D. Chang, Y. Liu, Y. Chen [et al.] // BMC Vet. Res. - 2020. - Vol. 16, Is. 1. - Ст. 202, DOI 10.1186/s12917-020-02422-3 . - ISSN 1746-6148
Кл.слова (ненормированные):
Baculovirus expression system -- Canine parvovirus -- VP2 protein -- canine parvovirus vaccine -- protein VP2 -- recombinant protein -- unclassified drug -- virus antibody -- virus vaccine -- affinity chromatography -- animal experiment -- antibody titer -- Article -- baculovirus expression system -- Canine parvovirus -- controlled study -- DNA transposition -- enzyme linked immunosorbent assay -- female -- fluorescence microscopy -- gene expression level -- hemagglutination inhibition -- hemagglutination inhibition test -- immunogenicity -- mouse -- nonhuman -- parvovirus infection -- protein expression -- Sf9 cell line -- vaccination -- Western blotting
Аннотация: Background: Canine parvovirus (CPV) is now recognized as a serious threat to the dog breeding industry worldwide. Currently used CPV vaccines all have their specific drawbacks, prompting a search for alternative safe and effective vaccination strategies such as subunit vaccine. VP2 protein is the major antigen targeted for developing CPV subunit vaccine, however, its production in baculovirus expression system remains challenging due to the insufficient yield. Therefore, our study aims to increase the VP2 protein production by using an improved baculovirus expression system and to evaluate the immunogenicity of the purified VP2 protein in mice. Results: The results showed that high-level expression of the full length VP2 protein was achieved using our modified baculovirus expression system. The recombinant virus carrying two copies of VP2 gene showed the highest expression level, with a productivity of 186 mg/L, which is about 1.4-1.6 fold that of the recombinant viruses carrying only one copy. The purified protein reacted with Mouse anti-His tag monoclonal antibody and Rabbit anti-VP2 polyclonal antibody. BALB/c mice were intramuscularly immunized with purified VP2 protein twice at 2 week intervals. After vaccination, VP2 protein could induce the mice produce high level of hemagglutination inhibition antibodies. Conclusions: Full length CPV VP2 protein was expressed at high level and purified efficiently. Moreover, it stimulated mice to produce high level of antibodies with hemmaglutination inhibition properties. The VP2 protein expressed in this study could be used as a putative economic and efficient subunit vaccine against CPV infection. © 2020 The Author(s).

Scopus
Держатели документа:
Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Key Laboratory of Ecological Security, Collab. Innov. Ctr. of Water Secty. for Water Src. Reg. of Mid-line of S.-to-N. Diversion Proj. of Henan Prov., School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
Institute of Biophysics, Siberian Branch, Russian Academy of Science, Federal Research Center Krasnoyarsk Science Center SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Chang, D.; Liu, Y.; Chen, Y.; Hu, X.; Burov, A.; Puzyr, A.; Bondar, V.; Yao, L.

Найти похожие
7.


   
    Reporter-recruiting bifunctional aptasensor for bioluminescent analytical assays / A. Davydova, V. Krasitskaya, P. Vorobjev [et al.] // RSC Adv. - 2020. - Vol. 10, Is. 54. - P32393-32399, DOI 10.1039/d0ra05117a. - Cited References:33. - The work was supported by the Russian Science Foundation (grant #16-14-10296), Russian State funded budget projects #AAAA-A17-117020210021-7 to ICBFM SB RAS and #AAAA-A19-119031890015-0 to IBP SB RAS. . - ISSN 2046-2069
РУБ Chemistry, Multidisciplinary
Рубрики:
DNA APTAMER
   RNA APTAMER

   OBELIN

   PURIFICATION

   EXPRESSION

   SEQUENCES

Аннотация: We report a novel bioluminescent aptasensor, which consists of 2 '-F-RNA aptamer modules joined into a bi-specific aptamer construct. One aptamer module binds the analyte, then after structural rearrangement the second module recruits non-covalently Ca2+-dependent photoprotein obelin from the solution, thus providing a bioluminescent signal. This concept allows using free protein as a reporter, which brings such advantages as no need for aptamer-protein conjugation, a possibility of thermal re-folding of aptamer component with no harm to a protein, and simpler detection protocol. We developed the new 2 '-F-RNA aptamer for obelin, and proposed the strategy for engineering structure-switching bi-modular aptamer constructs which bind the analyte and the obelin in a sequential manner. With the use of hemoglobin as a model analyte, we showed the feasibility of utilizing the aptasensor in a fast and straightforward bioluminescent microplate assay. With a proper design of a secondary structure, this strategy of aptasensor engineering might be further extended to bi-specific aptamer-based bioluminescent sensors for other analytes of interest.

WOS
Держатели документа:
SB RAS, Inst Chem Biol & Fundamental Med, Novosibirsk 630090, Russia.
SB RAS, Inst Biophys, Fed Res Ctr, Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia.
Novosibirsk State Univ, Pimgova St 2, Novosibirsk 630090, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Davydova, Anna; Krasitskaya, Vasilisa; Vorobjev, Pavel; Timoshenko, Valentina; Tupikin, Alexey; Kabilov, Marsel; Frank, Ludmila; Venyaminova, Alya; Vorobyeva, Mariya; Russian Science FoundationRussian Science Foundation (RSF) [16-14-10296]; Russian State funded budget projects [AAAA-A17-117020210021-7, AAAA-A19-119031890015-0]

Найти похожие
8.


   
    Coelenterazine-dependent luciferases as a powerful analytical tool for research and biomedical applications / V. V. Krasitskaya, E. E. Bashmakova, L. A. Frank // Int. J. Mol. Sci. - 2020. - Vol. 21, Is. 20. - Ст. 7465. - P1-31, DOI 10.3390/ijms21207465 . - ISSN 1661-6596
Кл.слова (ненормированные):
Analytical systems -- Bioluminescence -- Ca2+-regulated photoprotein -- Coelenterazine -- Luciferase
Аннотация: The functioning of bioluminescent systems in most of the known marine organisms is based on the oxidation reaction of the same substrate—coelenterazine (CTZ), catalyzed by luciferase. Despite the diversity in structures and the functioning mechanisms, these enzymes can be united into a common group called CTZ-dependent luciferases. Among these, there are two sharply different types of the system organization—Ca2+-regulated photoproteins and luciferases themselves that function in accordance with the classical enzyme–substrate kinetics. Along with deep and comprehensive fundamental research on these systems, approaches and methods of their practical use as highly sensitive reporters in analytics have been developed. The research aiming at the creation of artificial luciferases and synthetic CTZ analogues with new unique properties has led to the development of new experimental analytical methods based on them. The commercial availability of many ready-to-use assay systems based on CTZ-dependent luciferases is also important when choosing them by first-time-users. The development of analytical methods based on these bioluminescent systems is currently booming. The bioluminescent systems under consideration were successfully applied in various biological research areas, which confirms them to be a powerful analytical tool. In this review, we consider the main directions, results, and achievements in research involving these luciferases. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, 660036, Russian Federation
School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Krasitskaya, V. V.; Bashmakova, E. E.; Frank, L. A.

Найти похожие
9.


   
    Effects of Modified Magnetite Nanoparticles on Bacterial Cells and Enzyme Reactions / L. S. Bondarenko, E. S. Kovel, K. A. Kydralieva [et al.] // Nanomaterials. - 2020. - Vol. 10, Is. 8. - Ст. 1499, DOI 10.3390/nano10081499. - Cited References:83. - This research was funded by the Russian Foundation for Basic Research (#19-315-50048, #19-33-90149, and #18-29-19003). . - ISSN 2079-4991
РУБ Nanoscience & Nanotechnology + Materials Science, Multidisciplinary
Рубрики:
NATURAL ORGANIC-MATTER
   HUMIC-ACID

   DETOXIFICATION PROCESSES

Кл.слова (ненормированные):
magnetite nanoparticles -- humic acids-coated magnetite nanoparticles -- silica-coated magnetite nanoparticles -- zeta potential -- hydrodynamic -- diameter -- toxicity -- bioluminescence -- bacterial assay -- enzymatic assay -- oxidative stress -- Photobacterium phosphoreum -- NADH -- FMN-oxidoreductase -- luciferase
Аннотация: Current paper presents biological effects of magnetite nanoparticles (MNPs). Relations of MNP' characteristics (zeta-potential and hydrodynamic diameters) with effects on bacteria and their enzymatic reactions were the main focus.Photobacterium phosphoreumand bacterial enzymatic reactions were chosen as bioassays. Three types of MNPs were under study: bare Fe3O4, Fe(3)O(4)modified with 3-aminopropyltriethoxysilane (Fe3O4/APTES), and humic acids (Fe3O4/HA). Effects of the MNPs were studied at a low concentration range (< 2 mg/L) and attributed to availability and oxidative activity of Fe3+, high negative surface charge, and low hydrodynamic diameter of Fe3O4/HA, as well as higher Fe(3+)content in suspensions of Fe3O4/HA. Low-concentration suspensions of bare Fe(3)O(4)provided inhibitory effects in both bacterial and enzymatic bioassays, whereas the MNPs with modified surface (Fe3O4/APTES and Fe3O4/HA) did not affect the enzymatic activity. Under oxidative stress (i.e., in the solutions of model oxidizer, 1,4-benzoquinone), MNPs did not reveal antioxidant activity, moreover, Fe3O4/HA demonstrated additional inhibitory activity. The study contributes to the deeper understanding of a role of humic substances and silica in biogeochemical cycling of iron. Bioluminescence assays, cellular and enzymatic, can serve as convenient tools to evaluate bioavailability of Fe(3+)in natural dispersions of iron-containing nanoparticles, e.g., magnetite, ferrihydrite, etc.

WOS
Держатели документа:
Natl Res Univ, Moscow Aviat Inst, Moscow 125993, Russia.
FRC KSC SB RAS, Inst Phys SB RAS, Krasnoyarsk 660036, Russia.
FRC KSC SB RAS, Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
RAS, Moscow Inst Problems Chem Phys, Chernogolovka 142432, Moscow Region, Russia.
Univ Szeged, H-6720 Szeged, Hungary.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Bondarenko, Lyubov S.; Kovel, Ekaterina S.; Kydralieva, Kamila A.; Dzhardimalieva, Gulzhian, I; Illes, Erzsebet; Tombacz, Etelka; Kicheeva, Arina G.; Kudryasheva, Nadezhda S.; Dzhardimalieva, Gulzhian; Kudryasheva, Nadezhda; Kovel, Ekaterina; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-315-50048, 19-33-90149, 18-29-19003]

Найти похожие
10.


   
    The smallest isoform of Metridia longa luciferase as a fusion partner for hybrid proteins / M. D. Larionova, S. V. Markova, N. V. Tikunova, E. S. Vysotski // Int. J. Mol. Sci. - 2020. - Vol. 21, Is. 14. - Ст. 4971. - P1-16, DOI 10.3390/ijms21144971 . - ISSN 1661-6596
Кл.слова (ненормированные):
Bioluminescence -- Coelenterazine -- Copepod luciferase -- Immunoassay -- Single-chain antibody -- Tick-borne encephalitis virus -- fusion protein -- glycoprotein -- histidine -- messenger RNA -- Metridia longa luciferase -- recombinant protein -- single chain fragment variable antibody -- unclassified drug -- amino terminal sequence -- antibody affinity -- antigen binding -- Article -- binding assay -- binding site -- bioluminescence -- bioluminescence resonance energy transfer -- cross reaction -- dissociation constant -- enzyme activity -- Escherichia coli -- gene -- genetic engineering -- genetic transfection -- immunoassay -- limit of detection -- mluc7 gene -- molecular cloning -- nonhuman -- nucleotide sequence -- protein expression -- protein purification -- protein unfolding -- spectral sensitivity -- tick borne encephalitis -- Tick borne encephalitis virus
Аннотация: Bioluminescent proteins are widely used as reporter molecules in various in vitro and in vivo assays. The smallest isoform of Metridia luciferase (MLuc7) is a highly active, naturally secreted enzyme which, along with other luciferase isoforms, is responsible for the bright bioluminescence of marine copepod Metridia longa. In this study, we report the construction of two variants of a hybrid protein consisting of MLuc7 and 14D5a single-chain antibody to the surface glycoprotein E of tick-borne encephalitis virus as a model fusion partner. We demonstrate that, whereas fusion of a single-chain antibody to either N-or C-terminus of MLuc7 does not affect its bioluminescence properties, the binding site on the single-chain antibody influences its binding capacity. The affinity of 14D5a-MLuc7 hybrid protein (KD = 36.2 nM) where the C-terminus of the single-chain antibody was fused to the N-terminus of MLuc7, appeared to be 2.5-fold higher than that of the reverse, MLuc7-14D5a (KD = 87.6 nM). The detection limit of 14D5a-MLuc7 hybrid protein was estimated to be 45 pg of the recombinant glycoprotein E. Although the smallest isoform of M. longa luciferase was tested as a fusion partner only with a single-chain antibody, it is reasonable to suppose that MLuc7 can also be successfully used as a partner for genetic fusion with other proteins. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, 660036, Russian Federation
School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation

Доп.точки доступа:
Larionova, M. D.; Markova, S. V.; Tikunova, N. V.; Vysotski, E. S.

Найти похожие
11.


   
    Effects of modified magnetite nanoparticles on bacterial cells and enzyme reactions / L. S. Bondarenko, E. S. Kovel, K. A. Kydralieva [et al.] // Nanomaterials. - 2020. - Vol. 10, Is. 8. - Ст. 1499. - P1-20, DOI 10.3390/nano10081499 . - ISSN 2079-4991
Кл.слова (ненормированные):
Bacterial assay -- Bioluminescence -- Enzymatic assay -- Humic acids-coated magnetite nanoparticles -- Hydrodynamic diameter -- Luciferase -- Magnetite nanoparticles -- NADH:FMN-oxidoreductase -- Oxidative stress -- Photobacterium phosphoreum -- Silica-coated magnetite nanoparticles -- Toxicity -- Zeta potential
Аннотация: Current paper presents biological effects of magnetite nanoparticles (MNPs). Analyzing effects of MNP’ characteristics (zeta-potential and hydrodynamic diameters) on bacteria and their enzyme reactions was the main focus. Photobacterium phosphoreum and bacterial enzymatic reactions were chosen as bioassays. Three types of MNPs were under study: bare Fe3O4, Fe3O4 modified with 3-aminopropyltriethoxysilane (Fe3O4/APTES), and humic acids (Fe3O4/HA). Effects of the MNPs were studied at a low concentration range (< 2 mg/L) and attributed to availability and oxidative activity of Fe3+, high negative surface charge, and low hydrodynamic diameter of Fe3O4/HA, as well as higher Fe3+ content in suspensions of Fe3O4/HA. Low-concentration suspensions of bare Fe3O4 provided inhibitory effects in both bacterial and enzymatic bioassays, whereas the MNPs with modified surface (Fe3O4/APTES and Fe3O4/HA) did not affect the enzymatic activity. Under oxidative stress (i.e., in the solutions of model oxidizer, 1,4-benzoquinone), MNPs did not reveal antioxidant activity, moreover, Fe3O4/HA demonstrated additional inhibitory activity. The study contributes to the deeper understanding of a role of humic substances and silica in biogeochemical cycling of iron. Bioluminescence assays, cellular and enzymatic, can serve as convenient tools to evaluate bioavailability of Fe3+ in natural dispersions of iron-containing nanoparticles, e.g., magnetite, ferrihydrite, etc. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Moscow Aviation Institute (National Research University), Moscow, 125993, Russian Federation
Institute of Physics SB RAS, FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Biophysics SB RAS, FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Problems of Chemical Physics RAS, Moscow Region, Chernogolovka, 142432, Russian Federation
University of Szeged, Szeged, H-6720, Hungary
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Bondarenko, L. S.; Kovel, E. S.; Kydralieva, K. A.; Dzhardimalieva, G. I.; Illes, E.; Tombacz, E.; Kicheeva, A. G.; Kudryasheva, N. S.

Найти похожие
12.


   
    Bioluminescent enzyme inhibition-based assay to predict the potential toxicity of carbon nanomaterials / E. N. Esimbekova [et al.] // Toxicol. Vitro. - 2017. - Vol. 45. - P128-133, DOI 10.1016/j.tiv.2017.08.022. - Cited References:55. - This study was supported by the Russian Science Foundation (project no. 16-14-10115). . - ISSN 0887-2333
РУБ Toxicology
Рубрики:
IN-VIVO
   ENGINEERED NANOPARTICLES

   NANOTUBE TOXICITY

   C-60

   FULLERENE

Кл.слова (ненормированные):
Nanotoxicity -- Enzyme inhibition-based assay -- Bioluminescence -- Luciferase -- Nanomaterials -- Nanotubes
Аннотация: A bioluminescent enzyme inhibition-based assay was applied to predict the potential toxicity of carbon nanomaterials (CNM) presented by single- and multi-walled nanotubes (SWCNT and MWCNT) and aqueous solutions of hydrated fullerene C-60 (C(60)HyFn). This assay specifically detects the influence of substances on parameters of the soluble or immobilised coupled enzyme system of luminescent bacteria: NAD(P)H:FMN-oxidoreductase + luciferase (Red + Luc). A protocol based on the optical properties of CNM for correcting the results of the bioluminescent assay was also developed. It was shown that the inhibitory activity of CNM on Red + Luc decreased in the following order: MWCNT > SWCNT > C(60)HyFn. The soluble enzyme system Red + Luc had high sensitivity to MWCNT and SWCNT, with values of the inhibition parameter IC50 equal to 0.012 and 0.16 mg/L, respectively. The immobilised enzyme system was more vulnerable to C(60)HyFn than its soluble form, with an IC50 equal to 1.4 mg/L. Due to its technical simplicity, rapid response time and high sensitivity, this bioluminescent method has the potential to be developed as a general enzyme inhibition-based assay for a wide variety of nanomaterials.

WOS,
Смотреть статью
Держатели документа:
SB RAS, Fed Res Ctr, Krasnoyarsk Sci Ctr, Inst Biophys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Esimbekova, Elena N.; Nemtseva, Elena V.; Bezrukikh, Anna E.; Jukova, Galina V.; Lisitsa, Albert E.; Lonshakova-Mukina, Viktoriya I.; Rimatskaya, Nadezhda V.; Sutormin, Oleg S.; Kratasyuk, Valentina A.; Esimbekova, Elena; Nemtseva, Elena; Russian Science Foundation [16-14-10115]

Найти похожие
13.


   
    Antioxidant Activity of Fullerenols. Bioluminescent Monitoring in vitro / A. S. Sachkova [et al.] ; ed.: A. . Turner, A. . Tang // BIOSENSORS 2016 : ELSEVIER SCIENCE BV, 2017. - Vol. 27: 26th Anniversary World Congress on Biosensors (Biosensors) (MAY 25-27, 2016, Gothenburg, SWEDEN). - P230-231. - (Procedia Technology), DOI 10.1016/j.protcy.2017.04.097. - Cited References:2. - The work was supported by the Russian Foundation for Basic Research, Grants No. 15-03-06786 and 15-43-04377-sibir; the state budget to the fundamental research at the Russian Academy of Sciences (project No 01201351504) . -
РУБ Engineering, Biomedical

Кл.слова (ненормированные):
bioluminescence -- enzymatic assay -- toxicity sensor -- antioxidant activity -- fullerenol
Аннотация: Bioluminescence of isolated enzymes is a perspective phenomenon for biosensors development due to simplicity of registration of a physiological parameter - light intensity. Enzyme-based bioluminescent assay is widely used to evaluate a decrease in biochemical toxicities. Also the enzyme-based assay is used for the direct biochemical monitoring of oxidative toxicity. This work considers antioxidant properties of fullerenols, water-soluble polyhydroxylated derivatives of fullerenes and perspective pharmaceutical agents, in solutions of model inorganic and organic toxicants of oxidative type K-3[Fe(CN)(6)] and 1,4-benzoquinone. Two fullerenol preparations were used: C60O2-4(OH)(20-24) and mixture of two types of fullerenols C60O2-4(OH)(20-24)+C70O2-4(OH)(20-24). The enzyme-based assays showed the peculiarities of the detoxification processes: ultralow concentrations of fullerenols were active (ca 10(-17)-10(-5)g/L); no monotonic dependence of detoxification efficiency on fullerenol concentrations was observed, and detoxification of organic oxidizer solutions was more effective than that of the inorganic oxidizer. The antioxidant effects of highly diluted fullerenol solutions were attributed to hormesis phenomenon; the detoxification was concerned with stimulation of adaptive cellular response under low-dose exposures. (C) 2017 The Authors. Published by Elsevier Ltd.

WOS,
Смотреть статью
Держатели документа:
Natl Res Tomsk Polytech Univ, Lenin Ave 30, Tomsk 634050, Russia.
SB RAS, Inst Biophys, Akademgorodok 50-50, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodny Pr 79, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Sachkova, A. S.; Kovel, E. S.; Vorobeva, A. A.; Kudryasheva, N. S.; Turner, A... \ed.\; Tang, A... \ed.\; Russian Foundation for Basic Research [15-03-06786, 15-43-04377-sibir]; state budget to the fundamental research at the Russian Academy of Sciences [01201351504]

Найти похожие
14.


   
    Bioluminescent assay for toxicological assessment of nanomaterials / E. N. Esimbekova [et al.] // Dokl. Biochem. Biophys. - 2017. - Vol. 472, Is. 1. - P60-63, DOI 10.1134/S1607672917010173. - Cited References:15. - We are sincerely grateful to the staff of the Institute of Physiological Active Compounds (Kharkiv, Ukraine) for providing fullerene samples. This study was supported by the Russian Science Foundation (project no. 16-14-10115). . - ISSN 1607-6729. - ISSN 1608-3091
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
LUMINOUS BACTERIA
   TOXICITY

Аннотация: A new method for assessing biotoxicity of nanomaterials, based on the use of soluble bioluminescent coupled enzyme system NAD(P)ai...H:FMN oxidoreductase and luciferase, is proposed. The results of this study indicate a significant adverse biological effect exerted by nanoparticles at the molecular level. It was found that the most toxic nanoparticles the nanoparticles are based on copper and copper oxide, as well as single-walled carbon nanotubes and multi-walled carbon nanofibers, which are referred to hazard class II.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Krasnoyarsk State Agr Univ, Krasnoyarsk, Russia.

Доп.точки доступа:
Esimbekova, E. N.; Nemtseva, E. V.; Kirillova, M. A.; Asanova, A. A.; Kratasyuk, V. A.; Russian Science Foundation [16-14-10115]

Найти похожие
15.


   
    Mutants of Ca2+-regulated Photoprotein Obelin for Site-specific Conjugation / V. V. Krasitskaya [et al.] // Photochem. Photobiol. - 2017. - Vol. 93, Is. 2. - P553-557, DOI 10.1111/php.12712 . - ISSN 0031-8655
Аннотация: Color variants of Ca2+-regulated photoprotein obelin were shown to be an important tool for dual-analyte binding assay. To provide site-directed conjugation with biospecific molecules, several obelin color mutants carrying unique cysteine residues were obtained and characterized for their novel properties. A pair of obelins Y138F,A5C and W92F,H22E,D12C was found to be most suitable (in terms of high bioluminescent activity and stability) as reporters in simultaneous assay of two targets in a sample. Availability of SH-groups, accessible for chemical modification, essentially simplifies the synthesis of biospecific conjugates, increases their yield and conserves obelins' bioluminescence activity. Conjugates with immunoglobulin and oligonucleotide were produced and successfully applied in single nucleotide polymorphism genotyping. © 2017 The American Society of Photobiology

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Krasitskaya, V. V.; Burakova, L. P.; Komarova, A. A.; Bashmakova, E. E.; Frank, L. A.

Найти похожие
16.


   
    Bioluminescent Enzymatic Assay as a Tool for Studying Antioxidant Activity and Toxicity of Bioactive Compounds / N. S. Kudryasheva [et al.] // Photochem. Photobiol. - 2017. - Vol. 93, Is. 2. - P536-540, DOI 10.1111/php.12639. - Cited References:40. - The work was supported by the Russian Foundation for Basic Research, Grants 15-03-06786 and 15-43-04377-sibir; the state budget allocated to the fundamental research at the Russian Academy of Sciences (project 01201351504). . - ISSN 0031-8655. - ISSN 1751-1097
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
LUMINOUS MARINE-BACTERIA
   HUMIC SUBSTANCES

   DETOXIFICATION PROCESSES

Аннотация: A bioluminescent assay based on a system of coupled enzymatic reactions catalyzed by bacterial luciferase and NADH:FMN-oxidoreductase was developed to monitor toxicity and antioxidant activity of bioactive compounds. The assay enables studying toxic effects at the level of biomolecules and physicochemical processes, as well as determining the toxicity of general and oxidative types. Toxic and detoxifying effects of bioactive compounds were studied. Fullerenols, perspective pharmaceutical agents, nanosized particles, water-soluble polyhydroxylated fullerene-60 derivatives were chosen as bioactive compounds. Two homologous fullerenols with different number and type of substituents, C60O2-4(OH)(20-24) and Fe0.5C60(OH) O-x(y) (x + y = 40-42), were used. They suppressed bioluminescent intensity at concentrations 0.01 g L-1 and 0.001 g L-1 for C60O2-4(OH)(20-24) and Fe0.5C60(OH)(x)O-y, respectively; hence, a lower toxicity of C60O2-4(OH)(20-24) was demonstrated. Antioxidant activity of fullerenols was studied in model solutions of organic and inorganic oxidizers; changes in toxicities of general and oxidative type were determined; detoxification coefficients were calculated. Fullerenol C60O2-4(OH)(20-24) revealed higher antioxidant ability at concentrations 10(-17)-10(-5) g L-1. The difference in the toxicity and antioxidant activity of fullerenols was explained through their electron donor/acceptor properties and different catalytic activity. Principles of bioluminescent enzyme assay application for evaluating the toxic effect and antioxidant activity of bioactive compounds were summarized and the procedure steps were described.

WOS,
Смотреть статью
Держатели документа:
Inst Biophys SB RAS, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Natl Res Tomsk Polytech Univ, Tomsk, Russia.
Inst Phys SB RAS, Krasnoyarsk, Russia.

Доп.точки доступа:
Kudryasheva, Nadezhda S.; Kovel, Ekaterina S.; Sachkova, Anna S.; Vorobeva, Anna A.; Isakova, Viktoriya G.; Churilov, Grigoriy N.; Russian Foundation for Basic Research [15-03-06786, 15-43-04377-sibir]; Russian Academy of Sciences [01201351504]

Найти похожие
17.


   
    Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068 / T. G. Volova [et al.] // Appl. Microbiol. Biotechnol. - 2018. - P1-12, DOI 10.1007/s00253-018-9198-8 . - ISSN 0175-7598
Кл.слова (ненормированные):
Bacterial cellulose -- Growth conditions -- Komagataeibacter xylinus -- Biocompatibility -- Cell culture -- Cellulose -- Cultivation -- Glucose -- 3t3 mouse fibroblasts -- Bacterial cellulose -- Cultivation conditions -- Emission spectrometry -- Ethanol concentrations -- Growth conditions -- Komagataeibacter xylinus -- Physical and mechanical properties -- Substrates
Аннотация: A strain of acetic acid bacteria, Komagataeibacter xylinus B-12068, was studied as a source for bacterial cellulose (BC) production. The effects of cultivation conditions (carbon sources, temperature, and pH) on BC production and properties were studied in surface and submerged cultures. Glucose was found to be the best substrate for BC production among the sugars tested; ethanol concentration of 3% (w/v) enhanced the productivity of BC. Optimization of medium and cultivation conditions ensures a high production of BC on glucose and glycerol, up to 2.4 and 3.3 g/L/day, respectively. C/N elemental analysis, emission spectrometry, SEM, DTA, and X-ray were used to investigate the structure and physical and mechanical properties of the BC produced under different conditions. MTT assay and SEM showed that native cellulose membrane did not cause cytotoxicity upon direct contact with NIH 3T3 mouse fibroblast cells and was highly biocompatible. © 2018 Springer-Verlag GmbH Germany, part of Springer Nature

Scopus,
Смотреть статью,
WOS
Держатели документа:
Siberian Federal University, 79 Svobodny pr, Krasnoyarsk, Russian Federation
Institute of Biophysics SB RAS, Siberian Federal University, Akademgorodok 50/50, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T. G.; Prudnikova, S. V.; Sukovatyi, A. G.; Shishatskaya, E. I.

Найти похожие
18.


   
    Handheld Enzymatic Luminescent Biosensor for Rapid Detection of Heavy Metals in Water Samples / K. A. Lukyanenko [et al.] // Chemosensors. - 2019. - Vol. 7, Is. 1. - Ст. 16, DOI 10.3390/chemosensors7010016. - Cited References:39. - This research was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science, to the research project #18-44-242003: "Designing an enzyme reagent for bioluminescent analysis: mechanisms for increasing sensitivity and accuracy". . - ISSN 2227-9040
РУБ Chemistry, Analytical
Рубрики:
ON-A-CHIP
   SILICON PHOTOMULTIPLIER

   OPTICAL BIOSENSORS

   CELL

Кл.слова (ненормированные):
chemical measurements -- silicon photomultiplier -- optical biosensor -- bioassay -- microfluidics -- luciferase -- bioluminescence
Аннотация: Enzymatic luminescent systems are a promising tool for rapid detection of heavy metals ions for water quality assessment. Nevertheless, their widespread use is limited by the lack of test procedure automation and available sensitive handheld luminometers. Herein we describe integration of disposable microfluidic chips for bioluminescent enzyme-inhibition based assay with a handheld luminometer, which detection system is based on a thermally stabilized silicon photomultiplier (SiPM). Microfluidic chips were made of poly(methyl methacrylate) by micro-milling method and sealed using a solvent bonding technique. The composition of the bioluminescent system in microfluidic chip was optimized to achieve higher luminescence intensity and storage time. Results indicate that developed device provided comparable sensitivity with bench-scale PMT-based commercial luminometers. Limit of detection for copper (II) sulfate reached 2.5 mg/L for developed biosensor. Hereby we proved the concept of handheld enzymatic optical biosensors with disposable chips for bioassay. The proposed biosensor can be used as an early warning field-deployable system for rapid detection of heavy metals salts and other toxic chemicals, which affect bioluminescent signal of enzymatic reaction.

WOS,
Смотреть статью,
Scopus
Держатели документа:
SB RAS, Krasnoyarsk Sci Ctr, Fed Res Ctr, Lab Digital Controlled Drugs & Theranost, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Lab Bioluminescent Biotechnol, Krasnoyarsk 660041, Russia.
Krasnoyarsk State Med Univ, Res Inst Mol Med & Pathobiochem, Krasnoyarsk 660022, Russia.
SB RAS, Inst Biophys, Lab Photobiol, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Lukyanenko, Kirin A.; Denisov, Ivan A.; Sorokin, Vladimir V.; Yakimov, Anton S.; Esimbekova, Elena N.; Belobrov, Peter, I; Lukyanenko, Kirill; Russian Foundation for Basic Research, Government of Krasnoyarsk Territory [18-44-242003]

Найти похожие
19.


   
    Development and characterization of novel 2 '-F-RNA aptamers specific to human total and glycated hemoglobins / A. Davydova [et al.] // Anal. Biochem. - 2019. - Vol. 570. - P43-50, DOI 10.1016/j.ab.2019.02.004. - Cited References:32. - We want to thank Dr. Alexander Lomzov (ICBFM SB RAS) for his valuable assistance with circular dichroism studies. The work was supported by the Russian Science Foundation (grant number 16-14-10296). . - ISSN 0003-2697. - ISSN 1096-0309
РУБ Biochemical Research Methods + Biochemistry & Molecular Biology
Рубрики:
RNA APTAMER
   SEQUENCES

   PROTEIN

   DNA

Аннотация: Aptamers are short DNA and RNA fragments which bind their molecular targets with affinity and specificity comparable to those of antibodies. Here, we describe the selection of novel 2'-F-RNA aptamers against total human hemoglobin or its glycated form HbA1c. After SELEX and high-throughput sequencing of the enriched libraries, affinities and specificities of candidate aptamers and their truncated variants were examined by the solid-phase bioluminescent assay. As a result, we identified aptamers specific to both hemoglobins or only glycated HbA1c. The developed 2'-F-RNA aptamers have shown their applicability for detection of total and glycated hemoglobin in one sample.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Inst Chem Biol & Fundamental Med SB RAS, Novosibirsk, Russia.
Krasnoyarsk Sci Ctr SB RAS, Fed Res Ctr, Inst Biophys SB RAS, Krasnoyarsk, Russia.
Novosibirsk State Univ, Dept Nat Sci, Pirogova St 2, Novosibirsk 630090, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Davydova, Anna; Vorobyeva, Mariya; Bashmakova, Eugenia; Vorobjev, Pavel; Krasheninina, Olga; Tupikin, Alexey; Kabilov, Marsel; Krasitskaya, Vasilisa; Frank, Ludmila; Venyaminova, Alya; Krasitskaya, Vasilisa V; Frank, Ludmila A; Russian Science Foundation [16-14-10296]

Найти похожие
20.


   
    Bioluminescent aptamer-based sandwich-type assay of anti-myelin basic protein autoantibodies associated with multiple sclerosis / V. V. Krasitskaya [et al.] // Anal. Chim. Acta. - 2019. - Vol. 1064. - P112-118, DOI 10.1016/j.aca.2019.03.015. - Cited References:29. - This work was supported by the Russian Foundation for Basic Research (RFBR), Russia, under the grant No 17-315-50027; Russian State funded budget projects No. AAAA-A17-117013050026-4 and AAAA-A17-117020210021-7. . - ISSN 0003-2670. - ISSN 1873-4324
РУБ Chemistry, Analytical
Рубрики:
ANTIBODIES
   BIOMARKERS

   RNA

Кл.слова (ненормированные):
Bioluminescent microassay -- RNA aptamers -- Autoantibodies to myelin basic -- protein -- Multiple sclerosis
Аннотация: Bioluminescent solid-phase sandwich-type microassay was developed to detect multiple sclerosis (MS)-associated autoantibodies in human sera. The assay is based on two different 2'-F-Py RNA aptamers against the target autoantibodies as biospecific elements, and Ca2+-regulated photoprotein obelin as a reporter. The paper describes elaboration of the assay and its application to 91 serum samples from patients with clinically definite MS and 86 ones from individuals healthy in terms of MS. Based on the receiver-operator curve (ROC) analysis, the chosen threshold value as clinical decision limit offers sensitivity of 63.7% and specificity of 94.2%. The area under the ROC curve (AUC) value of 0.87 shows a good difference between the groups under investigation. The likelihood ratio of 10.97 proves the diagnostic value of the assay and its potential as one of the laboratory MS-tests. (C) 2019 Elsevier B.V. All rights reserved.

WOS,
Смотреть статью,
Scopus
Держатели документа:
RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, Inst Biophys SB, Krasnoyarsk 660036, Russia.
RAS, Inst Chem Biol & Fundamental Med SB, Novosibirsk 630090, Russia.
State Med Univ, Krasnoyarsk 660022, Russia.

Доп.точки доступа:
Krasitskaya, Vasilisa V.; Chaukina, Valentina V.; Abroskina, Maria V.; Vorobyeva, Maria A.; Ilminskaya, Aleksandra A.; Kabilov, Marsel R.; Prokopenko, Semyon V.; Nevinsky, Georgy A.; Venyaminova, Alya G.; Frank, Ludmila A.; Russian Foundation for Basic Research (RFBR), Russia [17-315-50027]; Russian State [AAAA-A17-117013050026-4, AAAA-A17-117020210021-7]

Найти похожие
 1-20    21-40   41-60   61-80   81-88 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)