Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=copolymer<.>)
Общее количество найденных документов : 37
Показаны документы с 1 по 20
 1-20    21-37 
1.


   
    Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures / E. I. Shishatskaya [et al.] // Journal of Materials Science: Materials in Medicine. - 2004. - Vol. 15, Is. 6. - P719-728, DOI 10.1023/B:JMSM.0000030215.49991.0d . - ISSN 0957-4530
Кл.слова (ненормированные):
Necrosis -- Polymeric implants -- Suppurative inflammation -- Tissue reaction -- Biodegradation -- Calcification (biochemistry) -- Cells -- Copolymers -- Implants (surgical) -- Silk -- Tissue -- Tumors -- Materials science -- acid phosphatase -- copolymer -- poly(3 hydroxybutyric acid) -- polyhydroxyalkanoic acid -- polyhydroxyvaleric acid -- unclassified drug -- animal experiment -- animal model -- article -- biodegradable implant -- blood vessel reactivity -- catgut -- controlled study -- enzyme activity -- female -- giant cell -- histochemistry -- inflammation -- macrophage -- nonhuman -- priority journal -- rat -- silk -- suture -- tensile strength -- tissue reaction -- tissue structure -- wound healing -- young modulus -- Absorbable Implants -- Animals -- Female -- Fibrosis -- Foreign-Body Reaction -- Hydroxybutyrates -- Muscle, Skeletal -- Polyesters -- Polymers -- Rats -- Rats, Wistar -- Sutures -- Treatment Outcome -- Wounds, Penetrating -- Animalia
Аннотация: Polyhydroxyalkanoate (PHA) sutures were implanted to test animals intramuscularly, and tissue reaction was investigated and compared with the reaction to silk and catgut. Tested monofilament sutures made of PHAs of two types polyhydroxybutyrate (PHB) and a copolymer of hydroxybutyrate and hydroxyvalerate (PHV) featured the strength necessary for the healing of muscle-fascial wounds. The reaction of tissues to polymeric implants was similar to their reaction to silk and was less pronounced than the reaction to catgut; it was expressed in a transient post-traumatic inflammation (up to four weeks) and the formation of a fibrous capsule less than 200 ?m thick, which became as thin as 4060 ?m after 16 weeks, in the course of reverse development. Macrophages and foreign-body giant cells with a high activity of acid phosphatase were actively involved in this process. PHB and PHB/PHV sutures implanted intramuscularly for an extended period (up to one year) did not cause any acute vascular reaction at the site of implantation or any adverse events, such as suppurative inflammation, necrosis, calcification of the fibrous capsule or malignant tumor formation. No statistically significant differences were revealed in the tissue response to polymer sutures of the two types. Capsules around silk and catgut sutures did not become significantly thinner.

Scopus
Держатели документа:
Inst. Biophys. Siberian Br. Russ. A., Akademgorodok, Krasnoyarsk 660036, Russia, Russian Federation
Terr. Pathological Anatomy Bureau, Partisan Zheleznyak St. 1, Krasnoyarsk 660049, Russia, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shishatskaya, E.I.; Volova, T.G.; Puzyr, A.P.; Mogilnaya, O.A.; Efremov, S.N.

Найти похожие
2.


   
    Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures [Text] / E. I. Shishatskaya [et al.] // J. Mater. Sci.-Mater. Med. - 2004. - Vol. 15, Is. 6. - P. 719-728, DOI 10.1023/B:JMSM.0000030215.49991.0d. - Cited References: 34 . - ISSN 0957-4530
РУБ Engineering, Biomedical + Materials Science, Biomaterials
Рубрики:
DEGRADATION
   POLYESTERS

   POLYMERS

   FIBERS

   PHB

Аннотация: Polyhydroxyalkanoate (PHA) sutures were implanted to test animals intramuscularly, and tissue reaction was investigated and compared with the reaction to silk and catgut. Tested monofilament sutures made of PHAs of two types-polyhydroxybutyrate (PHB) and a copolymer of hydroxybutyrate and hydroxyvalerate (PHV)-featured the strength necessary for the healing of muscle-fascial wounds. The reaction of tissues to polymeric implants was similar to their reaction to silk and was less pronounced than the reaction to catgut; it was expressed in a transient post-traumatic inflammation (up to four weeks) and the formation of a fibrous capsule less than 200 mum thick, which became as thin as 40-60 mum after 16 weeks, in the course of reverse development. Macrophages and foreign-body giant cells with a high activity of acid phosphatase were actively involved in this process. PHB and PHB/PHV sutures implanted intramuscularly for an extended period (up to one year) did not cause any acute vascular reaction at the site of implantation or any adverse events, such as suppurative inflammation, necrosis, calcification of the fibrous capsule or malignant tumor formation. No statistically significant differences were revealed in the tissue response to polymer sutures of the two types. Capsules around silk and catgut sutures did not become significantly thinner. (C) 2004 Kluwer Academic Publishers.

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia
Territorial Pathol Anat Bur, Krasnoyarsk 660049, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shishatskaya, E.I.; Volova, T.G.; Puzyr, A.P.; Mogilnaya, O.A.; Efremov, S.N.

Найти похожие
3.


   
    The physicochemical properties of polyhydroxyalkanoates with different chemical structures / T. G. Volova [et al.] // Polymer Science - Series A. - 2013. - Vol. 55, Is. 7. - P427-437, DOI 10.1134/S0965545X13070080 . - ISSN 0965-545X
Кл.слова (ненормированные):
Amorphous and crystalline phasis -- Degrees of crystallinity -- Physicochemical property -- Poly(3-hydroxybutirate) -- Polyhydroxyalkanoate copolymer -- Temperature characteristic -- Thermal degradation temperatures -- Thermoplastic materials -- Copolymers -- Monomers -- Thermoplastic elastomers -- Structure (composition)
Аннотация: A set of polyhydroxyalkanoates are synthesized, and a comparative study of their physicochemical properties is performed. The molecular masses and polydispersities of polyhydroxyalkanoates are found to be independent of their chemical structures. It is shown that the temperature characteristics and degrees of crystallinity of polyhydroxyalkanoates are affected by the chemical compositions of the monomers and their quantitative contents in the polymers. The incorporation of 4-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate units into the chain of poly(3-hydroxybutyrate) decreases its melting point and thermal degradation temperature relative to these parameters of a homogeneous poly(3-hydroxybutyrate) sample (175 В± 5 C and 275 В± 5 C, respectively). The higher the content of the second monomer units in the poly(3-hydroxybutirate) chain, the greater the changes. The degrees of crystallinity of polyhydroxyalkanoate copolymers are generally lower than that of poly(3-hydroxybutyrate) (75 В± 5%). The effect on the ratio of the amorphous and crystalline phases of the copolymer samples becomes more pronounced in the series 3-hydroxy-valerate-3-hydroxyhexanoate-4- hydroxybutyrate. The prepared samples exhibit different properties ranging from rigid thermoplastic materials to engineering elastomers. В© 2013 Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, str. 50, Krasnoyarsk 660036, Russian Federation
Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi pr. 79, Krasnoyarsk 660041, Russian Federation
Siberian State Technological University, pr. Mira 82, Krasnoyarsk 660049, Russian Federation
Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, str. 38, Krasnoyarsk 660036, Russian Federation
Massachusetts Institute of Technology, Cambridge, MA, United States : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.G.; Zhila, N.O.; Shishatskaya, E.I.; Mironov, P.V.; Vasil'Ev, A.D.; Sukovatyi, A.G.; Sinskey, A.J.

Найти похожие
4.


   
    The effect of the chemical composition and structure of polymer films made from resorbable polyhydroxyalkanoates on blood cell response / E. I. Shishatskaya, N. G. Menzyanova, A. A. Shumilova // Int. J. Biol. Macromol. - 2019. - Vol. 141. - P765-+, DOI 10.1016/j.ijbiomac.2019.09.015. - Cited References:57. - The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The study is supporting by the Russian Science Foundation, Project No 17-15-01352. . - ISSN 0141-8130. - ISSN 1879-0003
РУБ Biochemistry & Molecular Biology + Chemistry, Applied + Polymer Science
Рубрики:
3-HYDROXYBUTYRATE
   BIOCOMPATIBILITY

   BIOSYNTHESIS

   ADHESION

   STENTS

Кл.слова (ненормированные):
Degradable polyhydroxyalkanoates (PHAs) -- Surface structure and -- properties -- Blood cell response
Аннотация: Four PHA types were synthesized in the culture of Cupriavidus eutrophus B-10646 under special conditions, poly(3 hydroxybutyrate) [P(3HB)] and of copolymers, which contained 3HB monomers and 4 hydroxybutyrate (4HB), 3 hydroxyvalerate (3HV), or 3 hydroxyhexanoate (3HHx). All copolymers had the M-w of about 550-670 kDa, and the homopolymer P(3HB) had a significantly higher M-w - 920 kDa. P(3HB co 4HB) and P(3HB co 3HHx) had the lowest C-x (42 and 49%) while P(3HB co 3HV) and P(3HB) exhibited higher C-x values (76%). Polymer films were prepared from different PHAs. Electron microscopy showed differences in the surface microstructure of the films. Films prepared from the P(3HB) were more hydrophobic and the arithmetic mean surface roughness of 71-75 nm, than the copolymer films, which were hydrophilic (57-60 degrees) and had considerably higher roughness (158-177 nm). Blood parameters (hemoglobin and hemolysis) and response of the cells (erythrocytes, platelets, and monocytes) were studied in experiments with blood directly contacting the surface of the films of PHAs with different compositions. Cultivation of blood cells on polymer films did not cause any adverse effects on adhesion and morphology of all cell types. Results of studying blood cell response suggested that the films made from low-crystallinity copolymers containing 4 hydroxybutyrate and 3 hydroxyhexanoate were the best for contact with blood. (C) 2019 Elsevier B.V. All rights reserved.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodnyi Ave, Krasnoyarsk 660041, Russia.
RAS, SB, Krasnoyarsk Sci Ctr, Inst Biophys,Fed Res Ctr, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Shishatskaya, Ekaterina I.; Menzyanova, Natalia G.; Shumilova, Anna A.; Russian Science FoundationRussian Science Foundation (RSF) [17-15-01352]

Найти похожие
5.


   
    The effect of the chemical composition and structure of polymer films made from resorbable polyhydroxyalkanoates on blood cell response / E. I. Shishatskaya, N. G. Menzyanova, A. A. Shumilova // Int. J. Biol. Macromol. - 2019. - Vol. 141. - P765-774, DOI 10.1016/j.ijbiomac.2019.09.015 . - ISSN 0141-8130
Кл.слова (ненормированные):
Blood cell response -- Degradable polyhydroxyalkanoates (PHAs) -- Surface structure and properties
Аннотация: Four PHA types were synthesized in the culture of Cupriavidus eutrophus B-10646 under special conditions, poly(3?hydroxybutyrate) [P(3HB)] and of copolymers, which contained 3HB monomers and 4?hydroxybutyrate (4HB), 3?hydroxyvalerate (3HV), or 3?hydroxyhexanoate (3HHx). All copolymers had the Mw of about 550–670 kDa, and the homopolymer P(3HB) had a significantly higher Mw – 920 kDa. P(3HB?co?4HB) and P(3HB?co?3HHx) had the lowest Cx (42 and 49%) while P(3HB?co?3HV) and P(3HB) exhibited higher Cx values (76%). Polymer films were prepared from different PHAs. Electron microscopy showed differences in the surface microstructure of the films. Films prepared from the P(3HB) were more hydrophobic and the arithmetic mean surface roughness of 71–75 nm, than the copolymer films, which were hydrophilic (57–60°) and had considerably higher roughness (158–177 nm). Blood parameters (hemoglobin and hemolysis) and response of the cells (erythrocytes, platelets, and monocytes) were studied in experiments with blood directly contacting the surface of the films of PHAs with different compositions. Cultivation of blood cells on polymer films did not cause any adverse effects on adhesion and morphology of all cell types. Results of studying blood cell response suggested that the films made from low-crystallinity copolymers containing 4?hydroxybutyrate and 3?hydroxyhexanoate were the best for contact with blood. © 2019 Elsevier B.V.

Scopus,
Смотреть статью
Держатели документа:
Siberian Federal University, 79 Svobodnyi Av, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Shishatskaya, E. I.; Menzyanova, N. G.; Shumilova, A. A.

Найти похожие
6.


   
    The autotrophic synthesis of polyhydroxyalkanoate by Alcaligenes eutrophus in the presence of carbon monoxide [Text] / T. G. Volova, G. S. Kalacheva, O. V. Altukhova // Microbiology. - 2001. - Vol. 70, Is. 6. - P. 640-646, DOI 10.1023/A:1013175413013. - Cited References: 19 . - ISSN 0026-2617
РУБ Microbiology

Кл.слова (ненормированные):
hydrogen-oxidizing bacteria -- polyhydroxyalkanoates (PHAs) -- synthesis -- CO inhibition
Аннотация: The CO-resistant strain B5786 of the hydrogen-oxidizing bacterium Alcaligenes eutrophus was found to be able to synthesize polyhydroxyalkanoates (PHAs) under the conditions of growth limitation by nitrogen deficiency (the factor that promotes PHA synthesis) and growth inhibition by carbon monoxide. The gas mixtures that contained from 5 to 20 vol % CO did not inhibit the key enzymes of PHA synthesis-beta-ketothiolase. acetoacetyl-CoA reductase, hydroxybutyrate dehydrogenase, and PHA synthase. In the presence of CO, cells accumulated up to 70-75 wt % PHA (with respect to the dry biomass) without any noticeable increase in the consumption of the gas substrate. Chromatographic-mass spectrometric analysis showed that the PHA synthesized by A. eutrophus is a copolymer containing more than 99 mol % beta-hydroxybutyrate and trace amounts of beta-hydroxyvalerate. The PHA synthesized under the conditions described did not differ from that synthesized by A. eutrophus cells from electrolytic hydrogen.

WOS
Держатели документа:
Russian Acad Sci, Siberian Div, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.G.; Kalacheva, G.S.; Altukhova, O.V.

Найти похожие
7.


   
    The autotrophic synthesis of polyhydroxyalkanoate by Alcaligenes eutrophus in the presence of carbon monoxide / T. G. Volova, G. S. Kalacheva, O. V. Altukhova // Microbiology. - 2001. - Vol. 70, Is. 6. - P640-646 . - ISSN 0026-2617
Кл.слова (ненормированные):
CO inhibition -- Hydrogen-oxidizing bacteria -- Polyhydroxyalkanoates (PHAs) -- Synthesis
Аннотация: The CO-resistant strain B5786 of the hydrogen-oxidizing bacterium Alcaligenes eutrophus was found to be able to synthesize polyhydroxyalkanoates (PHAs) under the conditions of growth limitation by nitrogen deficiency (the factor that promotes PHA synthesis) and growth inhibition by carbon monoxide. The gas mixtures that contained from 5 to 20 vol % CO did not inhibit the key enzymes of PHA synthesis-?-ketothiolase, acetoacetyl-CoA reductase, hydroxybutyrate dehydrogenase, and PHA synthase. In the presence of CO, cells accumulated up to 70-75 wt % PHA (with respect to the dry biomass) without any noticeable increase in the consumption of the gas substrate. Chromatographic-mass spectrometric analysis showed that the PHA synthesized by A. eutrophus is a copolymer containing more than 99 mol % ?-hydroxybutyrate and trace amounts of ?-hydroxyvalerate. The PHA synthesized under the conditions described did not differ from that synthesized by A. eutrophus cells from electrolytic hydrogen. В© 2001 MAIK "Nauka/Interperiodica".

Scopus
Держатели документа:
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.G.; Kalacheva, G.S.; Altukhova, O.V.

Найти похожие
8.


   
    The autotrophic synthesis of polyhydroxyalkanoate by alcaligenes eutrophus in the presence of carbon monoxide / T. G. Volova, G. S. Kalacheva, O. V. Altukhova // Mikrobiologiya. - 2001. - Vol. 70, Is. 6. - С. 745-752 . - ISSN 0026-3656
Кл.слова (ненормированные):
CO inhibition -- Hydrogen-oxidizing bacteria -- Polyhydroxyalkanoates (PHAs) -- Synthesis -- alkane -- carbon monoxide -- fatty acid -- hydroxyacid -- lipid -- nitrogen -- polyester -- article -- chemistry -- culture medium -- drug antagonism -- growth, development and aging -- mass spectrometry -- metabolism -- Wautersia eutropha -- Alkanes -- Carbon Monoxide -- Culture Media -- Cupriavidus necator -- Fatty Acids -- Hydroxy Acids -- Lipids -- Mass Spectrometry -- Nitrogen -- Polyesters
Аннотация: The CO-resistant strain B5786 of the hydrogen-oxidizing bacterium Alcaligenes eutrophus was found to be able to synthesize polyhydroxyalkanoates (PHAs) under the conditions of growth limitation by nitrogen deficiency (the factor that promotes PHA synthesis) and growth inhibition by carbon monoxide. The gas mixtures that contained from 5 to 20 vol % CO did not inhibit the key enzymes of PHA synthesis-?-ketothiolase, acetoacetyl-CoA reductase, hydroxybutyrate dehydrogenase, and PHA synthase. In the presence of CO, cells accumulated up to 70-75 wt % PHA (with respect to the dry biomass) without any noticeable increase in the consumption of the gas substrate. Chromatographic-mass spectrometric analysis showed that the PHA synthesized by A. eutrophus is a copolymer containing more than 99 mol % ?-hydroxybutyrate and trace amounts of ?-hydroxyvalerate. The PHA synthesized under the conditions described did not differ from that synthesized by A. eutrophus cells from electrolytic hydrogen.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.G.; Kalacheva, G.S.; Altukhova, O.V.

Найти похожие
9.


   
    Synthesis of 3-hydroxybutyrate-CO-4-hydroxybutyrate copolymers by hydrogen-oxidizing bacteria / T. G. Volova [et al.] // Applied Biochemistry and Microbiology. - 2011. - Vol. 47, Is. 5. - P494-499, DOI 10.1134/S0003683811050152 . - ISSN 0003-6838
Кл.слова (ненормированные):
Bacteria (microorganisms) -- Cupriavidus -- Cupriavidus necator
Аннотация: Synthesis of 3- and 4-hydroxybutyrate copolymer (3HB-co-4HB), the most promising member of the biodegradable polyhydroxyalkanoate (PHA) family, has been studied. Cultivation conditions of naturally occurring strains of hydrogen-oxidizing bacteria Ralstonia eutropha B5786 and Cupriavidus eutrophus B10646 have been optimized to ensure efficient synthesis of the 3HB-co-4HB copolymer. A set of highly pure samples of the 3HB-co-4HB copolymer with 4HB content varying from 8.7 to 24.3 mol% has been obtained. Incorporation of 4HB into the copolymer was shown to cause a more pronounced decrease in polymer crystallinity than the incorporation of 3-hydroxyvalerate or 3-hydroxyhexanoate; samples with a degree of crystallinity below 30% have been obtained. The weight average molecular mass of the 3HB-co-4HB copolymers was shown to be independent on the monomer ratio and to vary broadly (from 540 to 1110 kDa). В© 2010 Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Siberian Federal University, Krasnoyarsk 660041, Russian Federation
Biophysics Institute, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
Chemistry and Chemical Technology Institute, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
Massachusetts Institute of Technology, Cambridge, MA 02139, United States : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.G.; Zhila, N.O.; Kalacheva, G.S.; Sokolenko, V.A.; Sinski, E.J.

Найти похожие
10.


   
    Synthesis and characterization of multicomponent PHAs / E. G. Kiselev, A. D. Vasiliev, T. G. Volova // J. Sib. Fed. Univ. - Biol. - 2021. - Vol. 14, Is. 1. - С. 97-113, DOI 10.17516/1997-1389-0325. - Cited By :1 . - ISSN 1997-1389
Кл.слова (ненормированные):
Biosynthesis -- Copolymers -- Physicochemical properties -- Polyhydroxyalkanoates (PHAs) -- Precursor substrates
Аннотация: Cupriavidus necator B10646 bacterial cells were cultivated in the mode of synthesis of the reserve polyhydroxyalkanoates (PHAs) in the growth medium that contained, in addition to glucose as the main substrate, precursor substrates of the monomers of various monocarboxylic acids - salts of valeric and hexanoic acids, propionate, and ?-butyrolactone. PHA terpolymers and quaterpolymers with different compositions and proportions of monomers were synthesized, and their physicochemical properties were studied. The terpolymers were composed of monomers of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB), or 3-hydroxyhexanoate (3HHx) and had the following compositions: P(3HB/3HB/4HHx) and P(3HB/3HV/4HHx). The quaterpolymers had the following composition: P(3HB/3HV/4HB/3HHx). All copolymer samples, regardless of the composition and proportions of monomers, had lower molecular weights and higher polydispersity values compared to the highly crystalline 3-hydroxybutyrate homopolymer, but retained thermal stability properties, with a difference between the melting point and thermal degradation of at least 100-110 °C. The inclusion of 3HV, 4HB, and 3HHx monomers in the C-chain of 3HB caused changes in the crystalline to amorphous phase ratio and a significant decrease in the degree of crystallinity (Cx), which depended on the type of monomers and their contents in the copolymer. The maximum decrease in Cx (9-17 %) was detected in the P(3HB/3HV/4HB) terpolymer and the P(3HB/3HV/4HB/3HHx) quaterpolymer (30-36 %). The study confirms that there is the possibility of synthesizing polymers with various compositions, including new ones, which differ significantly in their basic properties. © Siberian Federal University. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, FRC Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
L.V. Kirenskii Institute of Physics SB RAS, FRC Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kiselev, E. G.; Vasiliev, A. D.; Volova, T. G.

Найти похожие
11.


   
    Study of the biological properties of polyoxyalkanoates in the in vivo chronic experiment / E. I. Shishatskaya, T. G. Volova, T. G. Popova // Meditsinskaya Tekhnika. - 2002. - Is. 4. - С. 29-33 . - ISSN 0025-8075
Кл.слова (ненормированные):
biomaterial -- polymer -- animal -- article -- bioremediation -- comparative study -- female -- metabolism -- rat -- suture -- Wistar rat -- Animals -- Biocompatible Materials -- Biodegradation, Environmental -- Female -- Polymers -- Rats -- Rats, Wistar -- Sutures -- Biocompatibility -- Immunology -- Implants (surgical) -- Materials testing -- Organic polymers -- Polyoxyalkanoates -- Rat models -- Suture threads -- Biomaterials
Аннотация: Chronic experiments on mature Wistar rats studied the biological properties of suture threads from two types of polyoxyalkanoates (POA), such as polyoxybutyrate (POB) and the copolymer of POB and polyoxyvalerate (POV) (POB/POV) as compared to the conventional surgical material (silk and catgut). The physiological and biochemical parameters that reflect the status of the animals, including their behavior, height and development, the weight of the body and viscera, the morphology of peripheral blood, the biochemical parameters of blood, the activity of some enzymes, as well as histological findings of the viscera, and lymphoid tissue responses were assessed. POA was found to produce no negative effect on the physiological, biochemical, and functional characteristics of the animals irrespective of the duration of contact with the internal medium of the body and of the chemical composition of a material.

Scopus
Держатели документа:
Inst. Biofiziki SO RAN, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shishatskaya, E.I.; Volova, T.G.; Popova, T.G.

Найти похожие
12.


   
    Properties of degradable polyhydroxyalkanoates (Phas) synthesized by a new strain, cupriavidus necator ibp/sfu-1, from various carbon sources / N. O. Zhila, K. Yu. Sapozhnikova, E. G. Kiselev [et al.] // Polym. - 2021. - Vol. 13, Is. 18. - Ст. 3142, DOI 10.3390/polym13183142 . - ISSN 2073-4360
Кл.слова (ненормированные):
Cell growth and PHA synthesis -- Cupriavidus necator IBP/SFU-1 -- PHA composition and properties -- Polymer films -- Various carbon sources -- Biodegradable polymers -- Carbon -- Carbon films -- Cell proliferation -- Crystallinity -- Fructose -- Glucose -- Long Term Evolution (LTE) -- Oleic acid -- Organic carbon -- Palm oil -- Polydispersity -- Semiconducting films -- Autotrophics -- Carbon source -- Cell growth and PHA synthesis -- Cupriavidu necator IBP/SFU-1 -- PHA composition and property -- Plant oil -- Polyhydroxyalkanoates -- Property -- Synthesised -- Various carbon source -- Polymer films
Аннотация: The bacterial strain isolated from soil was identified as Cupriavidus necator IBP/SFU-1 and investigated as a PHA producer. The strain was found to be able to grow and synthesize PHAs under autotrophic conditions and showed a broad organotrophic potential towards different carbon sources: sugars, glycerol, fatty acids, and plant oils. The highest cell concentrations (7–8 g/L) and PHA contents were produced from oleic acid (78%), fructose, glucose, and palm oil (over 80%). The type of the carbon source influenced the PHA chemical composition and properties: when grown on oleic acid, the strain synthesized the P(3HB-co-3HV) copolymer; on plant oils, the P(3HB-co-3HV-co-3HHx) terpolymer, and on the other substrates, the P(3HB) homopolymer. The type of the carbon source influenced molecular-weight properties of PHAs: P(3HB) synthesized under autotrophic growth conditions, from CO2, had the highest number-average (290 ± 15 kDa) and weight-average (850 ± 25 kDa) molecular weights and the lowest polydispersity (2.9 ± 0.2); polymers synthesized from organic carbon sources showed increased polydispersity and reduced molecular weight. The carbon source was not found to affect the degree of crystallinity and thermal properties of the PHAs. The type of the carbon source determined not only PHA composition and molecular weight but also surface microstructure and porosity of the polymer films. The new strain can be recommended as a promising P(3HB) producer from palm oil, oleic acid, and sugars (fructose and glucose) and as a producer of P(3HB-co-3HV) from oleic acid and P(3HB-co-3HV-co-3HHx) from palm oil. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk, 660041, Russian Federation
Federal Research Center, “Krasnoyarsk Science Center SB RAS”, Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Federal Research Center, “Krasnoyarsk Science Center SB RAS”, L.V. Kirensky Institute of Physics SB RAS, 50/38 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Federal Research Center, “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Zhila, N. O.; Sapozhnikova, K. Yu.; Kiselev, E. G.; Vasiliev, A. D.; Nemtsev, I. V.; Shishatskaya, E. I.; Volova, T. G.

Найти похожие
13.


   
    Properties of Degradable Polyhydroxyalkanoates (PHAs) Synthesized by a New Strain, Cupriavidus necator IBP/SFU-1, from Various Carbon Sources / N. O. Zhila, K. Y. Sapozhnikova, E. G. Kiselev [et al.] // Polymers. - 2021. - Vol. 13, Is. 18. - Ст. 3142, DOI 10.3390/polym13183142. - Cited References:78. - This work was financially supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 075-15-2021-626) in accordance with Resolution No 220 of the Government of the Russian Federation of 9 April 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning" (strain isolation, polymer synthesis and investigation), and by the State Assignment of the Ministry of Science and Higher Education of the Russian Federation No. FSRZ-2020-0006 (study of film properties). . - ISSN 2073-4360
РУБ Polymer Science
Рубрики:
RALSTONIA-EUTROPHA
   POLY(3-HYDROXYBUTYRATE) PRODUCTION

   PLANT OIL

   ACID

Кл.слова (ненормированные):
Cupriavidus necator IBP -- SFU-1 -- cell growth and PHA synthesis -- various -- carbon sources -- PHA composition and properties -- polymer films
Аннотация: The bacterial strain isolated from soil was identified as Cupriavidus necator IBP/SFU-1 and investigated as a PHA producer. The strain was found to be able to grow and synthesize PHAs under autotrophic conditions and showed a broad organotrophic potential towards different carbon sources: sugars, glycerol, fatty acids, and plant oils. The highest cell concentrations (7-8 g/L) and PHA contents were produced from oleic acid (78%), fructose, glucose, and palm oil (over 80%). The type of the carbon source influenced the PHA chemical composition and properties: when grown on oleic acid, the strain synthesized the P(3HB-co-3HV) copolymer; on plant oils, the P(3HB-co-3HV-co-3HHx) terpolymer, and on the other substrates, the P(3HB) homopolymer. The type of the carbon source influenced molecular-weight properties of PHAs: P(3HB) synthesized under autotrophic growth conditions, from CO2, had the highest number-average (290 +/- 15 kDa) and weight-average (850 +/- 25 kDa) molecular weights and the lowest polydispersity (2.9 +/- 0.2); polymers synthesized from organic carbon sources showed increased polydispersity and reduced molecular weight. The carbon source was not found to affect the degree of crystallinity and thermal properties of the PHAs. The type of the carbon source determined not only PHA composition and molecular weight but also surface microstructure and porosity of the polymer films. The new strain can be recommended as a promising P(3HB) producer from palm oil, oleic acid, and sugars (fructose and glucose) and as a producer of P(3HB-co-3HV) from oleic acid and P(3HB-co-3HV-co-3HHx) from palm oil.

WOS
Держатели документа:
Siberian Fed Univ, Basic Dept Biotechnol, Sch Fundamental Biol & Biotechnol, 79 Svobodnyi Av, Krasnoyarsk 660041, Russia.
SB RAS, Inst Biophys, Fed Res Ctr, Krasnoyarsk Sci Ctr, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
SB RAS, LV Kirensky Inst Phys, Krasnoyarsk Sci Ctr, Fed Res Ctr, 50-38 Akademgorodok, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Fed Res Ctr, Krasnoyarsk Sci Ctr, Siberian Branch, 50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Zhila, Natalia O.; Sapozhnikova, Kristina Yu; Kiselev, Evgeniy G.; Vasiliev, Alexander D.; Nemtsev, Ivan, V; Shishatskaya, Ekaterina, I; Volova, Tatiana G.; Russian FederationRussian Federation [075-15-2021-626, 220]; State Assignment of the Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0006]

Найти похожие
14.


   
    Production of purified polyhydroxyalkanoates (PHAs) for applications in contact with blood / V. I. Sevastianov [et al.] // Journal of Biomaterials Science, Polymer Edition. - 2003. - Vol. 14, Is. 10. - P1029-1042, DOI 10.1163/156856203769231547 . - ISSN 0920-5063
Кл.слова (ненормированные):
?-hydroxy acids -- Endotoxins -- Hemocompatibility -- Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) -- Polyhydroxyalkanoates (PHAs) -- Polyhydroxybutyrate (PHB) -- bacterium lipopolysaccharide -- carbon -- complement -- copolymer -- hydroxyacid -- long chain fatty acid -- poly(3 hydroxybutyric acid) -- polyhydroxyalkanoic acid -- valeric acid derivative -- adult -- article -- biofilm -- biotechnology -- blood analysis -- blood clotting -- blood compatibility -- cell function -- chemical analysis -- chemical composition -- complement activation -- concentration (parameters) -- controlled study -- gas chromatography -- hemostasis -- human -- human cell -- mass spectrometry -- micromorphology -- nonhuman -- priority journal -- purification -- quantitative analysis -- sampling -- synthesis -- thrombocyte adhesion -- Wautersia eutropha -- Biocompatible Materials -- Blood -- Blood Coagulation Tests -- Chromatography, Gas -- Complement Activation -- Cupriavidus necator -- Fatty Acids -- Humans -- Platelet Adhesiveness -- Polyesters -- Surface Properties
Аннотация: Samples of olyhydroxyalkanoates (PHAs), polyhydroxybutyrate (PHB) and copolymers poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with 4 and 18 mol% hydroxyvalerate, synthesized by the bacteria Ralstonia eutropha B5786, were investigated. PHA films in contact with blood did not activate the hemostasis system at the level of cell response, but they did activate the coagulation system and the complement reaction. To detect biologically-active components in the PHAs, a detailed analysis of the composition of the polymers was conducted. Gas chromatography-mass spectrometry revealed long-chain fatty acids (FAs) in the tested PHAs. Their total concentration in the polymer ranged from tenths of mol% to 2-3 mol%, depending on the purification method. C16:0 constituted the largest proportion, up to 70%. Of the long-chain hydroxy acids, only ?-OH-C14:0 was detected and it did not exceed 0.06 mol%. The analysis of the hemocompatibility properties of the PHAs purified by a specialized procedure, including the quantitative and morphological estimation of platelets adherent to the surface of polymer films, the plasma recalcification time and complement activation studies, indicated that PHB and PHBV can be used in contact with blood. It has been found out that the lipopolysaccharides of bacteria producing PHAs, which contain mostly long-chain hydroxy acids, can be the factor activating the hemostasis systems. Thus, the technology of PHA purification must satisfy rather stringent specific requirements.

Scopus
Держатели документа:
Inst. of Transplantol. Artif. Organs, Russian Ministry of Health, Shchukinskaya 1, 123182 Moscow, Russian Federation
Inst. of Biophys. of Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Sevastianov, V.I.; Perova, N.V.; Shishatskaya, E.I.; Kalacheva, G.S.; Volova, T.G.

Найти похожие
15.


   
    Physicochemical properties of two-component polyhydroxyalkanoates [Poly(3HB/3HV)] [Текст] / T. G. Volova [и др.] // Biofizika. - 2004. - Vol. 49, Is. 6. - P. 1038-1046. - Cited References: 21 . - ISSN 0006-3029
РУБ Biophysics
Рубрики:
BACTERIAL POLYHYDROXYALKANOATES
   POLYESTERS

Кл.слова (ненормированные):
polyhydroxyalkanoates -- copolymers of hydroxybutyrate and hydroxyvalerate -- structure -- physicochemical properties
Аннотация: A series of two-component polyhydroxyalkanoates consisting of hydroxybutyrate and hydroxyvalerate monomer at different ratios were synthesized using the bacterium Ralstonia eutropha B5786. The properties of polyhydroxyalkanoates were compared with those of the homopolymer of hydroxybutyric acid by X-ray structure analysis, IR spectroscopy, differential scanning calorimetry, and viscosimetry. With an increase in the molar fraction of hydroxyvalerate, an equalization of the ratio of the crystalline and amorphous phases in the copolymer was observed. The degree of crystallinity of the polymer decreased from 70-80 to 45-50%; in the range of an increase in the hydroxyvalerate molar fraction from several to 25-30 mol %, the dependence was linear. The temperature characteristics, the melting temperature (T-m), and the degradation temperature (T-d) were lower in polyhydroxyalkanoates than in polyhydroxybutyrate, for which T-m and T-d were 168-170 and 260-265degreesC, respectively. In the copolymer, as the molar fraction of hydroxyvalerate grew, both parameters decreased. In the range of variation of monomer ratio studied, they decreased to 150-160 and 200-220degreesC, respectively. No distinct correlation between the composition of the polymer and its molecular mass was found.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Div, Krasnoyarsk, Russia
Siberian State Technol Univ, Krasnoyarsk, Russia
Russian Acad Sci, LV Kirensky Phys Inst, Siberian Div, Krasnoyarsk, Russia
ИФ СО РАН
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.G.; Plotnikov, V.F.; Shishatskaya, E.I.; Mironov, P.V.; Vasil'ev, A.D.

Найти похожие
16.


   
    Physicochemical properties of multicomponent polyhydroxyalkanoates: Novel aspects / T. G. Volova [et al.] // Polym. Sci. Ser. A. - 2017. - Vol. 59, Is. 1. - P98-106, DOI 10.1134/S0965545X17010163 . - ISSN 0965-545X
Кл.слова (ненормированные):
Glycols -- Medical problems -- Melting -- Molecular mass -- Monomers -- Polymers -- Chemical compositions -- Degree of crystallinity -- Degrees of crystallinity -- Multi-component polyhydroxyalkanoates -- Physicochemical property -- Polyhydroxyalkanoates -- Temperature intervals -- Thermal degradation temperatures -- Organic polymers
Аннотация: The physicochemical properties such as the degree of crystallinity and temperature and molecularmass characteristics of a number of polyhydroxyalkanoates of various chemical composition synthesized on a complex carbon substrate by bacteria Cupriavidus eutrophus В10646 have been investigated. Two-, three-, and four-component copolymer samples have different sets and ratios of monomers with various lengths of carbon chains: 3-hydroxybutyrate (3HB), 4-hydroxybutyrate (4HB), 3-hydroxyvalerate (3HV), 3-hydroxyhexanoate (3HH), 3-hydroxy-4-methyl valerate (3H4MV), and diethylene glycol (DEG). It has been shown that weight-average molar mass Мw and polydispersity vary in a wide range with no correlation existing with the composition of copolymer polyhydroxyalkanoates and that thermal stability is preserved in the temperature interval between the melting temperature and the thermal degradation temperature from 100 to 120–140°С. The composition and ratio of monomers most notably affect the degree of crystallinity of polyhydroxyalkanoates. Significant differences between the degrees of crystallinity of three- and four-component polyhydroxyalkanoates have been found for the first time. The degree of crystallinity for copolymers P(3HB/3HV/4HB) is 9–22%, and the degree of crystallinity for copolymers P(3HB/3HV/3HH) and P(3HB/3GV/3H4MV) is 41–63%; this value is close to the degree of crystallinity for diblock copolymers P(3HB)/DEG, which is 56–69%. For the four-component copolymers P(3HB/3GV/4HB/3HH), the degree of crystallinity is 30–41%. The values of Мw for the copolymers P(3HB/DEG) are inhomogeneous and the polymers contain fractions uneven with respect to molecular mass: a high-molecular-mass polymer (Мw from 2700 to 4900 kDa) and a low-molecular-mass polymer (Мw = 46–167 kDa). For the copolymers P(3HB)/DEG and P(3HB/3HV/3H4MV), two peaks are observed in the region of melting with the gap between these peaks being 4–20°С. All of the types of copolymer samples, regardless of the monomer ratio, show an increase in elongation at break against the background of a decrease in tensile stress and Young’s modulus, with these effects being pronounced to different extents. On the whole, the properties of multicomponent polyhydroxyalkanoates differ appreciably. © 2017, Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T. G.; Vinogradova, O. N.; Zhila, N. O.; Kiselev, E. G.; Peterson, I. V.; Vasil’ev, A. D.; Sukovatyi, A. G.; Shishatskaya, E. I.

Найти похожие
17.


   
    Microbial degradation of polyhydroxyalkanoates in tropical soils / A. N. Boyandin [et al.] // Int. Biodeterior. Biodegrad. - 2013. - Vol. 83. - P77-84, DOI 10.1016/j.ibiod.2013.04.014. - Cited References: 74. - This study was financially supported by Project "Biotechnologies of novel biomaterials" (Agreement No. 11.G34.31.0013) in accordance with Resolution No. 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning". . - 8. - ISSN 0964-8305
РУБ Biotechnology & Applied Microbiology + Environmental Sciences
Рубрики:
POLY-BETA-HYDROXYBUTYRATE
   CHAIN-LENGTH POLYHYDROXYALKANOATES

   POLY(3-HYDROXYBUTYRATE) DEPOLYMERASE

   COASTAL WATERS

   PHA FILMS

   BIODEGRADATION

   BACTERIA

   IDENTIFICATION

   POLYESTERS

   POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE)

Кл.слова (ненормированные):
Polyhydroxyalkanoates (PHAs) -- Biopolymers -- Biopolymer properties -- Soil biodegradation -- PHA degrading microorganisms
Аннотация: The integrated study addressing biodegradation of microbial linear polyesters of hydroxyalkanoic acids (polyhydroxyalkanoates, PHAs) in tropical conditions by microbial communities of Vietnamese soils was performed in locations close to Hanoi and Nha Trang, which differed in their weather conditions and microbial communities. It shows that PHA degradation in tropical soils is influenced by polymer chemical composition, specimen shape, and microbial characteristics. The homopolymer of 3-hydroxybutyric acid is degraded at higher rates than the copolymer of 3-hydroxybutyric and 3-hydroxyvaleric acids. The average rates of mass loss were 0.04-0.33% per day for films and 0.02-0.18% for compact pellets. PHA degradation was accompanied by a decrease in the polymer molecular mass and, usually, an increase in the degree of crystallinity, suggesting preferential degradation of the amorphous phase. Under the study conditions, representatives of the bacterial genera Burkholderia, Bacillus, Cupriavidus, Mycobacterium, and Nocardiopsis and such micromycetes as Acremonium, Gongronella, Paecilomyces, and Penicillium, Trichoderma have been identified as major PHA degraders. (C) 2013 Elsevier Ltd. All rights reserved.

Держатели документа:
[Boyandin, Anatoly N.
Volova, Tatiana G.
Gitelson, Iosif I.] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia
[Prudnikova, Svetlana V.
Volova, Tatiana G.] Siberian Fed Univ, Krasnoyarsk, Russia
[Karpov, Valery A.] Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow, Russia
[Ivonin, Vladimir N.
Ngoc Lanh Do
Thi Hoai Nguyen
Thi My Hiep Le
Filichev, Nikolay L.
Levin, Alexander L.] Joint Russian Vietnam Trop Res & Test Ctr, Hanoi, Vietnam
[Filipenko, Maxim L.] Russian Acad Sci, Siberian Branch, Inst Chem Biol & Fundamental Med, Novosibirsk, Russia : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Boyandin, A.N.; Prudnikova, S.V.; Karpov, V.A.; Ivonin, V.N.; Do, N.L.; Nguyen, T.H.; Le, TMH; Filichev, N.L.; Levin, A.L.; Filipenko, M.L.; Volova, T.G.; Gitelson, I.I.

Найти похожие
18.


   
    Microbial degradation of polyhydroxyalkanoates in tropical soils / A. N. Boyandin [et al.] // International Biodeterioration and Biodegradation. - 2013. - Vol. 83. - P77-84, DOI 10.1016/j.ibiod.2013.04.014 . - ISSN 0964-8305
Кл.слова (ненормированные):
Biopolymer properties -- Biopolymers -- PHA degrading microorganisms -- Polyhydroxyalkanoates (PHAs) -- Soil biodegradation -- 3-hydroxybutyric acid -- Degree of crystallinity -- Hydroxyalkanoic acids -- Microbial characteristics -- Microbial degradation -- Polyhydroxyalkanoates -- Polymer molecular mass -- Soil biodegradations -- Bacteriology -- Biomolecules -- Biopolymers -- Microorganisms -- Soils -- Tropics -- Biodegradation -- biodegradation -- chemical composition -- microbial activity -- microbial community -- molecular analysis -- organic compound -- polymer -- soil degradation -- soil microorganism -- tropical soil
Аннотация: The integrated study addressing biodegradation of microbial linear polyesters of hydroxyalkanoic acids (polyhydroxyalkanoates, PHAs) in tropical conditions by microbial communities of Vietnamese soils was performed in locations close to Hanoi and Nha Trang, which differed in their weather conditions and microbial communities. It shows that PHA degradation in tropical soils is influenced by polymer chemical composition, specimen shape, and microbial characteristics. The homopolymer of 3-hydroxybutyric acid is degraded at higher rates than the copolymer of 3-hydroxybutyric and 3-hydroxyvaleric acids. The average rates of mass loss were 0.04-0.33% per day for films and 0.02-0.18% for compact pellets. PHA degradation was accompanied by a decrease in the polymer molecular mass and, usually, an increase in the degree of crystallinity, suggesting preferential degradation of the amorphous phase. Under the study conditions, representatives of the bacterial genera Burkholderia, Bacillus, Cupriavidus, Mycobacterium, and Nocardiopsis and such micromycetes as Acremonium, Gongronella, Paecilomyces, and Penicillium, Trichoderma have been identified as major PHA degraders. В© 2013 Elsevier Ltd.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
The Joint Russian-Vietnam Tropical Research and Test Center, Hanoi, Viet Nam
Inst. of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Boyandin, A.N.; Prudnikova, S.V.; Karpov, V.A.; Ivonin, V.N.; D?, N.L.; Nguy?n, T.H.; Le, T.M.H.; Filichev, N.L.; Levin, A.L.; Filipenko, M.L.; Volova, T.G.; Gitelson, I.I.

Найти похожие
19.


   
    Laser processing of polymer films fabricated from phas differing in their monomer composition / T. G. Volova, A. I. Golubev, I. V. Nemtsev [et al.] // Polym. - 2021. - Vol. 13, Is. 10. - Ст. 1553, DOI 10.3390/polym13101553 . - ISSN 2073-4360
Кл.слова (ненормированные):
AFM -- CO2 laser -- Copolymers -- Films -- MTT assay -- NIH 3T3 fibroblasts -- P(3HB) -- SEM -- Water contact angles -- Biocompatibility -- Carbon dioxide lasers -- Contact angle -- Continuous cell culture -- Crystallinity -- Fibroblasts -- Interfacial energy -- Irradiation -- Monomers -- Organic polymers -- Pulsed lasers -- Sintering -- Surface roughness -- 3t3 mouse fibroblasts -- Continuous wave modes -- Degree of crystallinity -- Monomer compositions -- Poly-3-hydroxybutyrate -- Polyhydroxyalkanoates -- Roughness parameters -- Water contact angle -- Polymer films
Аннотация: The study reports results of using a CO2-laser in continuous wave (3 W; 2 m/s) and quasi-pulsed (13.5 W; 1 m/s) modes to treat films prepared by solvent casting technique from four types of polyhydroxyalkanoates (PHAs), namely poly-3-hydroxybutyrate and three copolymers of 3-hydroxybutyrate: with 4-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate (each second monomer constituting about 30 mol.%). The PHAs differed in their thermal and molecular weight properties and degree of crystallinity. Pristine films differed in porosity, hydrophilicity, and roughness parameters. The two modes of laser treatment altered these parameters and biocompatibility in diverse ways. Films of P(3HB) had water contact angle and surface energy of 92? and 30.8 mN/m, respectively, and average roughness of 144 nm. The water contact angle of copolymer films decreased to 80–56? and surface energy and roughness increased to 41–57 mN/m and 172–290 nm, respectively. Treatment in either mode resulted in different modifications of the films, depending on their composition and irradiation mode. Laser-treated P(3HB) films exhibited a decrease in water contact angle, which was more considerable after the treatment in the quasi-pulsed mode. Roughness parameters were changed by the treatment in both modes. Continuous wave line-by-line irradiation caused formation of sintered grooves on the film surface, which exhibited some change in water contact angle (76–80? ) and reduced roughness parameters (to 40–45 mN/m) for most films. Treatment in the quasi-pulsed raster mode resulted in the formation of pits with no pronounced sintered regions on the film surface, a more considerably decreased water contact angle (to 67–76? ), and increased roughness of most specimens. Colorimetric assay for assessing cell metabolic activity (MTT) in NIH 3T3 mouse fibroblast culture showed that the number of fibroblasts on the films treated in the continuous wave mode was somewhat lower; treatment in quasi-pulsed radiation mode caused an increase in the number of viable cells by a factor of 1.26 to 1.76, depending on PHA composition. This is an important result, offering an opportunity of targeted surface modification of PHA products aimed at preventing or facilitating cell attachment. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Special Design and Technological Bureau ‘Nauka’ Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/45 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Volova, T. G.; Golubev, A. I.; Nemtsev, I. V.; Lukyanenko, A. V.; Dudaev, A. E.; Shishatskaya, E. I.

Найти похожие
20.


   
    Laser Processing of Polymer Films Fabricated from PHAs Differing in Their Monomer Composition / T. G. Volova, A. I. Golubev, I. V. Nemtsev [et al.] // Polymers. - 2021. - Vol. 13, Is. 10. - Ст. 1553, DOI 10.3390/polym13101553. - Cited References:87. - This work was supported by the Russian Foundation for Basic Research/Regional State Autonomous Institution "Krasnoyarsk Regional Fund for the Support of Scientific and ScientificTechnical Activities" foundations under Grant number 19-43-240012 (laser treatment and films properties) and by the State Assignment of the Ministry of Science and Higher Education of the Russian Federation No. FSRZ-2020-0006 (polymer synthesis). . - ISSN 2073-4360
РУБ Polymer Science
Рубрики:
CHEMOMECHANICAL PROPERTIES
   PHYSICOCHEMICAL PROPERTIES

   SURFACE

Кл.слова (ненормированные):
P(3HB) -- copolymers -- films -- CO2 laser -- SEM -- AFM -- water contact angles -- MTT assay
Аннотация: The study reports results of using a CO2-laser in continuous wave (3 W; 2 m/s) and quasi-pulsed (13.5 W; 1 m/s) modes to treat films prepared by solvent casting technique from four types of polyhydroxyalkanoates (PHAs), namely poly-3-hydroxybutyrate and three copolymers of 3-hydroxybutyrate: with 4-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate (each second monomer constituting about 30 mol.%). The PHAs differed in their thermal and molecular weight properties and degree of crystallinity. Pristine films differed in porosity, hydrophilicity, and roughness parameters. The two modes of laser treatment altered these parameters and biocompatibility in diverse ways. Films of P(3HB) had water contact angle and surface energy of 92 degrees and 30.8 mN/m, respectively, and average roughness of 144 nm. The water contact angle of copolymer films decreased to 80-56 degrees and surface energy and roughness increased to 41-57 mN/m and 172-290 nm, respectively. Treatment in either mode resulted in different modifications of the films, depending on their composition and irradiation mode. Laser-treated P(3HB) films exhibited a decrease in water contact angle, which was more considerable after the treatment in the quasi-pulsed mode. Roughness parameters were changed by the treatment in both modes. Continuous wave line-by-line irradiation caused formation of sintered grooves on the film surface, which exhibited some change in water contact angle (76-80 degrees) and reduced roughness parameters (to 40-45 mN/m) for most films. Treatment in the quasi-pulsed raster mode resulted in the formation of pits with no pronounced sintered regions on the film surface, a more considerably decreased water contact angle (to 67-76 degrees), and increased roughness of most specimens. Colorimetric assay for assessing cell metabolic activity (MTT) in NIH 3T3 mouse fibroblast culture showed that the number of fibroblasts on the films treated in the continuous wave mode was somewhat lower; treatment in quasi-pulsed radiation mode caused an increase in the number of viable cells by a factor of 1.26 to 1.76, depending on PHA composition. This is an important result, offering an opportunity of targeted surface modification of PHA products aimed at preventing or facilitating cell attachment.

WOS
Держатели документа:
Siberian Fed Univ, Sch Fundamental Biol & Biotechnol, Basic Dept Biotechnol, 79 Svobodnyi Av, Krasnoyarsk 660041, Russia.
Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Fed Res Ctr, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Krasnoyarsk Sci Ctr SB RAS, LV Kirensky Inst Phys SB RAS, Fed Res Ctr, 50-38 Akademgorodok, Krasnoyarsk 660036, Russia.
Krasnoyarsk Sci Ctr SB RAS, Special Design & Technol BureauNaukaFed Res Ctr, 50-45 Akademgorodok, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Fed Res Ctr, 50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Volova, Tatiana G.; Golubev, Alexey, I; Nemtsev, Ivan, V; Lukyanenko, Anna, V; Dudaev, Alexey E.; Shishatskaya, Ekaterina, I; Russian Foundation for Basic Research/Regional State Autonomous Institution "Krasnoyarsk Regional Fund for the Support of Scientific and ScientificTechnical Activities" foundations [19-43-240012]; Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0006]

Найти похожие
 1-20    21-37 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)