Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (7)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=devices<.>)
Общее количество найденных документов : 15
Показаны документы с 1 по 15
1.


   
    Protein biosensor based on Schottky barrier nanowire field effect transistor / T. E. Smolyarova, L. V. Shanidze, A. V. Lukyanenko [et al.] // Talanta. - 2022. - Vol. 239. - Ст. 123092, DOI 10.1016/j.talanta.2021.123092 . - ISSN 0039-9140
Кл.слова (ненормированные):
Back gate nanowire FET -- Schottky contacts FET -- Si nanowire biosensor -- Silicon-on-insulator -- Band diagram -- Biosensors -- Drain current -- Electron beam lithography -- Molecular beam epitaxy -- MOSFET devices -- Schottky barrier diodes -- Silicon on insulator technology -- Silicon wafers -- Back gate nanowire FET -- Back gates -- Nanowire biosensors -- Nanowire FET -- Protein biosensors -- Schottky barriers -- Schottky contact FET -- Schottky contacts -- Si nanowire biosensor -- Silicon on insulator -- Nanowires
Аннотация: A top-down nanofabrication approach involving molecular beam epitaxy and electron beam lithography was used to obtain silicon nanowire-based back gate field-effect transistors with Schottky contacts on silicon-on-insulator (SOI) wafers. The resulting device is applied in biomolecular detection based on the changes in the drain-source current (IDS). In this context, we have explained the physical mechanisms of charge carrier transport in the nanowire using energy band diagrams and numerical 2D simulations in TCAD. The results of the experiment and numerical modeling matched well and may be used to develop novel types of nanowire-based biosensors. © 2021 Elsevier B.V.

Scopus
Держатели документа:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Biophysics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russian Federation

Доп.точки доступа:
Smolyarova, T. E.; Shanidze, L. V.; Lukyanenko, A. V.; Baron, F. A.; Krasitskaya, V. V.; Kichkailo, A. S.; Tarasov, A. S.; Volkov, N.

Найти похожие
2.


   
    INTRACANOPY LIGHTING IN PHYTOCENOSES AND PHOTOBIOLOGICAL EFFICIENCY OF RADIATION IN PHOTOCULTURE CONDITIONS / A. A. Tikhomirov // Light Eng. - 2021. - Vol. 29, Is. 2. - P4-15, DOI 10.33383/2020-076. - Cited References:42. - The work is performed as part of state assignments VI.56.1.4 and 0287-2019-0009 "Research of the Effect of Plant Texture on Photosynthesis Efficiency" with the Biophysics Institute of the Federal Research Centre "Krasnoyarsk Research Facility of the Siberian Branch of the Russian Academy of Sciences". . - ISSN 0236-2945
РУБ Engineering, Electrical & Electronic + Optics
Рубрики:
DIFFERENT SPECTRAL COMPOSITION
   EMITTING-DIODES

   GREEN LIGHT

   LETTUCE

Кл.слова (ненормированные):
plant light culture -- intracanopy lighting -- light sources -- canopy -- architectonics -- optical canopy properties -- canopy productivity
Аннотация: The review is devoted to the study of the internal radiation regime in the canopies cultivated under controlled environmental conditions. The expediency of using canopies as an object of research for evaluating the photobiological efficiency of radiation in light culture conditions is justified. The appropriateness of light measurements in multi-tiered canopies is shown, taking into account the role of leaves of different tiers in the formation of an economically useful crop. The main requirements for light devices for their use in measuring artificial radiation in light culture conditions are considered, and a brief analysis of the existing instrument base for performing these studies is given. A number of examples show the complexity and ambiguity of the internal structure of the light field that is forming within canopies in light culture conditions. Conceptual approaches to the choice of spectral and energy characteristics of artificial irradiation for plant light culture are proposed and justified. The necessity of taking into account the light conditions of leaves of different tiers when choosing the spectral and energy characteristics of light sources for the cultivation of multi-tiered canopies is justified. Techniques, methods, and light sources used for additional intracanopy lighting are analysed. The efficiency of using side illumination of plant canopies and conditions for its implementation are considered. The advantages of the volume distribution of canopies on the most common multi-tiered lighting installations are discussed. Based on the presented mate- rial, we consider ways to improve methodological approaches for evaluating the photobiological effectiveness of artificial radiation in light culture conditions for canopies of cultivated plants, taking into account the features of their architectonics and internal radiation regime.

WOS
Держатели документа:
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk, Russia.
Krasnoyarsk Sci Ctr, Inst Biophys, SB RAS,Fed Res Ctr, Krasnoyarsk, Russia.

Доп.точки доступа:
Tikhomirov, Alexander A.; Biophysics Institute of the Federal Research Centre "Krasnoyarsk Research Facility of the Siberian Branch of the Russian Academy of Sciences" [VI.56.1.4, 0287-2019-0009]

Найти похожие
3.


   
    The role of acidosis in the pathogenesis of severe forms of COVID-19 / Y. D. Nechipurenko, D. A. Semyonov, I. A. Lavrinenko [et al.] // Biology. - 2021. - Vol. 10, Is. 9. - Ст. 852, DOI 10.3390/biology10090852 . - ISSN 2079-7737
Кл.слова (ненормированные):
Acidosis -- Bohr effect -- COVID-19 -- Hypoxia -- Lactate -- PH -- SARS-CoV-2 -- Saturation
Аннотация: COVID-19 has specific characteristics that distinguish this disease from many other infec-tions. We suggest that the pathogenesis of severe forms of COVID-19 can be associated with acidosis. This review article discusses several mechanisms potentially linking the damaging effects of COVID-19 with acidosis and shows the existence of a vicious cycle between the development of hypoxia and acidosis in COVID-19 patients. At the early stages of the disease, inflammation, difficulty in gas exchange in the lungs and thrombosis collectively contribute to the onset of acidosis. In accordance with the Verigo-Bohr effect, a decrease in blood pH leads to a decrease in oxygen saturation, which contributes to the exacerbation of acidosis and results in a deterioration of the patient’s condition. A decrease in pH can also cause conformational changes in the S-protein of the virus and thus lead to a decrease in the affinity and avidity of protective antibodies. Hypoxia and acidosis lead to dysregu-lation of the immune system and multidirectional pro-and anti-inflammatory reactions, resulting in the development of a “cytokine storm”. In this review, we highlight the potential importance of supporting normal blood pH as an approach to COVID-19 therapy. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Laboratory DNA-Protein Recognition, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation
Institute of Molecular Medicine and Pathobiochemistry, Voyno-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russian Federation
Institute of Biophysics Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Department of Human and Animal Physiology, Faculty of Medicine and Biology, Voronezh State University, Voronezh, 394018, Russian Federation
Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow Region, Dolgoprudny, 141701, Russian Federation
Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
Laboratory of Medical Analytical Methods and Devices, Institute for Analytical Instrumentation of the Russian Academy of Sciences, St. Petersburg, 198095, Russian Federation
Sendai Viralytics LLC, Acton, MA 117261, United States
Laboratory of Cellular Bases for the Development of Malignant Diseases, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation

Доп.точки доступа:
Nechipurenko, Y. D.; Semyonov, D. A.; Lavrinenko, I. A.; Lagutkin, D. A.; Generalov, E. A.; Zaitceva, A. Y.; Matveeva, O. V.; Yegorov, Y. E.

Найти похожие
4.


   
    The Role of Acidosis in the Pathogenesis of Severe Forms of COVID-19 / Y. D. Nechipurenko, D. A. Semyonov, I. A. Lavrinenko [et al.] // Biology-Basel. - 2021. - Vol. 10, Is. 9. - Ст. 852, DOI 10.3390/biology10090852. - Cited References:86. - This research was funded by the Presidium of the Russian Academy of Sciences for Molecular and Cellular Biology and the Program of Fundamental Research for State Academies for years 2013-2020, project no. 01201363818. . - ISSN 2079-7737
РУБ Biology
Рубрики:
RESPIRATORY-ACIDOSIS
   LACTATE

   COAGULATION

   GLYCOLYSIS

   SECRETION

Кл.слова (ненормированные):
SARS-CoV-2 -- COVID-19 -- acidosis -- hypoxia -- saturation -- Bohr effect -- lactate -- pH
Аннотация: Simple Summary Recently, several studies have shown that acidosis, which is increased acidity in the blood and other body tissues, is often associated with severe COVID-19. In this article, we look at the mechanisms and consequences of acidosis that can lead to an exacerbation of COVID-19. We want to draw the attention of readers to the threshold values of such disease characteristics as hypoxia and acidosis, which are associated with a sharp deterioration in the patient's condition. Hypoxia and acidosis mutually reinforce each other according to the principle of a vicious cycle (that is, they are involved in a system of positive feedbacks). Elevated blood lactate (lactic acid) levels are associated with poor clinical outcomes in COVID patients. As a practical recommendation, we propose to pay more attention to the prevention of acidosis, including in the early stages of the disease, when the adjustment of homeostasis requires less effort and is less risky. COVID-19 has specific characteristics that distinguish this disease from many other infections. We suggest that the pathogenesis of severe forms of COVID-19 can be associated with acidosis. This review article discusses several mechanisms potentially linking the damaging effects of COVID-19 with acidosis and shows the existence of a vicious cycle between the development of hypoxia and acidosis in COVID-19 patients. At the early stages of the disease, inflammation, difficulty in gas exchange in the lungs and thrombosis collectively contribute to the onset of acidosis. In accordance with the Verigo-Bohr effect, a decrease in blood pH leads to a decrease in oxygen saturation, which contributes to the exacerbation of acidosis and results in a deterioration of the patient's condition. A decrease in pH can also cause conformational changes in the S-protein of the virus and thus lead to a decrease in the affinity and avidity of protective antibodies. Hypoxia and acidosis lead to dysregulation of the immune system and multidirectional pro- and anti-inflammatory reactions, resulting in the development of a "cytokine storm". In this review, we highlight the potential importance of supporting normal blood pH as an approach to COVID-19 therapy.

WOS
Держатели документа:
Russian Acad Sci, Engelhardt Inst Mol Biol, Lab DNA Prot Recognit, Moscow 119991, Russia.
Voyno Yasenetsky Krasnoyarsk State Med Univ, Inst Mol Med & Pathobiochem, Krasnoyarsk 660022, Russia.
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia.
Voronezh State Univ, Fac Med & Biol, Dept Human & Anim Physiol, Voronezh 394018, Russia.
Moscow Inst Phys & Technol, Dept Biol & Med Phys, Dolgoprudnyi 141701, Russia.
Lomonosov Moscow State Univ, Fac Phys, Dept Biophys, Moscow 119991, Russia.
Russian Acad Sci, Lab Med Analyt Methods & Devices, Inst Analyt Instrumentat, St Petersburg 198095, Russia.
Sendai Viralyt LLC, Acton, MA USA.
Russian Acad Sci, Engelhardt Inst Mol Biol, Lab Cellular Bases Dev Malignant Dis, Moscow 119991, Russia.

Доп.точки доступа:
Nechipurenko, Yury D.; Semyonov, Denis A.; Lavrinenko, Igor A.; Lagutkin, Denis A.; Generalov, Evgenii A.; Zaitceva, Anna Y.; Matveeva, Olga, V; Yegorov, Yegor E.; Lagutkin, Denis; Presidium of the Russian Academy of Sciences for Molecular and Cellular Biology; Program of Fundamental Research for State Academies for years 2013-2020 [01201363818]

Найти похожие
5.


   
    Screening of biopolymeric materials for cardiovascular surgery toxicity—Evaluation of their surface relief with assessment of morphological aspects of monocyte/macrophage polarization in atherosclerosis patients / N. G. Menzyanova [et al.] // Toxicol. Rep. - 2019. - Vol. 6. - P74-90, DOI 10.1016/j.toxrep.2018.11.009 . - ISSN 2214-7500
Кл.слова (ненормированные):
Atherosclerosis -- Cell morphology -- Intravascular stenting -- Macrophages -- Monocytes -- Polyhydroxyalkanoates
Аннотация: The morphotypes of human macrophages (MPh) were studied in the culture on nano-structured biopolymer substrates, made from polyhydroxyalcanoates (PHAs) of five various monomer compositions, followed by the solvent evaporation. Its surface relief, which was further in direct contact with human cells in vitro, was analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). It was shown, that the features of the micro/nano relief depend on the monomeric composition of the polymer substrates. Monocytes (MN) of patients with atherosclerosis and cardiac ischemia, undergoing stenting and conventional anti-atherosclerotic therapy, were harvested prior and after stenting. MN were isolated and cultured, with the transformation into MPh in direct contact with biopolymer culture substrates with different monomer composition and nano-reliefs, and transformed into MPh, in comparison with the same process on standard culture plastic. Sub-populations of cells with characteristic morphology in each phenotypic class were described, and their quantitative ratios for each sample of polymers were counted as an intermediate result in the development of “smart” material for cardiovascular devices. The results obtained allow us to assume, that the processes of MPh differentiation and polarization in vitro depend not only on the features of the micro/nano relief of biopolymer substrates, but also on the initial state of MN in vivo and general response of patients. © 2018 The Authors

Scopus,
Смотреть статью,
WOS
Держатели документа:
Siberian Federal University, 79, Svobodny av., Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 50/38 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, 50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Federal Center for Cardiovascular Surgery, 45 Karaulnaya, Krasnoyarsk, 660020, Russian Federation

Доп.точки доступа:
Menzyanova, N. G.; Pyatina, S. А.; Nikolaeva, E. D.; Shabanov, A. V.; Nemtsev, I. V.; Stolyarov, D. P.; Dryganov, D. B.; Sakhnov, E. V.; Shishatskaya, E. I.

Найти похожие
6.


   
    Towards biological quantity theory for nominal property metrology in polyenzymatic devices with living cells / P. I. Belobrov, A. A. Evstrapov, E. N. Esimbekova [et al.] // Journal of Physics: Conference Series : Institute of Physics Publishing, 2019. - Vol. 1379: Joint IMEKO TC1-TC7-TC13-TC18 Symposium 2019 (2 July 2019 through 5 July 2019, ) Conference code: 156337, Is. 1. - Ст. 012036, DOI 10.1088/1742-6596/1379/1/012036
Кл.слова (ненормированные):
Fluidic devices -- Industrial waste disposal -- Biological measurement -- Bioluminescent systems -- Continuous measurements -- Droplet-based microfluidics -- Industrial enterprise -- Microfluidic platforms -- Numerical variables -- Silicon photomultiplier -- Microfluidics
Аннотация: Here we discuss the concepts of "biological quantity" and "nominal property" within the framework of the problem of biological measurements based on new specific results of biological analysis using a microfluidic platform and chips developed by our team earlier. It was shown that based on different microfluidic platforms it is possible to develop chips with a polyenzymatic bioluminescent system NAD(P)H:FMN-oxidoreductase-luciferase (Red + Luc), which can be used in various areas of biological analysis. Thus, disposable microfluidic chips with Red + Luc system suitable for field and indoor use were developed using continuous flow microfluidic platform. The use of droplet-based microfluidic platform allowed to develop microfluidic chips with Red + Luc system for long-term continuous measurements of water samples, for example, in places of waste disposal by industrial enterprises. The reference for comparing different biological quantities with each other in the proposed system was a photodetector, which converted non-numeric values and nominal properties recorded by a biological module Red + Luc into numerical variables. Such a reference was implemented as a portable luminometer based on silicon photomultiplier. The results allow to perform other biological measurements and to start the discussion of modern biological concepts in the language of biological measures. © 2019 IOP Publishing Ltd. All rights reserved.

Scopus
Держатели документа:
Laboratory of Bioluminescent Biotechnology, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute for Analytical Instrumentation RAS, St.-Petersburg, 190103, Russian Federation
Laboratory of Photobiology, Institute of Biophysics SB RAS, Krasnoyarsk, 660036, Russian Federation
Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center krasnoyarsk Science Center SB RAS, Krasnoyarsk, 660036, Russian Federation
Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, 660022, Russian Federation

Доп.точки доступа:
Belobrov, P. I.; Evstrapov, A. A.; Esimbekova, E. N.; Denisov, I. A.; Lukyanenko, K. A.; Osipova, E. D.; Yakimov, A. S.

Найти похожие
7.


   
    Towards biological quantity theory for nominal property metrology in polyenzymatic devices with living cells / P. I. Belobrov, A. A. Evstrapov, E. N. Esimbekova [et al.] // JOINT IMEKO TC1-TC7-TC13-TC18 SYMPOSIUM : IOP PUBLISHING LTD, 2019. - Vol. 1379: Joint IMEKO TC1-TC7-TC13-TC18 Symposium (JUL 02-05, 2019, St Petersburg, RUSSIA). - Ст. 012036. - (Journal of Physics Conference Series), DOI 10.1088/1742-6596/1379/1/012036. - Cited References:19 . -
РУБ Instruments & Instrumentation + Mathematics, Applied + Physics, Applied

Аннотация: Here we discuss the concepts of "biological quantity" and "nominal property" within the framework of the problem of biological measurements based on new specific results of biological analysis using a microfluidic platform and chips developed by our team earlier. It was shown that based on different microfluidic platforms it is possible to develop chips with a polyenzymatic bioluminescent system NAD(P)H:FMN-oxidoreductase-luciferase (Red + Luc), which can be used in various areas of biological analysis. Thus, disposable microfluidic chips with Red + Luc system suitable for field and indoor use were developed using continuous flow microfluidic platform. The use of droplet-based microfluidic platform allowed to develop microfluidic chips with Red + Luc system for long-term continuous measurements of water samples, for example, in places of waste disposal by industrial enterprises. The reference for comparing different biological quantities with each other in the proposed system was a photodetector, which converted non-numeric values and nominal properties recorded by a biological module Red + Luc into numerical variables. Such a reference was implemented as a portable luminometer based on silicon photomultiplier. The results allow to perform other biological measurements and to start the discussion of modern biological concepts in the language of biological measures.

WOS
Держатели документа:
Siberian Fed Univ, Lab Bioluminescent Biotechnol, Krasnoyarsk 660041, Russia.
RAS, Inst Analyt Instrumentat, St Petersburg 190103, Russia.
SB RAS, Lab Photobiol, Inst Biophys, Krasnoyarsk 660036, Russia.
SB RAS, Krasnoyarsk Sci Ctr, Fed Res Ctr, Lab Digital Controlled Drugs & Theranost, Krasnoyarsk 660036, Russia.
Krasnoyarsk State Med Univ, Res Inst Mol Med & Pathobiochem, Krasnoyarsk 660022, Russia.

Доп.точки доступа:
Belobrov, P., I; Evstrapov, A. A.; Esimbekova, E. N.; Denisov, I. A.; Lukyanenko, K. A.; Osipova, E. D.; Yakimov, A. S.; Belobrov, Peter I; Yakimov, Anton

Найти похожие
8.


   
    Analytical Enzymatic Reactions in Microfluidic Chips / K. A. Lukyanenko [et al.] // Appl. Biochem. Microbiol. - 2017. - Vol. 53, Is. 7. - P775-780, DOI 10.1134/S0003683817070043. - Cited References:15. - The study was supported by a grant from the Russian Science Foundation (project No. 15-19-10041). . - ISSN 0003-6838. - ISSN 1573-8183
РУБ Biotechnology & Applied Microbiology + Microbiology
Рубрики:
BIOAVAILABLE HEAVY-METALS
   DEVICES

   POINT

   LAB

Кл.слова (ненормированные):
bioluminescence -- luciferase -- microfluidics -- microfluidic chip -- enzymatic -- bioassay
Аннотация: A number of approaches have been proposed and tested to transfer enzymatic reactions into the functional elements of microfluidic chips on the example of the bienzyme bioluminescent reaction involving NAD(P)H:FMN-oxidoreductase and luciferase. Measurement of the catalytic activity of these enzymes (under the influence of pollutants) is the basis of enzymatic bioassay of various liquids. It was found that all of the components of the reaction must be placed in the same cell of the chip to improve the reproducibility of the measurements. The use of starch gel as a carrier for immobilization and gelatin as a scaffold in the reactor of the chip enables the preservation of enzyme activity in the course of sealing the chip at room temperature. It is shown that the components of the reaction should be vigorously stirred in a microfluidic chip reactor to improve the efficiency of the analysis. As a result of the studies, a prototype of microfluidic chip based on the enzymatic bioluminescent reaction is proposed. It is characterized by a detection limit of copper sulfate of 3 mu M that corresponds to the sensitivity of traditional lux-biosensors based on living cells. The analysis time is reduced to 1 min, and the analysis can be performed by individuals without special laboratory skills.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia.
St Petersburg Inst Fine Mech & Opt, St Petersburg 197101, Russia.
Inst Analyt Instrumentat, St Petersburg 198095, Russia.

Доп.точки доступа:
Lukyanenko, K. A.; Denisov, I. A.; Yakimov, A. S.; Esimbekova, E. N.; Belousov, K. I.; Bukatin, A. S.; Kukhtevich, I. V.; Sorokin, V. V.; Evstrapov, A. A.; Belobrov, P. I.; Russian Science Foundation [15-19-10041]

Найти похожие
9.


   
    Rapid biosensing tools for cancer biomarkers / R. Ranjan, E. N. Esimbekova, V. A. Kratasyuk // Biosens. Bioelectron. - 2017. - Vol. 87. - P918-930, DOI 10.1016/j.bios.2016.09.061 . - ISSN 0956-5663
Кл.слова (ненормированные):
Biosensor -- Cancer biomarker -- Functional nanomaterials -- Microfluidics -- Point-of-care devices -- Antibodies -- Biosensors -- Diseases -- Electronic properties -- Microfluidics -- Nanostructured materials -- Cancer biomarkers -- Diagnostic systems -- Fluorescent probes -- Functional Nano materials -- Latest development -- Optoelectronic properties -- Point of care -- Rapid bio-sensing -- Biomarkers
Аннотация: The present review critically discusses the latest developments in the field of smart diagnostic systems for cancer biomarkers. A wide coverage of recent biosensing approaches involving aptamers, enzymes, DNA probes, fluorescent probes, interacting proteins and antibodies in vicinity to transducers such as electrochemical, optical and piezoelectric is presented. Recent advanced developments in biosensing approaches for cancer biomarker owes much credit to functionalized nanomaterials due to their unique opto-electronic properties and enhanced surface to volume ratio. Biosensing methods for a plenty of cancer biomarkers has been summarized emphasizing the key principles involved. © 2016 Elsevier B.V.

Scopus,
Смотреть статью
Держатели документа:
Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny prospect, Krasnoyarsk, Russian Federation
Institute of Biophysics SB RAS, Akademgorodok 50/50, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ranjan, R.; Esimbekova, E. N.; Kratasyuk, V. A.

Найти похожие
10.


   
    Rapid biosensing tools for cancer biomarkers / R. Ranjan, E. N. Esimbekova, V. A. Kratasyuk // Biosens. Bioelectron. - 2017. - Vol. 87. - P918-930, DOI 10.1016/j.bios.2016.09.061. - Cited References:115. - The research was partially supported by the Russian Foundation for Basic Research (Project no. 16-34-60100 and No. 16-06-00439), the state budget allocated to the fundamental research Russian Academy of Sciences (Project no. 01201351504). . - ISSN 0956-5663. - ISSN 1873-4235
РУБ Biophysics + Biotechnology & Applied Microbiology + Chemistry, Analytical
Рубрики:
POINT-OF-CARE
   HIGHLY SENSITIVE DETECTION

   ACOUSTIC-WAVE BIOSENSOR

   DNA

Кл.слова (ненормированные):
Biosensor -- Cancer biomarker -- Functional nanomaterials -- Point-of-care -- devices -- Microfluidics
Аннотация: The present review critically discusses the latest developments in the field of smart diagnostic systems for cancer biomarkers. A wide coverage of recent biosensing approaches involving aptamers, enzymes, DNA probes, fluorescent probes, interacting proteins and antibodies in vicinity to transducers such as electrochemical, optical and piezoelectric is presented. Recent advanced developments in biosensing approaches for cancer biomarker owes much credit to functionalized nanomaterials due to their unique opto-electronic properties and enhanced surface to volume ratio. Biosensing methods for a plenty of cancer biomarkers has been summarized emphasizing the key principles involved.

WOS,
Смотреть статью
Держатели документа:
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Dept Biophys, Lab Bioluminescent Biotechnol, Krasnoyarsk 660041, Russia.
Inst Biophys SB RAS, Akademgorodok 50-50, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Ranjan, Rajeev; Esimbekova, Elena N.; Kratasyuk, Valentina A.; Russian Foundation for Basic Research [16-34-60100, 16-06-00439]; state budget allocated to the fundamental research Russian Academy of Sciences Project [01201351504]

Найти похожие
11.


   
    Active mixing of immobilised enzymatic system in microfluidic chip / K. A. Lukyanenko [et al.] // Micro Nano Lett. - 2017. - Vol. 12, Is. 6. - P377-381, DOI 10.1049/mnl.2016.0646. - Cited References:17. - The research was supported by the grant of the Russian Science Foundation (project no. 15-19-10041). . - ISSN 1750-0443
РУБ Nanoscience & Nanotechnology + Materials Science, Multidisciplinary
Рубрики:
POLY(METHYL METHACRYLATE)
   SURFACE MODIFICATION

   POINT

   DEVICES

   PMMA

Аннотация: Parameters for sample introduction, dried reagents dissolution and mixing with sample for bienzyme system NAD(H):FMN-oxidoreductase and luciferase immobilised in microfluidic chip were successfully determined. Numerical simulations of reaction chamber geometry, flavin mononucleotide (FMN) escape from starch gel and mixing options were conducted to achieve higher sensitivity of bioluminescent reaction. Results of numerical simulations were verified experimentally. The active mixer for dried reagents was made from an electro-mechanical speaker's membrane which was connected to the input of the chip. Such a mixer provided better efficiency than a passive mixing, and it is simple enough for use in point-of-care devices with any systems based on immobilised enzymes in chips.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
ITMO Univ, St Petersburg 197101, Russia.
Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
Inst Analyt Instrumentat, St Petersburg 198095, Russia.

Доп.точки доступа:
Lukyanenko, Kirill A.; Belousov, Kirill I.; Denisov, Ivan A.; Yakimov, Anton S.; Esimbekova, Elena N.; Bukatin, Anton S.; Evstrapov, Anatoly A.; Belobrov, Peter I.; Russian Science Foundation [15-19-10041]

Найти похожие
12.


   
    Dissolution and mixing of flavin mononucleotide in microfluidic chips for bioassay / K. I. Belousov [et al.] // J. Phys. Conf. Ser. - 2016. - Vol. 741, Is. 1, DOI 10.1088/1742-6596/741/1/012058 . - ISSN 1742-6588
Кл.слова (ненормированные):
Bioassay -- Biomolecules -- Dissolution -- Flow of fluids -- Fluidic devices -- Microfluidics -- Nanostructures -- Optoelectronic devices -- Oscillating flow -- Photonics -- Analysis of liquids -- Concentration distributions -- Constant flow rates -- Flavin mono nucleotides (FMN) -- Flavin mononucleotides -- Frequency of oscillation -- Uniform distribution -- Variable flow rate -- Mixing
Аннотация: Dissolution and mixing of flavin mononucleotide (FMN), which activates a luminescent reaction, were considered in various designs of microfluidic chip for pollution analysis of liquid samples. The aim was to determine the velocity mode of fluid flow ensured the uniform distribution of the FMN in the reaction chamber. Simulation of concentration distribution of FMN in various designs of microfluidic chips was conducted. It was shown that the passive mixing techniques based on the constant flow rate didn't provide mixing of FMN in acceptable time (3 seconds). The most efficient mixing was achieved using variable flow rate with a gradually increasing frequency of oscillation. © Published under licence by IOP Publishing Ltd.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Department of Material Science and Nanotechnology, ITMO University, St. Petersburg, Russian Federation
Department of Biophysics, Siberian Federal University, Krasnoyarsk, Russian Federation
Nanobiotech Lab, St. Petersburg Academic University, St. Petersburg, Russian Federation
Laboratory of Photobiology, Institute of Biophysics SB RAS, Krasnoyarsk, Russian Federation
Laboratory of Information and Measurement Biosensor and Chemosensor Microsystems, Institute for Analytical Instrumentation RAS, St. Petersburg, Russian Federation

Доп.точки доступа:
Belousov, K. I.; Denisov, I. A.; Lukyanenko, K. A.; Yakimov, A. S.; Bukatin, A. S.; Kukhtevich, I. V.; Sorokin, V. V.; Esimbekova, E. N.; Belobrov, P. I.; Evstrapov, A. A.

Найти похожие
13.


   
    Electrospinning of polyhydroxyalkanoate fibrous scaffolds: effects on electrospinning parameters on structure and properties [Text] / T. . Volova [et al.] // J. Biomater. Sci.-Polym. Ed. - 2014. - Vol. 25, Is. 4. - P370-393, DOI 10.1080/09205063.2013.862400. - Cited References: 52. - This study was financially supported by Project 'Biotechnologies of novel biomaterials: innovative biopolymers and devices for biomedicine' (Agreement No. 1 of 15.02.2013 to Agreement No. 11.G34.31.0013) in accordance with Resolution No. 220 of the Government of the Russian Federation of April 9, 2010, 'On measures designed to attract leading scientists to the Russian institutions of higher learning' and Grant of the RF President for supporting young Doctors of Sciences No. MD-3112.2012.4. . - ISSN 0920-5063
РУБ Engineering, Biomedical + Materials Science, Biomaterials + Polymer Science
Рубрики:
TISSUE ENGINEERING APPLICATIONS
   FIBER MATS

   POLY 3-HYDROXYBUTYRATE

   POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE)

   BIOCOMPATIBILITY

   PROLIFERATION

   FABRICATION

   NANOFIBERS

   COPOLYMERS

   MEMBRANES

Кл.слова (ненормированные):
electrospinning -- polyhydroxyalkanoates -- ultrafine fibers -- physical-mechanical properties -- fibroblast cells
Аннотация: In this study, electrospinning was used to prepare ultrafine fibers from PHAs with different chemical compositions: P(3HB) and copolymers: P(3HB-co-4HB), P(3HB-co-3HV), and P(3HB-co-3HHx). The main process parameters that influence ultrafine fiber diameter and properties (polymer concentration, solution feeding rate, working distance, and applied voltage) have been investigated and their effects evaluated. The study revealed electrospinning parameters for the production of high-quality ultrafine fibers and determined which parameters should be varied to tailor the properties of the products. This study is the first to compare biological and physical-mechanical parameters of PHAs with different chemical compositions as dependent upon the fractions of monomers constituting the polymers and ultrafine fiber orientation. Mechanical strength of aligned ultrafine fibers prepared from different PHAs is higher than that of randomly oriented ones; no significant effect of ultrafine fiber orientation on surface properties has been found. None of the fibrous scaffolds produced by electrospinning from PHAs had any adverse effects on attachment, growth, and viability of NIH 3T3 mouse fibroblast cells, and all of them were found to be suitable for tissue engineering applications.

WOS,
Scopus
Держатели документа:
[Volova, Tatiana
Sukovatyi, Aleksey
Nikolaeva, Elena] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
[Goncharov, Dmitriy
Shishatskaya, Ekaterina] Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia
[Shabanov, Alexander] Russian Acad Sci, LV Kirenskii Inst Phys, Siberian Branch, Krasnoyarsk 660036, Russia
ИБФ СО РАН
ИФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T...; Goncharov, D...; Sukovatyi, A...; Shabanov, A...; Nikolaeva, E...; Shishatskaya, E...; Project 'Biotechnologies of novel biomaterials: innovative biopolymers and devices for biomedicine' [1, 11.G34.31.0013]; Government of the Russian Federation [220]; RF President for supporting young Doctors of Sciences [MD-3112.2012.4]

Найти похожие
14.


   
    A Glucose-Utilizing Strain, Cupriavidus euthrophus B-10646: Growth Kinetics, Characterization and Synthesis of Multicomponent PHAs [Text] / T. . Volova [et al.] // PLoS One. - 2014. - Vol. 9, Is. 2. - Ст. e87551, DOI 10.1371/journal.pone.0087551. - Cited References: 64. - This study was financially supported by Project "Biotechnologies of novel biomaterials: Innovative Biopolymers and Biomedicine Devices" (Agreement No. 11.G34.31.0013 with Amendment No. 1 of 15 February 2013) in accordance with Resolution No. 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning." The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. . - ISSN 1932-6203
РУБ Multidisciplinary Sciences
Рубрики:
RALSTONIA-EUTROPHA
   BIODEGRADABLE POLYHYDROXYALKANOATES

   AEROMONAS-HYDROPHILA

   ESCHERICHIA-COLI

   MOLECULAR-WEIGHT

   SURFACE-ENERGY

   NORTH PACIFIC

   TERPOLYESTER

   BIOSYNTHESIS

   POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE-CO-3-HYDROXYHEXANOATE)

Аннотация: This study investigates kinetic and production parameters of a glucose-utilizing bacterial strain, C. eutrophus B-10646, and its ability to synthesize PHA terpolymers. Optimization of a number of parameters of bacterial culture (cell concentration in the inoculum, physiological activity of the inoculum, determined by the initial intracellular polymer content, and glucose concentration in the culture medium during cultivation) provided cell concentrations and PHA yields reaching 110 g/L and 80%, respectively, under two-stage batch culture conditions. Addition of precursor substrates (valerate, hexanoate, propionate, c-butyrolactone) to the culture medium enabled synthesis of PHA terpolymers, P(3HB/3HV/4HB) and P(3HB/3HV/3HHx), with different composition and different molar fractions of 3HB, 3HV, 4HB, and 3HHx. Different types of PHA terpolymers synthesized by C. eutrophus B-10646 were used to prepare films, whose physicochemical and physicalmechanical properties were investigated. The properties of PHA terpolymers were significantly different from those of the P3HB homopolymer: they had much lower degrees of crystallinity and lower melting points and thermal decomposition temperatures, with the difference between these temperatures remaining practically unchanged. Films prepared from all PHA terpolymers had higher mechanical strength and elasticity than P3HB films. In spite of dissimilar surface structures, all films prepared from PHA terpolymers facilitated attachment and proliferation of mouse fibroblast NIH 3T3 cells more effectively than polystyrene and the highly crystalline P3HB.

WOS
Держатели документа:
[Volova, Tatiana
Kiselev, Evgeniy
Nikolaeva, Elena
Sukovatiy, Aleksey
Shishatskaya, Ekaterina] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia
[Volova, Tatiana
Vinogradova, Olga
Shishatskaya, Ekaterina] Siberian Fed Univ, Krasnoyarsk, Russia
[Chistyakov, Anton] Russian Acad Sci, Shemyakin Ovchinnikov Inst Bioorgan Chem, Moscow, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T...; Kiselev, E...; Vinogradova, O...; Nikolaeva, E...; Chistyakov, A...; Sukovatiy, A...; Shishatskaya, E...; Project "Biotechnologies of novel biomaterials: Innovative Biopolymers and Biomedicine Devices" [11.G34.31.0013]

Найти похожие
15.


   
    Biomedical investigations of biodegradable PHAs / E. I. Shishatskaya // Macromolecular Symposia. - 2008. - Vol. 269, Is. 1. - P65-81, DOI 10.1002/masy.200850909 . - ISSN 1022-1360
Кл.слова (ненормированные):
Biodegradable polymers -- Biomedical investigations -- PHA -- ABS resins -- Biodegradable polymers -- Biopolymers -- Biotechnology -- Bone -- Cell culture -- Endothelial cells -- Fibers -- Functional polymers -- Osteoblasts -- Polymers -- Surgery -- Abdominal surgeries -- Biocompatible -- Biodegradable -- Biomedical -- Biomedical investigations -- Bone defects -- Ectopic bones -- Hepatocytes -- In vitro -- Microparticles -- Oral surgeries -- Osteogenesis -- PHA -- Polyhydroxybutyrate -- Polymer devices -- Ralstonia -- Russian academy of sciences -- Two types -- Polymer films
Аннотация: This work is a review of the results of biomedical studies of polymer devices (films, fibers, microparticles, 30 implants) made from resorbable PHAs synthesized by the bacterium Wautersia (Ralstonia) eutropha 65786, using the technology developed at the Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences. Two types of PHAs - polyhydroxybutyrate (PHB) and a hydroxybutyrate/hydroxyvalerate copolymer (PHB/PHV) - have been proven to be biocompatible in vitro in cultures of fibroblasts, endothelial cells, hepatocytes, and osteoblasts, and in short- and long-duration experiments on animals. Polymer films and membranes have been found to be usable as scaffolds for functioning cells and monofilament suture fibers - for stitching muscular-fascial wounds and in abdominal surgery. Ectopic bone formation assay and experiments with the model of segmental osteotomy showed that 30 PHB and PHB/HA implants can be used for reparative osteogenesis. The paper reports beneficial results of using polymers to repair bone defects in oral surgery. Copyright В© 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Svobodnui Av., 69, Krasnoyarsk, 660148, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shishatskaya, E.I.

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)