Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (1)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=diamond<.>)
Общее количество найденных документов : 27
Показаны документы с 1 по 20
 1-20    21-27 
1.


   
    Low-field electron emission of diamond/pyrocarbon composites [Text] / A. V. Karabutov [et al.] // J. Vac. Sci. Technol. B. - 2001. - Vol. 19: 13th International Vacuum Microlectronics Conference (AUG 13-17, 2000, GUANGZHOU, PEOPLES R CHINA), Is. 3. - P. 965-970, DOI 10.1116/1.1368669. - Cited References: 31 . - ISSN 1071-1023
РУБ Engineering, Electrical & Electronic + Nanoscience & Nanotechnology + Physics, Applied
Рубрики:
CVD DIAMOND FILMS
   SCANNING-TUNNELING-MICROSCOPY

   AMORPHOUS-CARBON

   COLD-CATHODE

Аннотация: Properties of the field electron emission for diamond/pyrocarbon nanocomposites produced from diamond particles surrounded by an sp(2)-bonded pyrocarbon matrix are considered as functions of a size of diamond particles selected in the range of 5 nm - 5 mum, and of an average thickness of the pyrocarbon shell controlled by the pyrocarbon/diamond mass ratio varied from 0 to 0.5. The low-threshold emission at fields of greater than or equal to1 V/mum with ''no activation/no hysteresis'' I-V behavior was observed for these materials using tungsten tip microprobes as well as a fluorescent screen. A specially designed scanning tunneling-field emission microscope was used for simultaneous mapping of field emission intensity, topography, work function, and electrical resistivity to study the mechanisms of the emission from the composites and well-emitting chemical vapor deposition diamond films. It was found that for both of the materials emission centers are associated with interfaces between diamond and sp2-bonded carbon phases. Possible mechanisms of the low-field electron emission for the diamond/graphite composites including local field enhancement are analyzed. A model of the low-field emission based on quantum well effect at the diamond/graphite interface is proposed and discussed. (C) 2001 American Vacuum Society.

WOS
Держатели документа:
Russian Acad Sci, Inst Gen Phys, Moscow 117942, Russia
Cent Res Inst Mat, St Petersburg, Russia
Russian Acad Sci, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Karabutov, A.V.; Frolov, V.D.; Konov, V.I.; Ralchenko, V.G.; Gordeev, S.K.; Belobrov, P.I.

Найти похожие
2.


   
    Electron spectroscopy of nanodiamond surface states [Text] / P. I. Belobrov [et al.] // Appl. Surf. Sci. - 2003. - Vol. 215: 4th International Vacuum Electron Sources Conference (JUL 15-19, 2002, SARATOV, RUSSIA), Is. 01.04.2013. - P. 169-177, DOI 10.1016/S0169-4332(03)00287-3. - Cited References: 33 . - ISSN 0169-4332
РУБ Chemistry, Physical + Materials Science, Coatings & Films + Physics, Applied + Physics, Condensed Matter
Рубрики:
AUGER LINE-SHAPES
   DIAMOND 111

   GRAPHITE

   EMISSION

Кл.слова (ненормированные):
nanodiamond -- surface states -- PEELS -- XPS -- Auger electron spectroscopy
Аннотация: Electronic states of nanodiamond (ND) were investigated by PEELS, XPS and CKVV Auger spectra. Parallel electron energy loss spectra (PEELS) show that the electrons inside of ND particles are sp(3) hybridized but there is a surface layer containing distinct hybridized states. The CKVV Auger spectra imply that the HOMO of the ND surface has a shift of 2.5 eV from natural diamond levels of sigma(p) up to the Fermi level. Hydrogen (H) treatment of natural diamond surface produces a chemical state indistinguishable from that of ND surfaces using CKVV. The ND electronic structure forms sigma(s)(1)sigma(p)(2)pi(1) surface states without overlapping of pi-levels. Surface electronic states, including surface plasmons, as well as phonon-related electronic states of the ND surface are also interesting and may also be important for field emission mechanisms from the nanostructured diamond surface. (C) 2003 Elsevier Science B.V. All rights reserved.

WOS
Держатели документа:
Russian Acad Sci, SB, Inst Biophys, Mol Architecture Grp, Krasnoyarsk 660036, Russia
Krasnoyarsk State Tech Univ, UNESCO Chair, Krasnoyarsk 660036, Russia
Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
IV Kurchatov Atom Energy Inst, RRC, Moscow 123182, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Belobrov, P.I.; Bursill, L.A.; Maslakov, K.I.; Dementjev, A.P.

Найти похожие
3.


   
    Field emission luminescence of nanodiamonds deposited on the aligned carbon nanotube array [Text] / Y. V. Fedoseeva [et al.] // Sci Rep. - 2015. - Vol. 5. - Ст. 9379, DOI 10.1038/srep09379. - Cited References:49. - The work was supported by RFBR grant 13-03-12118 in the part of electroluminescence measurements and the bilateral Program "Russian-German Laboratory at BESSY''. We are grateful to Mr. A.V. Ischenko for the TEM measurements, Mr. S.I. Kozhemyachenko for the Raman spectra, Mrs. N.I. Alferova for the IR spectra, and Mr. D.V. Gulyaev for the photoluminescence spectra. . - ISSN 2045-2322
РУБ Multidisciplinary Sciences
Рубрики:
DETONATION NANODIAMOND
   ULTRANANOCRYSTALLINE DIAMOND

Аннотация: Detonation nanodiamonds (NDs) were deposited on the surface of aligned carbon nanotubes (CNTs) by immersing a CNT array in an aqueous suspension of NDs in dimethylsulfoxide (DMSO). The structure and electronic state of the obtained CNT-ND hybrid material were studied using optical and electron microscopy and Infrared, Raman, X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopy. A non-covalent interaction between NDs and CNT and preservation of vertical orientation of CNTs in the hybrid were revealed. We showed that current-voltage characteristics of the CNT-ND cathode are changed depending on the applied field; below similar to 3 V/mu m they are similar to those of the initial CNT array and at the higher field they are close to the ND behavior. Involvement of the NDs in field emission process resulted in blue luminescence of the hybrid surface at an electric field higher than 3.5 V/mu m. Photoluminescence measurements showed that the NDs emit blue-green light, while blue luminescence prevails in the CNT-ND hybrid. The quenching of green luminescence was attributed to a partial removal of oxygen-containing groups from the ND surface as the result of the hybrid synthesis.

WOS,
Scopus
Держатели документа:
Nikolaev Inst Inorgan Chem SB RAS, Novosibirsk 630090, Russia.
Novosibirsk State Univ, Novosibirsk 630090, Russia.
Tech Univ Dresden, Inst Solid State Phys, D-01062 Dresden, Germany.
Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
ИБФ СО РАН

Доп.точки доступа:
Fedoseeva, Yu. V.; Bulusheva, L.G.; Okotrub, A.V.; Kanygin, M.A.; Gorodetskiy, D.V.; Asanov, I.P.; Vyalikh, D.V.; Puzyr, A.P.; Bondar, V.S.; RFBR grant [13-03-12118]; bilateral Program "Russian-German Laboratory at BESSY''

Найти похожие
4.


   
    ELECTROPHORETIC BEHAVIOR OF HYDROSOLS OF ULTRADISPERSE DIAMOND AND MODIFICATION OF ITS SURFACE [Text] / G. A. CHIGANOVA, V. A. BONDAR, A. S. CHIGANOV // COLLOID JOURNAL OF THE RUSSIAN ACADEMY OF SCIENCES. - 1993. - Vol. 55, Is. 5. - P. 774-775. - Cited References: 5 . - ISSN 1061-933X
РУБ Chemistry, Physical

Аннотация: The method of macro-electrophoresis is used to determine values of the zeta-potential of particles of ultradisperse diamond in solutions of AlCl3. It is shown that an increase in the concentration of aluminum ions to 0.5.10(-4) M leads to a decrease in the negative charge of the diamond particles; the dispersions coagulate in more concentrated solutions of AlCl3. Chemical modification of the surface of ultradisperse diamond by aluminum ions is used to obtain stable hydrosols with positively charged diamond particles.

WOS : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
CHIGANOVA, G.A.; BONDAR, V.A.; CHIGANOV, A.S.

Найти похожие
5.


   
    Thermal properties of diamond/carbon composites [Text] / A. . Vlasov [et al.] // Diam. Relat. Mat. - 2000. - Vol. 9: 10th European Conference on Diamond, Diamond-Like Materials, Nitrides and Silicon Carbide (Diamond 1999) (SEP 12-17, 1999, PRAGUE, CZECH REPUBLIC), Is. 03.06.2013. - P. 1104-1109, DOI 10.1016/S0925-9635(99)00256-3. - Cited References: 9 . - ISSN 0925-9635
РУБ Materials Science, Multidisciplinary
Рубрики:
CVD DIAMOND
   CONDUCTIVITY

   FILMS

   RAMAN

Кл.слова (ненормированные):
diamond composites -- laser flash technique -- TEM -- thermal conductivity
Аннотация: The thermal conductivity, k, of diamond/carbon composites with different ratios of sp(2)/sp(3)-bonded carbon is measured by the laser flash technique. The thermal conductivity of nanocomposites containing 6 nm diamond particles falls within the range of k = 0.003-0.017 W/cmK; at room temperature. The thermal conductivity increases while nanopores are gradually filled with pyrolytic carbon (pyrocarbon/diamond mass ratio variation of 0.0-0.5). Transmission electron microscopy data reveal a fairly uniform mixture of two carbon phases, the diamond and matrix having similar grain sizes. Estimates show that the phonon free path is limited by dimensions of carbon matrix layer. Thermal data for coarse-grain (1-2 mu m) composites are also given for comparison. (C) 2000 Elsevier Science S.A. All rights reserved.

WOS
Держатели документа:
Inst Gen Phys, Moscow 117942, Russia
CRIM, St Petersburg, Russia
Inst Crystallog, Moscow, Russia
Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Vlasov, A...; Ralchenko, V...; Gordeev, S...; Zakharov, D...; Vlasov, I...; Karabutov, A...; Belobrov, P...

Найти похожие
6.


   
    Surface bonding states of nano-crystalline diamond balls [Text] / J. L. Peng [et al.] // Int. J. Mod. Phys. B. - 2001. - Vol. 15, Is. 31. - P. 4071-4085, DOI 10.1142/S0217979201007865. - Cited References: 20 . - ISSN 0217-9792
РУБ Physics, Applied + Physics, Condensed Matter + Physics, Mathematical
Рубрики:
PLASMON RESPONSE
   POWDER

   SPECTROSCOPY

   MICROSCOPY

   SILICON

   SI(111)

Аннотация: The rough surface of nano-crystalline diamond spheres induces surface electronic states which appear as a broadened pre-peak over approx. 15 eV at the C K-edge energy threshold for carbon in the parallel electron energy loss spectrum (PEELS). This appears to be at least partially due to 1s-pi* transitions, although typically the latter occupy a range of only 4 eV for the sp(2) edge of highly-oriented pyrollytic graphite (HOPG). No pi* electrons appear in the conduction band inside the diamond particles, where all electrons are sp(3) hybridized. PEELS data were also obtained from a chemical vapour deposited diamond film (CVDF) and gem-quality diamond for comparison with the spectra of nano-diamonds. The density of sp(2) and sp(3) states on the surface of diamond nano-crystals is calculated for simple structural models of the diamond balls, including some conjecture about surface structures. The results are used to interpret the sp(2)/sp(3) ratios measured from the PEELS spectra recorded as scans across the particles. Surface roughness at the atomic scale was also examined using high-resolution transmission electron microscopy (HRTEM) and electron nano-diffraction patterns were used to confirm the crystal structures.

WOS
Держатели документа:
RMIT Univ, Dept Appl Phys, Melbourne, Vic 3051, Australia
Univ Sydney, Electron Microscope Unit, Sydney, NSW 2006, Australia
Russian Acad Sci, Siberian Branch, LV Kirensky Phys Inst, Mol Architecture Grp, Krasnoyarsk 660036, Russia
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia
Univ Melbourne, Sch Phys, Parkville, Vic 3052, Australia
ИФ СО РАН
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Peng, J.L.; Bulcock, S...; Belobrov, P.I.; Bursill, L.A.

Найти похожие
7.


   
    Saturable absorption in detonation nanodiamond dispersions / V. Vanyukov [et al.] // J. Nanophoton. - 2017. - Vol. 11, Is. 3, DOI 10.1117/1.JNP.11.032506 . - ISSN 1934-2608
Кл.слова (ненормированные):
Modelocking -- Nanodiamonds -- Nanomaterials -- Nonlinear optics -- Saturable absorption -- Carbon -- Chains -- Dispersion (waves) -- Electromagnetic wave absorption -- Laser excitation -- Laser pulses -- Light -- Light absorption -- Locks (fasteners) -- Nanostructured materials -- Nonlinear optics -- Ultrafast lasers -- Ultrashort pulses -- Yarn -- Aqueous dispersions -- Detonation nanodiamond -- Light-induced -- Modelocking -- Nano-diamond particles -- Non-linear parameters -- Saturable absorption -- Z-scan experiment -- Nanodiamonds
Аннотация: We report on a saturable absorption in aqueous dispersions of nanodiamonds with femtosecond laser pulse excitation at a wavelength of 795 nm. The open aperture Z-scan experiments reveal that in a wide range of nanodiamond particle sizes and concentrations, a lightinduced increase of transmittance occurs. The transmittance increase originates from the saturation of light absorption and is associated with a light absorption at 1.5 eV by graphite and dimer chains (Pandey dimer chains). The obtained key nonlinear parameters of nanodiamond dispersions are compared with those of graphene and carbon nanotubes, which are widely used for the mode-locking. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE).

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Photonics, University of Eastern Finland, Joensuu, Finland
Hypermemo Ltd., Joensuu, Finland
Institute of Mechanics, Russian Academy of Sciences, Izhevsk, Russian Federation
Federal research center Krasnoyarsk science Center SB RAS, Siberian Branch of RAS, Institute of Biophysics, Krasnoyarsk, Russian Federation
Texas State University, San Marcos, TX, United States
CIC nanoGUNE Consolider, Donostia-San Sebastian, Spain
G Basque Foundation for Science, Ikerbasque, Bilbao, Spain

Доп.точки доступа:
Vanyukov, V.; Mikheev, G.; Mogileva, T.; Puzyr, A.; Bondar, V.; Lyashenko, D.; Chuvilin, A.

Найти похожие
8.


   
    Single-Crystal Diamond Needle Fabrication Using Hot-Filament Chemical Vapor Deposition / R. Ismagilov, S. Malykhin, A. Puzyr [et al.] // Materials. - 2021. - Vol. 14, Is. 9. - Ст. 2320, DOI 10.3390/ma14092320. - Cited References:32. - This work was supported by the Russian Science Foundation (project no. 19-79-00203) and by the Russian Foundation for Basic Research (grant no. 18-29-19071, in part for PL and Raman inspection). . - ISSN 1996-1944
РУБ Chemistry, Physical + Materials Science, Multidisciplinary + Metallurgy &

Кл.слова (ненормированные):
thin films -- diamond needles -- chemical vapor deposition -- hot-filament -- CVD -- large-scale synthesis
Аннотация: Single-crystal diamonds in the form of micrometer-scale pyramids were produced using a combination of hot-filament (HF) chemical vapor deposition (CVD) and thermal oxidation processes. The diamond pyramids were compared here with similar ones that were manufactured using plasma-enhanced (PE) CVD. The similarities revealed in the morphology, Raman, and photoluminescent characteristics of the needles obtained using the hot-filament and plasma-enhanced CVD are discussed in connection with the diamond film growth mechanism. This work demonstrated that the HF CVD method has convincing potential for the fabrication of single-crystal diamond needles in the form of regularly shaped pyramids on a large surface area, even on non-conducting substrates. The experimental results demonstrated the ability for the mass production of the single-crystal needle-like diamonds, which is important for their practical application.

WOS
Держатели документа:
Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119991, Russia.
Univ Eastern Finland, Dept Phys & Math, Joensuu 80101, Finland.
Russian Acad Sci, Lebedev Phys Inst, Div Solid State Phys, Moscow 119991, Russia.
Russian Acad Sci, RAS, Inst Biophys, Fed Res Ctr,Krasnoyarsk Sci Ctr SB, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Ismagilov, Rinat; Malykhin, Sergei; Puzyr, Aleksey; Loginov, Artem; Kleshch, Victor; Obraztsov, Alexander; Russian Science FoundationRussian Science Foundation (RSF) [19-79-00203]; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [18-29-19071]

Найти похожие
9.


   
    Global data set of long-term summertime vertical temperature profiles in 153 lakes / R. M. Pilla, E. M. Mette, C. E. Williamson [et al.] // Sci. Data. - 2021. - Vol. 8, Is. 1. - Ст. 200, DOI 10.1038/s41597-021-00983-y . - ISSN 2052-4463
Аннотация: Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change. © 2021, The Author(s).

Scopus
Держатели документа:
Miami University, Department of Biology, Oxford, OH, United States
Belarusian State University, Faculty of Biology, Minsk, Belarus
Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Ecosystem Research, Berlin, Germany
INRAE, University of Savoie Mont-Blanc, CARRTEL, Thonon-les-Bains, France
University of Comahue: INIBIOMA, CONICET, Neuquen, Argentina
University of Shiga Prefecture, Hikone, Shiga, Japan
University of Nevada, Reno, Global Water Center, Reno, NV, United States
Uppsala University, Department of Ecology and Genetics/Limnology, Uppsala, Sweden
University of Montana, Flathead Lake Biological Station, Polson, Montana, United States
Universidad del Valle de Guatemala Centro de Estudios Atitlan, Guatemala, Guatemala
University of Innsbruck, Research Department for Limnology Mondsee, Mondsee, Austria
Mohonk Preserve, Daniel Smiley Research Center, New Paltz, NY, United States
UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster, United Kingdom
Seqwater, Ipswich, QLD, Australia
Florida International University, Department of Biological Sciences and Institute of Environment, Miami, FL, United States
U.S. National Park Service, Crater Lake National Park, Crater Lake, OR, United States
University of Oklahoma, Department of Biology, Norman, OK, United States
Griffith University, Australian Rivers Institute, Nathan, Australia
University of Florida, Gainesville, FL, United States
University of Oslo, Department of Biosciences, Oslo, Norway
LUBW Landesanstalt fur Umwelt, Messungen und Naturschutz Baden-Wurttemberg, Institut fur Seenforschung, Langenargen, Germany
IISD Experimental Lake Area Inc., Winnipeg, MB, Canada
FAO, BELSPO, Brussels, Belgium
University of Eastern Finland, Department of Environmental and Biological Sciences, Joensuu, Finland
Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dubendorf, Switzerland
CSIRO, Land and Water, Canberra, Australia
Laurentian University, Cooperative Freshwater Ecology Unit, Sudbury, Ontario, Canada
Fairfield University, Biology Department, Fairfield, CT, United States
University of Minnesota, Itasca Biological Station and Laboratories, Lake Itasca, MN, United States
Finnish Environment Institute SYKE, Freshwater Center, Helsinki, Finland
A.N. Severtsov Institute of Ecology and Evolution of The Russian Academy of Sciences, Laboratory of Ecology of Water Communities and Invasions, Moscow, Russian Federation
Zurich Water Supply, City of Zurich, Zurich, Switzerland
University of Regina, Institute of Environmental Change and Society, Regina, SK, Canada
Milano-Bicocca University, Milan, Italy
University of Applied Sciences and Arts of Southern Switzerland, Department for Environment, Constructions and Design, Canobbio, Switzerland
Kamchatka Research Institute of Fisheries & Oceanography, now Kamchatka Branch of Russian Federal Research Institute of Fisheries and Oceanography, Petropavlovsk-Kamchatsky, Russian Federation
University of Wisconsin, Center for Limnology, Boulder Junction, WI, United States
Federal Agency for Water Management, Institute for Aquatic Ecology and Fisheries Management, Mondsee, Austria
University of California Santa Barbara, Department of Ecology, Evolution and Marine Biology, Santa Barbara, California, United States
University of Waikato, Environmental Research Institute, Hamilton, New Zealand
Ryerson University, Department of Chemistry and Biology, Toronto, ON, Canada
University of Hamburg, Department of Biology, Hamburg, Germany
Dominion Diamond Mines, Environment Department, Calgary, AB, Canada
Ontario Ministry of the Environment, Conservation and Parks, Dorset Environmental Science Centre, Dorset, ON, Canada
Irkutsk State University, Institute of Biology, Irkutsk, Russian Federation
University of Liege, Chemical Oceanography Unit, Institut de Physique (B5A), Liege, Belgium
SUNY New Paltz, Biology Department, New Paltz, NY, United States
The Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
CNR Water Research institute, Verbania, Verbania, Pallanza, Italy
Krasnoyarsk Scientific Center SB RAS, Institute of Biophysics, Krasnoyarsk, Russian Federation
University of California Davis, Department of Environmental Science and Policy, Davis, CA, United States
Fondazione Edmund Mach, Research and Innovation Centre, San Michele all’Adige, Italy
University of Maine, Climate Change Institute, Orono, ME, United States
University of Turku, Turku, Finland
Universite Laval, Departments of Biology and Geography, Quebec, Canada
University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA, United States
The Technical University of Kenya, Department of Geosciences and the Environment, Nairobi, Kenya
University of Innsbruck, Department of Ecology, Innsbruck, Austria
University of Konstanz, Limnological Institute, Konstanz, Germany
Dickinson College, Department of Environmental Science, Carlisle, PA, United States
Archbold Biological Station, Venus, FL, United States
University of Michigan, Biological Station, Pellston, MI, United States
Vrije Universiteit Brussel, Department of Hydrology and Hydraulic Engineering, Brussels, Belgium
ETH Zurich, Institute for Atmospheric and Climate Science, Zurich, Switzerland
National Institute of Water & Atmospheric Research, Hamilton, New Zealand
University of Alberta, Department of Biological Sciences, Edmonton, AB, Canada
Cary Institute of Ecosystem Studies, Millbrook, NY, United States

Доп.точки доступа:
Pilla, R. M.; Mette, E. M.; Williamson, C. E.; Adamovich, B. V.; Adrian, R.; Anneville, O.; Balseiro, E.; Ban, S.; Chandra, S.; Colom-Montero, W.; Devlin, S. P.; Dix, M. A.; Dokulil, M. T.; Feldsine, N. A.; Feuchtmayr, H.; Fogarty, N. K.; Gaiser, E. E.; Girdner, S. F.; Gonzalez, M. J.; Hambright, K. D.; Hamilton, D. P.; Havens, K.; Hessen, D. O.; Hetzenauer, H.; Higgins, S. N.; Huttula, T. H.; Huuskonen, H.; Isles, P. D.F.; Joehnk, K. D.; Keller, W. B.; Klug, J.; Knoll, L. B.; Korhonen, J.; Korovchinsky, N. M.; Koster, O.; Kraemer, B. M.; Leavitt, P. R.; Leoni, B.; Lepori, F.; Lepskaya, E. V.; Lottig, N. R.; Luger, M. S.; Maberly, S. C.; MacIntyre, S.; McBride, C.; McIntyre, P.; Melles, S. J.; Modenutti, B.; Muller-Navarra, D. C.; Pacholski, L.; Paterson, A. M.; Pierson, D. C.; Pislegina, H. V.; Plisnier, P. -D.; Richardson, D. C.; Rimmer, A.; Rogora, M.; Rogozin, D. Y.; Rusak, J. A.; Rusanovskaya, O. O.; Sadro, S.; Salmaso, N.; Saros, J. E.; Sarvala, J.; Saulnier-Talbot, E.; Schindler, D. E.; Shimaraeva, S. V.; Silow, E. A.; Sitoki, L. M.; Sommaruga, R.; Straile, D.; Strock, K. E.; Swain, H.; Tallant, J. M.; Thiery, W.; Timofeyev, M. A.; Tolomeev, A. P.; Tominaga, K.; Vanni, M. J.; Verburg, P.; Vinebrooke, R. D.; Wanzenbock, J.; Weathers, K.; Weyhenmeyer, G. A.; Zadereev, E. S.; Zhukova, T. V.

Найти похожие
10.


   
    Global data set of long-term summertime vertical temperature profiles in 153 lakes / R. M. Pilla, E. M. Mette, C. E. Williamson [et al.] // Sci. Data. - 2021. - Vol. 8, Is. 1. - Ст. 200, DOI 10.1038/s41597-021-00983-y. - Cited References:45. - This work was conceived at the Global Lake Ecological Observatory Network (GLEON), and benefited from continued participation and travel support from GLEON. This manuscript is dedicated to the late Karl Havens and Alon Rimmer, who provided data for this manuscript. Funding and support for this work came from the following sources: the Belarus Republican Foundation for Fundamental Research; the IGB Long-term Ecological Research Programme; SOERE OLA, AnaEE-France, INRA Thonon les Bains, SILA (Syndicat Mixte du Lac d'Annecy), CISALB (Comite Intercommunautaire pour l'Assainissement du Lac du Bourget), and CIPEL (Commission Internationale pour la protection des eaux du Leman); Shiga Prefectural Fisheries Experiment Station (SPFES); Castle Lake Environmental Research and Education Program, University of Nevada at Reno and UC Davis; the Flathead Lake Monitoring program funded through a consortium of state and private funds, and thank the generous citizens of Flathead Lake for their continued support of lake monitoring; the Institute for water ecology, fish biology and lake research and the Institute for Limnology of the Austrian Academy of Sciences (until 2011), and acknowledge the sampling efforts by many individuals over the long period of investigation, especially H. Gassner, M. Luger, H. Ficker, and R. Kurmayer; the EC project "Response of European Freshwater Lakes to Environmental and Climatic Change" (REFLECT, ENV4-CT97-0453), the EC-project "Climate Impacts on European Lakes" (CLIME, EVK1-CT-2002-00121), the project "Risk Analysis of Direct and Indirect Climate effects on deep Austrian Lake Ecosystems" (RADICAL) funded by the Austrian Climate and Energy Fund (No. K09ACK00046) -Austrian Climate Research Programme (ACRP, http://www.klimafonds.gv.at); O. Garcia and E. Bocel for data analysis and management; D. Cabrera, M.W. Dix, G. Ochaeta, S. van Tuylen, M. Orozco, E. Symonds for sampling efforts; NSF grant No. 0947096 to E. Rejmankova, U.S. PeaceCorps and Ministerio de Ambiente y Recursos Naturales of Guatemala; H. Swain, L. Battoe, K. Main, N. Deyrup (Archbold Biological Station), the Florida Lakewatch program, E. Gaiser (Florida International University); the Crater Lake National Park Long-Term Limnological Monitoring Program; the City of Tulsa (R. West and A. Johnson), the Grand River Dam Authority (R. M. Zamor), W.M. Matthews and US ACE (T. Clyde), and the Oklahoma Water Resources Board; Bay of Plenty Regional Council; Ministry of Business, Innovation and Employment: Enhancing the Health and Resilience of New Zealand lakes (UOWX1503); the field and laboratory staff of the South Florida Water Management District for collecting and analyzing the samples; the Norwegian Water Resources and Energy Directorate (NVE), by courtesy of A. S. Kvambekk; the Lake Champlain Long-term Monitoring program (VT DEC and NY DEC); the National Capital Authority, ACT, Australia; Ontario Ministry of Environment, Conservation and Parks; FirstLight Power Resources and Friends of the Lake, especially G. Bollard and R. White; the Finnish Environment Institute SYKE database (Hertta) and S. Mitikka; N. Spinelli and the Lake Wallenpaupack Watershed Management District; Lakes Heywood, Moss, and Sombre: Long-Term Monitoring of Signy Lake Chemistry by BAS 1963-2004. Ref: GB/NERC/BAS/AEDC/00063, and dataset supplied by the Polar Data Centre under Open Government License (c) NERC-BAS, Lake Nkugute: Beadle (1966), CLANIMAE project funded by the Belgian Science Policy Office; Dr. L.; Garibaldi; NSF awards #1418698 and North Temperate Lakes LTER NTL-LTER #1440297; NSERC Canada, Canada Research Chairs, Canada Foundation for Innovation, Province of Saskatchewan, University of Regina, and Queen's University Belfast; Commissione Internazionale per la protezione delle acque italo-svizzere, Ufficio della protezione delle acque e dell'approvvigionamento idrico del Canton Ticino; KamchatNIRO scientists; Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCaPE programme delivering National Capability; U.S. NSF Arctic LTER DEB1637459; Belgian Science Policy (Choltic, Climlake, Climfish); Ontario Ministry of Natural Resources' Harkness Laboratory of Fisheries Research, especially T. Middel; Max-Planck-Institute for Limnology Plon; staff at Erken Laboratory; Mohonk Preserve and D. Smiley; Lake Sunapee Protective Association; KLL database; International Commission for the Protection of Swiss-Italian Waters (CIPAIS) and the LTER (Long Term Ecological Research) Italian network, site "Southern Alpine lakes", LTER_EU_IT_008; staff and students at MECP's Dorset Environmental Science Centre; the LTER (Long-Term Ecological Research) Italian network, site "Southern Alpine lakes", IT08-005-A (http://www.lteritalia.it), with the support of the ARPA Veneto; Prof. L. Chapman, McGill University (Montreal, Quebec, Canada); Amt fur Abfall, Wasser, Energie und Luft (AWEL) of the Canton of Zurich; grants of RSCF project #18-44-06201 and #20-64-46003, of Russian Ministry of Higher Education and Research (projects. FZZE-2020-0026;. FZZE-2020-0023), and of Foundation for support of applied ecological studies "Lake Baikal" (https://baikalfoundation.ru/project/tochka-1/); National Science Foundation Long Term Research in Environmental Biology program (DEB-1242626); the National Park Service (the Inventory and Monitoring Program as well as the Air Resources Division) and Acadia National Park and the Acadia National Park monitoring program; Gordon and Betty Moore Foundation, the Andrew Mellon Foundation, the US National Science Foundation and the Bristol Bay salmon processors; J. Franzoi, G. Larsen, and S. Morales, and the LTSER platform Tyrolean Alps, which belongs to the national and international long-term ecological research network (LTER-Austria, LTER Europe and ILTER); Institut fur Seenforschung, Langenargen (Internationale Gewasserschutzkommission fur den Bodensee -IGKB); University of Michigan Biological Station (A. Schubel) and Cooperative Institute for Great Lakes Research (R. Miller); the Belgian Science Policy Office (BELSPO) is acknowledged for supporting research on Lake Kivu through the research project EAGLES (CD/AR/02 A); US National Science Foundation awards 9318452, 9726877, 0235755, 0743192 and 1255159; West Coast Regional Council, the Bay of Plenty Regional Council, and Waikato Regional Council, and NIWA; D. Schindler (funding and data access) and B. Parker (logistical support and data management); Swedish Infrastructure for Ecosystem Science (SITES) and the Swedish Research Council under the grant no 2017-00635; NSF DEB 1754276 and NSF DEB 1950170, the Ohio Eminent Scholar in Ecosystem Ecology fund, and Lacawac Sanctuary and Biological Field Station; Russian Foundation for Basic Research, grant. 19-04-00362 A and. 19-05-00428. . - ISSN 2052-4463
РУБ Multidisciplinary Sciences
Рубрики:
CLIMATE-CHANGE
   THERMAL STRATIFICATION

   OXYGEN DEPLETION

   FISH

Аннотация: Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.

WOS
Держатели документа:
Miami Univ, Dept Biol, Oxford, OH 45056 USA.
Belarusian State Univ, Fac Biol, Minsk, BELARUS.
Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Ecosyst Res, Berlin, Germany.
Univ Savoie Mont Blanc, INRAE, CARRTEL, Thonon Les Bains, France.
Univ Comahue INIBIOMA, CONICET, Neuquen, Argentina.
Univ Shiga Prefecture, Shiga, Japan.
Univ Nevada, Global Water Ctr, Reno, NV 89557 USA.
Uppsala Univ, Dept Ecol & Genet Limnol, Uppsala, Sweden.
Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA.
Univ Valle Guatemala, Ctr Estudios Atitlan, Guatemala City, Guatemala.
Univ Innsbruck, Res Dept Limnol Mondsee, Mondsee, Austria.
Daniel Smiley Res Ctr, Mohonk Preserve, New Paltz, NY USA.
Lake Ecosyst Grp, UK Ctr Ecol & Hydrol, Lancaster, England.
Seqwater, Ipswich, Qld, Australia.
Florida Int Univ, Dept Biol Sci, Miami, FL 33199 USA.
Inst Environm, Miami, FL USA.
Natl Pk Serv, Crater Lake Natl Pk, Crater Lake, OR USA.
Univ Oklahoma, Dept Biol, Norman, OK 73019 USA.
Griffith Univ, Australian Rivers Inst, Nathan, Qld, Australia.
Univ Florida, Gainesville, FL USA.
Univ Oslo, Dept Biosci, Oslo, Norway.
Inst Seenforschung, LUBW Landesanstalt Umwelt Messungen & Naturschutz, Langenargen, Germany.
IISD Expt Lake Area Inc, Winnipeg, MB, Canada.
BELSPO, FAO, Brussels, Belgium.
Univ Eastern Finland, Dept Environm & Biol Sci, Joensuu, Finland.
Swiss Fed Inst Aquat Sci & Technol, Dept Aquat Ecol, Dubendorf, Switzerland.
CSIRO, Land & Water, Canberra, ACT, Australia.
Laurentian Univ, Cooperat Freshwater Ecol Unit, Sudbury, ON, Canada.
Fairfield Univ, Dept Biol, Fairfield, CT 06430 USA.
Univ Minnesota, Itasca Biol Stn & Labs, Lake Itasca, MN USA.
Finnish Environm Inst SYKE, Freshwater Ctr, Helsinki, Finland.
Russian Acad Sci, Lab Ecol Water Communities & Invas, AN Severtsov Inst Ecol & Evolut, Moscow, Russia.
Zurich Water Supply, Zurich, Switzerland.
Univ Regina, Inst Environm Change & Soc, Regina, SK, Canada.
Milano Bicocca Univ, Milan, Italy.
Univ Appl Sci & Arts Southern Switzerland, Dept Environm Construct & Design, Canobbio, Switzerland.
Russian Fed Res Inst Fisheries & Oceanog, Kamchatka Res Inst Fisheries & Oceanog, Kamchatka Branch, Petropavlovsk Kamchatski, Russia.
Univ Wisconsin, Ctr Limnol, Boulder Jct, WI USA.
Inst Aquat Ecol & Fisheries Management, Fed Agcy Water Management, Mondsee, Austria.
Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA.
Univ Waikato, Environm Res Inst, Hamilton, New Zealand.
Ryerson Univ, Dept Biol & Chem, Toronto, ON, Canada.
Univ Hamburg, Dept Biol, Hamburg, Germany.
Dominion Diamond Mines, Environm Dept, Calgary, AB, Canada.
Ontario Minist Environm Conservat & Pk, Dorset Environm Sci Ctr, Dorset, ON, Canada.
Irkutsk State Univ, Inst Biol, Irkutsk, Russia.
Univ Liege, Inst Phys B5A, Chem Oceanog Unit, Liege, Belgium.
SUNY Coll New Paltz, Dept Biol, New Paltz, NY USA.
Israel Oceanog & Limnol Res, Kinneret Limnol Lab, Migdal, Israel.
CNR Water Res Inst, Verbania, Pallanza, Italy.
RAS, Inst Biophys, Krasnoyarsk Sci Ctr, SB, Krasnoyarsk, Russia.
Univ Calif Davis, Dept Environm Sci & Policy, Davis, CA 95616 USA.
Fdn Edmund Mach, Res & Innovat Ctr, San Michele All Adige, Italy.
Univ Maine, Climate Change Inst, Orono, ME USA.
Univ Turku, Turku, Finland.
Univ Laval, Dept Biol, Quebec City, PQ, Canada.
Univ Laval, Dept Geog, Quebec City, PQ, Canada.
Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA.
Tech Univ Kenya, Dept Geosci & Environm, Nairobi, Kenya.
Univ Innsbruck, Dept Ecol, Innsbruck, Austria.
Univ Konstanz, Limnol Inst, Constance, Germany.
Dickinson Coll, Dept Environm Sci, Carlisle, PA 17013 USA.
Archbold Biol Stn, Venus, FL USA.
Univ Michigan, Biol Stn, Pellston, MI USA.
Vrije Univ Brussel, Dept Hydrol & Hydraul Engn, Brussels, Belgium.
Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland.
Natl Inst Water & Atmospher Res, Hamilton, New Zealand.
Univ Alberta, Dept Biol Sci, Edmonton, AB, Canada.
Cary Inst Ecosyst Studies, Millbrook, NY USA.

Доп.точки доступа:
Pilla, Rachel M.; Mette, Elizabeth M.; Williamson, Craig E.; Adamovich, Boris V.; Adrian, Rita; Anneville, Orlane; Balseiro, Esteban; Ban, Syuhei; Chandra, Sudeep; Colom-Montero, William; Devlin, Shawn P.; Dix, Margaret A.; Dokulil, Martin T.; Feldsine, Natalie A.; Feuchtmayr, Heidrun; Fogarty, Natalie K.; Gaiser, Evelyn E.; Girdner, Scott F.; Gonzalez, Maria J.; Hambright, K. David; Hamilton, David P.; Havens, Karl; Hessen, Dag O.; Hetzenauer, Harald; Higgins, Scott N.; Huttula, Timo H.; Huuskonen, Hannu; Isles, Peter D. F.; Joehnk, Klaus D.; Keller, Wendel Bill; Klug, Jen; Knoll, Lesley B.; Korhonen, Johanna; Korovchinsky, Nikolai M.; Koster, Oliver; Kraemer, Benjamin M.; Leavitt, Peter R.; Leoni, Barbara; Lepori, Fabio; Lepskaya, Ekaterina V.; Lottig, Noah R.; Luger, Martin S.; Maberly, Stephen C.; MacIntyre, Sally; McBride, Chris; McIntyre, Peter; Melles, Stephanie J.; Modenutti, Beatriz; Muller-Navarra, L.; Pacholski, Laura; Paterson, Andrew M.; Pierson, Don C.; Pislegina, Helen V.; Plisnier, Pierre-Denis; Richardson, David C.; Rimmer, Alon; Rogora, Michela; Rogozin, Denis Y.; Rusak, James A.; Rusanovskaya, Olga O.; Sadro, Steve; Salmaso, Nico; Saros, Jasmine E.; Sarvala, Jouko; Saulnier-Talbot, Emilie; Schindler, Daniel E.; Shimaraeva, Svetlana V.; Silow, Eugene A.; Sitoki, Lewis M.; Sommaruga, Ruben; Straile, Dietmar; Strock, Kristin E.; Swain, Hilary; Tallant, Jason M.; Thiery, Wim; Timofeyev, Maxim A.; Tolomeev, Alexander P.; Tominaga, Koji; Vanni, Michael J.; Verburg, Piet; Vinebrooke, Rolf D.; Wanzenbock, Josef; Weathers, Kathleen; Weyhenmeyer, Gesa A.; Zadereev, Egor S.; Zhukova, Tatyana V.; Johnk, Klaus; Belarus Republican Foundation for Fundamental Research; AnaEE-France; SILA (Syndicat Mixte du Lac d'Annecy); Castle Lake Environmental Research and Education Program, University of Nevada at Reno; EC project "Response of European Freshwater Lakes [ENV4-CT97-0453]; EC-project "Climate Impacts on European Lakes" [EVK1-CT-2002-00121]; Austrian Climate and Energy Fund [K09ACK00046]; NSFNational Science Foundation (NSF) [DEB 1950170]; Crater Lake National Park Long-Term Limnological Monitoring Program; Ministry of Business, Innovation and Employment: Enhancing the Health and Resilience of New Zealand lakes [UOWX1503]; National Capital Authority; ACT, Australia [GB/NERC/BAS/AEDC/00063]; Belgian Science Policy OfficeBelgian Federal Science Policy Office; North Temperate Lakes LTER NTL-LTER [1440297]; NSERC CanadaNatural Sciences and Engineering Research Council of Canada (NSERC); Canada Research Chairs, Canada Foundation for InnovationCanada Foundation for InnovationCanada Research Chairs; University of Regina; Commissione Internazionale per la protezione delle acque italo-svizzere; Natural Environment Research CouncilUK Research & Innovation (UKRI)Natural Environment Research Council (NERC) [NE/R016429/1]; U.S. NSF Arctic LTER [DEB1637459, LTER_EU_IT_008]; Canton of Zurich [18-44-06201, 20-64-46003]; Russian Ministry of Higher Education and Research [FZZE-2020-0026, FZZE-2020-0023]; National Science Foundation Long Term Research in Environmental Biology program [DEB-1242626]; National Park Service (the Inventory and Monitoring Program); Acadia National Park monitoring program; Gordon and Betty Moore FoundationGordon and Betty Moore Foundation; Andrew Mellon Foundation; US National Science FoundationNational Science Foundation (NSF) [9318452, 9726877, 0235755, 0743192, 1255159]; Institut fur Seenforschung, Langenargen (Internationale Gewasserschutzkommission fur den Bodensee -IGKB); University of Michigan Biological StationUniversity of Michigan System; Belgian Science Policy Office (BELSPO)Belgian Federal Science Policy Office [CD/AR/02 A]; Waikato Regional Council; NIWA; Swedish Research CouncilSwedish Research CouncilEuropean Commission [2017-00635, NSF DEB 1754276]; Lacawac Sanctuary and Biological Field Station; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-04-00362 A, 19-05-00428]

Найти похожие
11.


   
    The effect of silver ions electrolytically introduced into colloidal nanodiamond solution on its viscosity and thermal conductivity / A. P. Puzir’ [et al.] // Colloid J. - 2017. - Vol. 79, Is. 2. - P258-263, DOI 10.1134/S1061933X17020119 . - ISSN 1061-933X
Кл.слова (ненормированные):
Dispersions -- Ions -- Metal ions -- Nanodiamonds -- Nanoparticles -- Silver -- Viscosity -- A-stable -- Detonation nanodiamond -- Diamond nano-particles -- Effect of silvers -- Silver concentration -- Silver ions -- Thermal conductivity
Аннотация: Experimental data have been presented on the influence of silver on the viscosity and thermal conductivity of a dispersion of diamond nanoparticles. A stable dispersion (5 wt %) of detonation nanodiamond particles has been used in the experiments. Silver ions have been introduced electrolytically into the dispersion of diamond nanoparticles. Silver concentration was not higher than 0.05 wt %. It has been shown that the introduction of silver ions significantly affects the thermal conductivity and viscosity of the dispersion. © 2017, Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, ul. Akademgorodok 50/50, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodnyi pr. 79., Krasnoyarsk, Russian Federation
Special Design and Technology Bureau Nauka, Institute of Computational Technologies, Siberian Branch, Russian Academy of Sciences, pr. Mira 53, Krasnoyarsk, Russian Federation
Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, ul. Akademgorodok 50/38, Krasnoyarsk, Russian Federation
Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, ul. Akademgorodok 50/24, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Puzir’, A. P.; Minakov, A. V.; Burov, A. E.; Zharkov, S. M.; Maksimov, N. G.; Pryazhnikov, M. I.

Найти похожие
12.


   
    Detonation Nanodiamond-Assisted Carbon Nanotube Growth by Hot Filament Chemical Vapor Deposition / I. P. Kudarenko [et al.] // Phys. Status Solidi B-Basic Solid State Phys. - 2018. - Vol. 255, Is. 1. - Ст. 1700286, DOI 10.1002/pssb.201700286. - Cited References:28. - The work was supported by RSF project 17-72-10173. . - ISSN 0370-1972. - ISSN 1521-3951
РУБ Physics, Condensed Matter
Рубрики:
DIAMOND
   FILMS

   HFCVD

   FABRICATION

   GRAPHITE

   SCIENCE

   SIZE

   CVD

Кл.слова (ненормированные):
carbon nanotubes -- catalytic growth -- diamond -- hot filament chemical vapor -- deposition -- nanomaterials -- synthesis
Аннотация: Substrates pretreatment in suspensions of a detonation nanodiamond is widely used for nucleation of diamond growth by chemical vapor deposition (CVD). We found that iron inclusions in the nanodiamond provide catalytical growth of carbon nanotubes during CVD in a hot filament reactor (HF CVD). Carbon nanotubes grow in the area between two adjacent Si wafers. The diameters of such obtained nanotubes were in the range of 10-100 nm and the length of the tubes reaches about 10 mu m. The proposed HF CVD method has convincing potential for the fabrication of carbon nanotube coatings on a large surface area.

WOS,
Смотреть статью
Держатели документа:
Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119991, Russia.
Univ Eastern Finland, Dept Phys & Math, Joensuu 80101, Finland.
RAS, Fed Sci Res Ctr Crystallog & Photon, AV Shubnikov Inst Crystallog, Moscow 119333, Russia.
Natl Res Ctr, Kurchatov Inst, Moscow 123182, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr SB RAS, Fed Res Ctr, Inst Biophys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kudarenko, Ilya P.; Malykhin, Sergei A.; Orekhov, Andrey S.; Puzyr, Aleksey P.; Kleshch, Victor I.; Ismagilov, Rinat R.; Obraztsov, Alexander N.; RSF [17-72-10173]

Найти похожие
13.


   
    Biodistribution of nanodiamonds in the body of mice using EPR spectrometry / E. Inzhevatkin [et al.] // IET Sci. Meas. Technol. - 2019. - Vol. 13, Is. 7. - P984-988, DOI 10.1049/iet-smt.2018.5594. - Cited References:32. - This work was supported by the Russian Foundation for Basic Research (project no. 16-04-00999). . - ISSN 1751-8822. - ISSN 1751-8830
РУБ Engineering, Electrical & Electronic
Рубрики:
DRUG-DELIVERY
   DETONATION NANODIAMONDS

   NANOMATERIALS

   DOXORUBICIN

Кл.слова (ненормированные):
blood -- biomedical materials -- kidney -- lung -- detonation -- diamond -- nanomedicine -- liver -- muscle -- cellular biophysics -- nanoparticles -- EPR -- imaging -- mice -- EPR spectrometry -- detonation NDs -- electron paramagnetic -- resonance spectrometry -- characteristic EPR signal -- initially injected -- NDs -- detonation -- femoral muscles -- blood -- spleen -- brain -- kidneys -- heart -- lungs -- liver -- biomaterials -- nanodiamonds -- organ homogenates -- nanoparticle concentrations -- inter-organ distribution -- time 2 -- 5 hour -- C
Аннотация: In vitro experiments proved the usefulness of electron paramagnetic resonance (EPR) spectrometry for detecting detonation nanodiamonds (NDs) in samples of biomaterials (blood and homogenates of organs of mice). A characteristic EPR signal (g = 2.003, Delta H similar or equal to 10 G) was detected in biomaterials containing NDs, and its intensity linearly increased at nanoparticle concentrations of between 1.6 and 200 mu g/ml. In vivo experiments demonstrated that EPR spectrometry was effective for monitoring the inter-organ distribution of NDs intravenously injected to mice. In 2.5 h after the injection of NDs, the nanoparticles mainly accumulated in the lungs and liver of the animals - about 25 and 20%, respectively, of the initially injected NDs. The amounts of NDs accumulated in the heart and kidneys were considerably lower. Also, EPR spectrometry did not detect NDs in the blood, spleen, brain, and femoral muscles of mice. Ten days after injection, EPR spectrometry detected redistribution of NDs in mice. The amounts of nanoparticles decreased approximately by a factor of 3.5 in the lungs and increased almost by a factor of 3 in the liver; NDs were detected in the spleen. This study suggests ways to use EPR spectrometry to study the distribution, accumulation, and elimination of detonation NDs injected into laboratory animals.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Fed Res Ctr,Krasnoyarsk Sci Ctr, Krasnoyarsk, Russia.
RAS, SB, Int Sci Ctr Studies Extreme States Organism, Fed Res Ctr,Krasnoyarsk Sci Ctr, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Russian Acad Sci, Siberian Branch, Inst Chem & Chem Technol, Fed Res Ctr,Krasnoyarsk Sci Ctr, Krasnoyarsk, Russia.

Доп.точки доступа:
Inzhevatkin, Evgeny; Baron, Alexey; Maksimov, Nikolai; Volkova, Marina; Puzyr, Alexey; Ronzhin, Nikita; Bondar, Vladimir; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [16-04-00999]

Найти похожие
14.


   
    Laser image recording on detonation nanodiamond films [Text] / G. M. Mikheev [et al.] // Quantum Electron. - 2014. - Vol. 44, Is. 1. - P1-3, DOI 10.1070/QE2014v044n01ABEH015299. - Cited References: 34. - This work was supported by the Russian Foundation for Basic Research (Grant No. 13-02-96016 r_ural_ a) and the Presidium of the Ural Branch of the Russian Academy of Sciences (Project No. 12-C-1-1003). . - ISSN 1063-7818. - ISSN 1468-4799
РУБ Engineering, Electrical & Electronic + Physics, Applied
Рубрики:
THERMOCHEMICAL TECHNOLOGY
   DIAMOND FILMS

   NITROGEN

   CARBON

Кл.слова (ненормированные):
detonation nanodiamond -- films -- laser blackening -- Raman scattering -- luminescence -- image recording
Аннотация: A focused He - Ne laser beam is shown to cause local blackening of semitransparent detonation nanodiamond (DND) films at incident power densities above 600 W cm(-2). Data obtained with a Raman spectrometer and low-power 632.8-nm laser source indicate that the blackening is accompanied by a decrease in broadband background luminescence and emergence of sharp Raman peaks corresponding to the structures of nanodiamond and sp(2) carbon. The feasibility of image recording on DND films by a focused He - Ne laser beam is demonstrated.

WOS
Держатели документа:
[Mikheev, G. M.
Mikheev, K. G.
Mogileva, T. N.] Russian Acad Sci, Ural Branch, Inst Mech, Izhevsk 426067, Russia
[Puzyr, A. P.
Bondar, V. S.] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Mikheev, G.M.; Mikheev, K.G.; Mogileva, T.N.; Puzyr, A.P.; Bondar, V.S.; Russian Foundation for Basic Research [13-02-96016 r_ural_a]; Presidium of the Ural Branch of the Russian Academy of Sciences [12-C-1-1003]

Найти похожие
15.


   
    Preparation of complexes nanodiamond-protein-delta-aluminum oxide. / A. P. Puzyr' [et al.] // Doklady Biochemistry. - 2000. - Vol. 373, Is. 1-6. - P139-141 . - ISSN 0012-4958
Кл.слова (ненормированные):
aluminum oxide -- cytochrome c -- diamond -- article -- chemistry -- electron microscopy -- metabolism -- spectroscopy -- synthesis -- Aluminum Oxide -- Cytochrome c Group -- Diamond -- Microscopy, Electron -- Spectrum Analysis

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Krasnoyarsk, Russia. : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Puzyr', A.P.; Bondar', V.S.; Belobrov, P.I.; Bukaemskii, A.A.

Найти похожие
16.


   
    Surface properties of nanodiamond films deposited by electrophoresis on Si(100) / E. Maillard-Schaller [et al.] // Diamond and Related Materials. - 1999. - Vol. 8, Is. 2-5. - P805-808 . - ISSN 0925-9635
Кл.слова (ненормированные):
Energy band diagram -- Nanodiamond -- Raman spectroscopy -- Surface characterization -- Band structure -- Electrodeposition -- Electrophoresis -- Hydrogen -- Nanostructured materials -- Nitrogen -- Oxidation -- Oxygen -- Phonons -- Plasma applications -- Silicon wafers -- Surface properties -- Dielectrophoresis -- Negative electron affinity (NEA) -- Phonon confinement effect -- Diamond films
Аннотация: The surface properties of diamond nanoparticles (40-50 A in diameter) have been investigated by X-ray photoelectron spectroscopy (XPS), UV photoelectron spectroscopy (UPS) and Raman spectroscopy. The diamond nanoparticles have been deposited on flat Si(100) substrates by electrophoresis/dielectrophoresis. The as-deposited films are strongly oxidized and present a 1-2% nitrogen content. After treatment at 850 В°C in H2 plasma for 60 min, the oxygen is removed, and the position of the C 1s core-level peak indicates a n-type electronic comportment of the diamond nanoparticles. Raman spectroscopy of the as-deposited film shows a sp3 contribution at 1321 cm-1 and a sp2 contribution around 1620 cm-1. The 12 cm-1 shift of the sp3 contribution with respect to the bulk diamond peak at 1333 cm-1 is attributed to a phonon confinement effect due to the size of the diamond particles. The H2 plasma treatment induces a size decrease of the nanocrystallites confirmed by Raman and scanning electron microscopy (SEM) measurements. UPS spectroscopy shows a negative electron affinity of -0.2 eV of the hydrogenated nanodiamond film.

Scopus
Держатели документа:
Solid State Physics Department, University of Fribourg, 1700, Fribourg, Switzerland
Institute of Christallography, 117333, Moscow, Russian Federation
Institute of Biophysics, 660036, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Maillard-Schaller, E.; Kuettel, O.M.; Diederich, L.; Schlapbach, L.; Zhirnov, V.V.; Belobrov, P.I.

Найти похожие
17.


   
    Thermal properties of diamond/carbon composites / A. Vlasov [et al.] // Diamond and Related Materials. - 2000. - Vol. 9: 10th European Conference on Diamond, Diamond-like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide (12 September 1999 through 17 September 1999, Prague, Czech Republic, Is. 3-6. - P1104-1109, DOI 10.1016/S0925-9635(99)00256-3 . - ISSN 0925-9635
Кл.слова (ненормированные):
Diamond composites -- Laser flash technique -- TEM -- Thermal conductivity -- Grain size and shape -- Laser applications -- Nanostructured materials -- Phonons -- Thermal conductivity of solids -- Transmission electron microscopy -- Diamond composites -- Laser flash technique -- Industrial diamonds -- carbon -- composite -- diamond -- thermal conductivity
Аннотация: The thermal conductivity, k, of diamond/carbon composites with different ratios of sp 2/sp 3-bonded carbon is measured by the laser flash technique. The thermal conductivity of nanocomposites containing 6 nm diamond particles falls within the range of k=0.003-0.017 W/cmK at room temperature. The thermal conductivity increases while nanopores are gradually filled with pyrolytic carbon (pyrocarbon/diamond mass ratio variation of 0.0-0.5). Transmission electron microscopy data reveal a fairly uniform mixture of two carbon phases, the diamond and matrix having similar grain sizes. Estimates show that the phonon free path is limited by dimensions of carbon matrix layer. Thermal data for coarse-grain (1-2 ?m) composites are also given for comparison. (C) 2000 Elsevier Science S.A. All rights reserved.

Scopus
Держатели документа:
General Physics Institute, 38 Vavilov Str., Moscow 117942, Russian Federation
Ctrl. Res. Institute of Materials, 8 Paradnaya Str., St. Petersburg, Russian Federation
Institute of Crystallography, Leninsky prosp. 59, Moscow, Russian Federation
Institute of Biophysics, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Vlasov, A.; Ralchenko, V.; Gordeev, S.; Zakharov, D.; Vlasov, I.; Karabutov, A.; Belobrov, P.

Найти похожие
18.


   
    Electron spectroscopy of nanodiamond surface states / P. I. Belobrov [et al.] // Applied Surface Science. - 2003. - Vol. 215, Is. 1-4 SPEC. - P169-177, DOI 10.1016/S0169-4332(03)00287-3 . - ISSN 0169-4332
Кл.слова (ненормированные):
Auger electron spectroscopy -- Nanodiamond -- PEELS -- Surface states -- XPS -- Auger electron spectroscopy -- Diamonds -- Electrons -- Hydrogen -- Nanostructured materials -- Surfaces -- X ray photoelectron spectroscopy -- Nanodiamond (ND) surface states -- Surface phenomena
Аннотация: Electronic states of nanodiamond (ND) were investigated by PEELS, XPS and CKVV Auger spectra. Parallel electron energy loss spectra (PEELS) show that the electrons inside of ND particles are sp3 hybridized but there is a surface layer containing distinct hybridized states. The CKVV Auger spectra imply that the HOMO of the ND surface has a shift of 2.5eV from natural diamond levels of ?p up to the Fermi level. Hydrogen (H) treatment of natural diamond surface produces a chemical state indistinguishable from that of ND surfaces using CKVV. The ND electronic structure forms ?s1?p2?1 surface states without overlapping of ?-levels. Surface electronic states, including surface plasmons, as well as phonon-related electronic states of the ND surface are also interesting and may also be important for field emission mechanisms from the nanostructured diamond surface. В© 2003 Elsevier Science B.V. All rights reserved.

Scopus
Держатели документа:
Molecular Architecture Group, Institute of Biophysics SB RAS, UNESCO Dept. Krasnoyarsk Stt. T.U., Krasnoyarsk 660036, Russian Federation
School of Physics, University of Melbourne, Parkville, Vic. 3010, Australia
RRC Kurchatov Institute, Moscow 123182, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Belobrov, P.I.; Bursill, L.A.; Maslakov, K.I.; Dementjev, A.P.

Найти похожие
19.


   
    Surface bonding states of nano-crystalline diamond balls / J. L. Peng [et al.] // International Journal of Modern Physics B. - 2001. - Vol. 15, Is. 31. - P4071-4085, DOI 10.1142/S0217979201007865 . - ISSN 0217-9792
Кл.слова (ненормированные):
diamond -- article -- crystal structure -- electron -- energy transfer -- nanoparticle -- particulate matter -- structure analysis -- surface property -- transmission electron microscopy
Аннотация: The rough surface of nano-crystalline diamond spheres induces surface electronic states which appear as a broadened pre-peak over approx. 15 eV at the C K-edge energy threshold for carbon in the parallel electron energy loss spectrum (PEELS). This appears to be at least partially due to 1s-?* transitions, although typically the latter occupy a range of only 4 eV for the sp2 edge of highly-oriented pyrollytic graphite (HOPG). No ?* electrons appear in the conduction band inside the diamond particles, where all electrons are sp3 hybridized. PEELS data were also obtained from a chemical vapour deposited diamond film (CVDF) and gem-quality diamond for comparison with the spectra of nano-diamonds. The density of Sp2 and Sp3 states on the surface of diamond nano-crystals is calculated for simple structural models of the diamond balls, including some conjecture about surface structures. The results are used to interpret the sp2/sp3 ratios measured from the PEELS spectra recorded as scans across the particles. Surface roughness at the atomic scale was also examined using high-resolution transmission electron microscopy (HRTEM) and electron nano-diffraction patterns were used to confirm the crystal structures.

Scopus
Держатели документа:
Department of Applied Physics, RMIT University, Swanston Street, Melbourne, Vic. 3051, Australia
Electron Microscope Unit, University of Sydney, NSW 2006, Australia
Molecular Architecture Group, Kirensky Institute of Physics, Institute of Biophysics, 660036 Krasnoyarsk, Russian Federation
School of Physics, University of Melbourne, Parkville, Vic. 3010, Australia : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Peng, J.L.; Bulcock, S.; Belobrov, P.I.; Bursill, L.A.

Найти похожие
20.


   
    Low-field electron emission of diamond/pyrocarbon composites / A. V. Karabutov [et al.] // Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures. - 2001. - Vol. 19: 13th International Vaccum Microelectronics Conference (14 August 2000 through 17 August 2000, Guangzhou, Is. 3. - P965-970, DOI 10.1116/1.1368669 . - ISSN 1071-1023
Кл.слова (ненормированные):
Carbon nanotubes -- Chemical bonds -- Chemical vapor deposition -- Composite materials -- Diamond films -- Electric conductivity -- Electron emission -- Electron energy levels -- Hysteresis -- Interfaces (materials) -- Raman scattering -- Semiconducting diamonds -- Semiconductor quantum wells -- Transmission electron microscopy -- X ray diffraction analysis -- X ray photoelectron spectroscopy -- Pyrocarbon composites -- Nanostructured materials
Аннотация: The properties of field electron emission for diamond/pyrocarbon nanocomposites produced from diamond particles surrounded by a pyrocarbon matrix were studied. Low-threshold emissions at fields of ?1 V/?m with no activation or hysterisis in the current versus voltage (I/V) behaviour were observed for the materials. Scanning tunneling-field emission microscopy was used to study the mechanisms of low-field electron emission from the composites, and a model based on quantum well effect at the diamond/graphite interface was proposed and discussed.

Scopus
Держатели документа:
General Physics Institute, Vavilova str. 38, Moscow 117942, Russian Federation
Central Research Institute of Materials, Paradnaya str. 8, St. Petersburg 191014, Russian Federation
Institute of Biophysics, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Karabutov, A.V.; Frolov, V.D.; Konov, V.I.; Ralchenko, V.G.; Gordeev, S.K.; Belobrov, P.I.

Найти похожие
 1-20    21-27 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)