Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=enzymatic<.>)
Общее количество найденных документов : 47
Показаны документы с 1 по 20
 1-20    21-40   41-47 
1.


   
    Untangling metabolic and spatial interactions of stress tolerance in plants. 1. Patterns of carbon metabolism within leaves / K. Y. Biel [et al.] // Protoplasma. - 2010. - Vol. 245, Is. 1. - P49-73, DOI 10.1007/s00709-010-0135-7 . - ISSN 0033-183X
Кл.слова (ненормированные):
Carbon metabolism -- Leaf anatomy -- Leaf form and function -- Maximal ecological utility -- Photosynthesis -- Stress tolerance Spinacia oleracea -- aspartate aminotransferase isoenzyme 1 -- bicarbonate -- carbon -- carbon dioxide -- catalase -- chlorophyll -- malate dehydrogenase -- oxygen -- ribulosebisphosphate carboxylase -- vegetable protein -- article -- enzymology -- histology -- light -- metabolism -- oxidation reduction reaction -- photosynthesis -- physiological stress -- physiology -- plant leaf -- spinach -- theoretical model -- Aspartate Aminotransferase, Cytoplasmic -- Bicarbonates -- Carbon -- Carbon Dioxide -- Catalase -- Chlorophyll -- Light -- Malate Dehydrogenase -- Models, Theoretical -- Oxidation-Reduction -- Oxygen -- Photosynthesis -- Plant Leaves -- Plant Proteins -- Ribulose-Bisphosphate Carboxylase -- Spinacia oleracea -- Stress, Physiological -- Spinacia oleracea
Аннотация: The localization of the key photoreductive and oxidative processes and some stress-protective reactions within leaves of mesophytic C3 plants were investigated. The role of light in determining the profile of Rubisco, glutamate oxaloacetate transaminase, catalase, fumarase, and cytochrome-c-oxidase across spinach leaves was examined by exposing leaves to illumination on either the adaxial or abaxial leaf surfaces. Oxygen evolution in fresh paradermal leaf sections and CO2 gas exchange in whole leaves under adaxial or abaxial illumination was also examined. The results showed that the palisade mesophyll is responsible for the midday depression of photosynthesis in spinach leaves. The photosynthetic apparatus was more sensitive to the light environment than the respiratory apparatus. Additionally, examination of the paradermal leaf sections by optical microscopy allowed us to describe two new types of parenchyma in spinach-pirum mesophyll and pillow spongy mesophyll. A hypothesis that oxaloacetate may protect the upper leaf tissue from the destructive influence of active oxygen is presented. The application of mathematical modeling shows that the pattern of enzymatic distribution across leaves abides by the principle of maximal ecological utility. Light regulation of carbon metabolism across leaves is discussed. В© 2010 Springer-Verlag.

Scopus
Держатели документа:
Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russian Federation
Biosphere Systems International Foundation, Oro Valley, AZ 85755, United States
International Scientific Centre for Organism Extreme States Research, Krasnoyarsk Scientific Centre, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
Biocompatible Plant Research Institute, College of Natural Sciences, California State University, Chico, CA 95929-0555, United States : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Biel, K.Y.; Fomina, I.R.; Nazarova, G.N.; Soukhovolsky, V.G.; Khlebopros, R.G.; Nishio, J.N.

Найти похожие
2.


   
    Two forms of substrate for the bioluminescent reaction in three species of basidiomycetes / A. P. Puzyr [et al.] // Mycol. - 2019. - Vol. 10, Is. 2. - P84-91, DOI 10.1080/21501203.2019.1583688 . - ISSN 2150-1203
Кл.слова (ненормированные):
Cold and hot extracts -- culture liquid -- enzymatic system -- hispidin -- luminous fungi -- substrate of luminescent reaction
Аннотация: The luminescent response of the enzymatic system of Armillaria borealis on the cold and hot extracts from cell-free culture liquids of Inonotus obliquus, Pholiota sp. and A. borealis was examined. The greatest influence on the light emission produced by the luminescent system of A. borealis was provided by the temperature at which the probes were prepared for assay. Boiling a culture liquid on water bath for a few minutes promoted a multifold increase in the luminescence. The results of luminescence assay suggest that the substance involved in the bioluminescent reaction in higher fungi is presented in culture liquids and mycelia in two forms. In one form, it is ready to interact with the enzymatic system and in the second form, it becomes accessible for the reaction after heat treatment. The pool of thermoactivated substance was found to be much large than the amount of the ready accessible one. We suggest that predecessors of hispidin, which is fungal luciferin precursor, are responsible for this phenomenon. They are not involved in bioluminescence at their original state and are converted into the substrate under the influence of high temperature. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Scopus,
Смотреть статью
Держатели документа:
Institute of Biophysics, Siberian Branch of Russian Academy of Science, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Institute of Computational Technologies, Siberian Branch of Russian Academy of Science, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Puzyr, A. P.; Burov, A. E.; Medvedeva, S. E.; Burova, O. G.; Bondar, V. S.

Найти похожие
3.


   
    Toxicity and antioxidant activity of fullerenol c60,70 with low number of oxygen substituents / E. S. Kovel, A. G. Kicheeva, N. G. Vnukova [et al.] // Int. J. Mol. Sci. - 2021. - Vol. 22, Is. 12. - Ст. 6382, DOI 10.3390/ijms22126382 . - ISSN 1661-6596
Кл.слова (ненормированные):
Antioxidant activity -- Bioluminescent assay -- Fullerenol -- Hormesis -- Reactive oxygen species -- Toxicity
Аннотация: Fullerene is a nanosized carbon structure with potential drug delivery applications. We studied the bioeffects of a water-soluble fullerene derivative, fullerenol, with 10-12 oxygen groups (F10-12); its structure was characterized by IR and XPS spectroscopy. A bioluminescent enzyme system was used to study toxic and antioxidant effects of F10-12 at the enzymatic level. Antioxidant characteristics of F10-12 were revealed in model solutions of organic and inorganic oxidizers. Low-concentration activation of bioluminescence was validated statistically in oxidizer solutions. Toxic and antioxidant characteristics of F10-12 were compared to those of homologous fullerenols with a higher number of oxygen groups:F24-28 and F40-42. No simple dependency was found between the toxic/antioxidant characteristics and the number of oxygen groups on the fullerene’s carbon cage. Lower toxicity and higher antioxidant activity of F24-28 were identified and presumptively attributed to its higher solubility. An active role of reactive oxygen species (ROS) in the bioeffects of F10-12 was demonstrated. Correlations between toxic/antioxidant characteristics of F10-12 and ROS content were evaluated. Toxic and antioxidant effects were related to the decrease in ROS content in the enzyme solutions. Our results reveal a complexity of ROS effects in the enzymatic assay system. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Physics SB RAS, FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Kovel, E. S.; Kicheeva, A. G.; Vnukova, N. G.; Churilov, G. N.; Stepin, E. A.; Kudryasheva, N. S.

Найти похожие
4.


   
    Toxicity and Antioxidant Activity of Fullerenol C-60,C-70 with Low Number of Oxygen Substituents / E. S. Kovel, A. G. Kicheeva, N. G. Vnukova [et al.] // Int. J. Mol. Sci. - 2021. - Vol. 22, Is. 12. - Ст. 6382, DOI 10.3390/ijms22126382. - Cited References:93. - This research was funded by RFBR, N18-29-19003; RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, N20-44-243001; and partly supported by the Program of the Federal Service for Surveillance on Consumer Rights Protection and HumanWellbeing, Fundamental Study 2020-2025 (Russian Federation). . - ISSN 1422-0067
РУБ Biochemistry & Molecular Biology + Chemistry, Multidisciplinary
Рубрики:
HUMIC SUBSTANCES
   DETOXIFICATION PROCESSES

   BIOLOGICAL-ACTIVITY

Кл.слова (ненормированные):
fullerenol -- toxicity -- antioxidant activity -- reactive oxygen species -- bioluminescent assay -- hormesis
Аннотация: Fullerene is a nanosized carbon structure with potential drug delivery applications. We studied the bioeffects of a water-soluble fullerene derivative, fullerenol, with 10-12 oxygen groups (F10-12); its structure was characterized by IR and XPS spectroscopy. A bioluminescent enzyme system was used to study toxic and antioxidant effects of F10-12 at the enzymatic level. Antioxidant characteristics of F10-12 were revealed in model solutions of organic and inorganic oxidizers. Low-concentration activation of bioluminescence was validated statistically in oxidizer solutions. Toxic and antioxidant characteristics of F10-12 were compared to those of homologous fullerenols with a higher number of oxygen groups:F24-28 and F40-42. No simple dependency was found between the toxic/antioxidant characteristics and the number of oxygen groups on the fullerene's carbon cage. Lower toxicity and higher antioxidant activity of F24-28 were identified and presumptively attributed to its higher solubility. An active role of reactive oxygen species (ROS) in the bioeffects of F10-12 was demonstrated. Correlations between toxic/antioxidant characteristics of F10-12 and ROS content were evaluated. Toxic and antioxidant effects were related to the decrease in ROS content in the enzyme solutions. Our results reveal a complexity of ROS effects in the enzymatic assay system.

WOS
Держатели документа:
FRC KSC SB RAS, Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
FRC KSC SB RAS, Inst Phys SB RAS, Krasnoyarsk 660036, Russia.
FRC KSC SB RAS, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Kovel, Ekaterina S.; Kicheeva, Arina G.; Vnukova, Natalia G.; Churilov, Grigory N.; Stepin, Evsei A.; Kudryasheva, Nadezhda S.; Kovel, Ekaterina; RFBRRussian Foundation for Basic Research (RFBR) [N18-29-19003]; RFBR, Krasnoyarsk Territory; Krasnoyarsk Regional Fund of Science [N20-44-243001]; Program of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Fundamental Study 2020-2025 (Russian Federation)

Найти похожие
5.


   
    The possible way of introducing mineral elements of liquid human wastes into the material cycle in biological life support systems / A. A. Tikhomirov [et al.] // International Astronautical Federation - 55th International Astronautical Congress 2004. - 2004. - Vol. 3: International Astronautical Federation - 55th International Astronautical Congress 2004 (4 October 2004 through 8 October 2004, Vancouver) Conference code: 69653. - P1442-1448
Кл.слова (ненормированные):
Biomass -- Body fluids -- Hydrogen peroxide -- Life support systems (spacecraft) -- Solid wastes -- Biological life support systems -- Intrasystem material cycle -- Liquid human wastes -- Plant biomass -- Waste management
Аннотация: Along with the atmosphere, water and food regeneration processes in biological life support systems it is important to provide units and links responsible for utilization of unused plant biomass, human wastes and returning, if possible, the most of wastes into the intrasystem material cycle. The experience on construction of biological life support systems (BLSS) gained by the Institute of Biophysics SB RAS (Krasnoyarsk, Russia) allows us to suggest constructing an integrated biological-physical-chemical life support system with the biological unit predominating. It is possibly to partially mineralize urine and solid wastes by "wet incineration" by hydrogen peroxide in electric field. We suggest decomposing urea by a urease-enzymatic method using soybean or canavalia flour containing sufficient amount of urease. Consumption of 1.5 g of flour for decomposition of urea in daily urine and the possibility of producing flour from soybeans and canavalia grown inside the system make this method of urea decomposition rather prospective. Further ammonia distillation using the nitrification unit and evaporation of solution would make possible to return nitrogen and water back into the intrasystem cycle. Probably, in long-duration space expeditions the utilization of urine would be confined only by extraction of nitrogen and water from urine with further removal of dry residue to the stock, as the problem of returning sodium chloride into the intrasystem cycling has not been solved yet. As all biogenic elements contained in urine (except nitrogen) get lost at that, the solution of the problem with introducing NaCl and mineral elements into the cycle with the help of halophyte plants Salicornia europaea are of sufficient interest. This work presents the experimental results of growing Salicornia europaea on model solutions containing biogenic elements in the amounts equivalent to their content in urine and on urine, which undergone physically-chemically treatment by peroxide and ammonia distillation after urease-enzymatic decomposition. Taking into consideration that the mineral elements content in urine can vary, 2 variants of model solutions were used. In the first variant the content of P was 8-fold, S - 7-fold, K - 8-fold higher than in Knop's solution; the content of Ca and Mg almost complied with that in Knop's solution. In the variant P was 12-fold, S - 17-fold, K - 17-fold, Ca - 6-fold and Mg was 8-fold higher than in Knop's solution. The content of N and NaCl in both variants was the same and constituted 0.18 g/l and 10 g/l respectively. The results of carried experiments showed that growing plants on urine treated in the above-mentioned way is possible; though the productivity of plants would be less than on model solutions. The reasons of plant productivity drop and the possible ways of their removal have been discussed.

Scopus
Держатели документа:
Institute of Biophysics, SB, RAS, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Gitelson, J.I.; Ushakova, S.A.; Kovaleva, N.P.; Tikhomirova, N.A.; Gribovskaya, I.V.

Найти похожие
6.


   
    The influence of quinones and phenols on the triple NAD(H)-dependent enzyme systems [Text] / N. S. Kudryasheva [et al.] // Chemosphere. - 1999. - Vol. 38, Is. 4. - P. 751-758, DOI 10.1016/S0045-6535(98)00218-5. - Cited References: 7 . - ISSN 0045-6535
РУБ Environmental Sciences

Аннотация: Kinetics of the triple bioluminescent enzyme system: alcohol dehydrogenase - NADH:FMN-oxidoreductase - luciferase in the presence of quinones and phenols has been studied. The correspondence between the bioluminescent kinetic parameters, redox potentials and concentrations of the quinones and phenols has been estimated. The substances have been shown to change bioluminescent kinetics through moving off the NAD(+)/NADH balance in the enzyme processes. This system is proposed to be used as enzymatic biotest in ecological monitoring. (C) 1998 Elsevier Science Ltd. All rights reserved.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia
Irkutsk State Univ, Biol Res Inst, Irkutsk 664003, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kudryasheva, N.S.; Kudinova, I.Y.; Esimbekova, E.N.; Kratasyuk, V.A.; Stom, D.I.

Найти похожие
7.


   
    The disulfide-rich Metridia luciferase refolded from E. coli inclusion bodies reveals the properties of a native folded enzyme produced in insect cells / S. V. Markova [et al.] // J. Photochem. Photobiol. B-Biol. - 2017. - Vol. 175. - P51-57, DOI 10.1016/j.jphotobiol.2017.08.024. - Cited References:30. - These studies were funded by RFBR and the Government of Krasnoyarsk Territory according to the research project No. 16-44-242099 and the state budget allocated to the fundamental research at the Russian Academy of Sciences (project No. 0356-2016-0712). . - ISSN 1011-1344
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
GAUSSIA-PRINCEPS LUCIFERASE
   ESCHERICHIA-COLI

   EXPRESSION

   PROTEIN

Кл.слова (ненормированные):
Copepod luciferase -- Disulfide bonds -- Cysteine-rich protein -- Oxidative -- refolding
Аннотация: The bioluminescence of a marine copepod Metridia Tonga is determined by a small secreted coelenterazine-dependent luciferase that uses coelenterazine as a substrate of enzymatic reaction to generate light (lambda(max) = 480 nm). To date, four different isoforms of the luciferase differing in size, sequences, and properties have been cloned by functional screening. All of them contain ten conserved Cys residues that suggests up to five S-S intramolecular bonds per luciferase molecule. Whereas the use of copepod luciferases as bioluminescent reporters in biomedical research in vivo is growing from year to year, their application for in vitro assays is still limited by the difficulty in obtaining significant amounts of luciferase. The most cost-effective host for producing recombinant proteins is Escherichia coli. However, prokaryotic and eukaryotic cells maintain the reductive environment in cytoplasm that hinders the disulfide bond formation and consequently the proper folding of luciferase. Here we report the expression of the MLuc7 isoform of M. longa luciferase in E. colt cells and the efficient procedure for refolding from inclusion bodies yielding a high-active monomeric protein. Furthermore, in a set of identical experiments we demonstrate that bioluminescent and structural features of MLuc7 produced in bacterial cells are identical to those of MLuc7 isoform produced from culture medium of insect cells. Although the yield of high-purity protein is only 6 mg/L, the application of E. coil cells to produce the luciferase is simpler and more cost-effective than the use of insect cells. We expect that the suggested technology of Metridia luciferase production allows obtaining of sufficient amounts of protein both for the development of novel in vitro analytical assays with the use of MLuc7 as a label and for structural studies.

WOS,
Смотреть статью
Держатели документа:
RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, Photobiol Lab,Inst Biophys SB, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.

Доп.точки доступа:
Markova, Svetlana V.; Larionova, Marina D.; Gorbunova, Darya A.; Vysotski, Eugene S.; RFBR; Government of Krasnoyarsk Territory [16-44-242099]; Russian Academy of Sciences [0356-2016-0712]

Найти похожие
8.


   
    Structural distinctions of fast and slow bacterial luciferases revealed by phylogenetic analysis [Text] / A. A. Deeva [et al.] // Bioinformatics. - 2016. - Vol. 32, Is. 20. - P3053-3057, DOI 10.1093/bioinformatics/btw386. - Cited References:31. - The reported study was partially funded by RFBR according to the research project No. 16-34-00746 mol_a; by the Ministry of Education and Science of the Russian Federation [project No 1762] and by the state budget allocated to the fundamental research at the Russian Academy of Sciences [project No 01201351504]. . - ISSN 1367-4803. - ISSN 1460-2059
РУБ Biochemical Research Methods + Biotechnology & Applied Microbiology

Аннотация: Motivation: Bacterial luciferases are heterodimeric enzymes that catalyze a chemical reaction, so called bioluminescence, which causes light emission in bacteria. Bioluminescence is vastly used as a reporter system in research tools and commercial developments. However, the details of the mechanisms that stabilize and transform the reaction intermediates as well as differences in the enzymatic kinetics amongst different bacterial luciferases remain to be elucidated. Results: Amino acid sequences alignments for 21 bacterial luciferases (both alpha- and beta-subunits) were analyzed. For alpha-subunit, containing the enzyme active center, 48 polymorphic amino acid positions were identified. According to them, the sequences fell into two distinct groups known as slow and fast based on the decay rate of the bioluminescence reaction. The differences in the enzyme active site induced by structural polymorphism are analyzed.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Siberian Fed Univ, Lab Bioluminescent Biotechnol, Krasnoyarsk, Russia.
Inst Cell Biophys RAS, Mech Cell Genome Functioning Lab, Pushchino, Moscow Region, Russia.
Moscow Inst Phys & Technol, Dolgoprudnyi, Russia.
Inst Biophys SB RAS, Lab Photobiol, Krasnoyarsk, Russia.

Доп.точки доступа:
Deeva, Anna A.; Temlyakova, Evgenia A.; Sorokin, Anatoly A.; Nemtseva, Elena V.; Kratasyuk, Valentina A.; RFBR [16-34-00746 mol_a]; Ministry of Education and Science of the Russian Federation [1762]; state budget allocated to the fundamental research at Russian Academy of Sciences [01201351504]

Найти похожие
9.


   
    Set of Enzymatic Bioassays for Assessment of Soil Contamination / E. M. Kolosova, O. S. Sutormin, E. N. Esimbekova [et al.] // Dokl. Biol. Sci. - 2019. - Vol. 489, Is. 1. - P165-168, DOI 10.1134/S0012496619060024 . - ISSN 1608-3105
Аннотация: A concept of the comprehensive assessment of soil contamination is proposed. According to it, the conclusion regarding the presence of toxic substances in the analyzed sample is based on the inhibition of enzymatic reactions responsible for various functions of a living organism, such as luminescence, respiration, etc. These functions are taken as test functions in classical bioassays with the use of living objects (luminous bacteria, daphnia, algae, and others). The regularities of the impact of different classes of toxicants on the activity of particular enzymes or coupled oligo-enzyme chains have been established. These enzyme reactions are selected as potential test objects: markers of contamination. Three enzyme systems with the maximal sensitivity to different classes of toxicants have been chosen for the set of enzymatic bioassays: butyrylcholinesterase, NAD(P)H:FMN-oxidoreductase + luciferase, and lactate dehydrogenase + NAD(P)H:FMN-oxidoreductase + luciferase. The possibility to use enzymes instead of living organisms in the bioassay of natural complex systems has been shown.

Scopus
Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kolosova, E. M.; Sutormin, O. S.; Esimbekova, E. N.; Lonshakova-Mukina, V. I.; Kratasyuk, V. A.

Найти похожие
10.


   
    Role of conservative residue Cys158 in the formation of an active photoprotein complex of obelin [Text] / V. S. Bondar [et al.] // Biochem.-Moscow. - 2001. - Vol. 66, Is. 9. - P1014-1018, DOI 10.1023/A:1012377827626. - Cited References: 21 . - ISSN 0006-2979
РУБ Biochemistry & Molecular Biology
Рубрики:
CDNA
   EXPRESSION

   AEQUORIN

   SEQUENCE

   CLONING

Кл.слова (ненормированные):
photoproteins -- obelin -- apoobelin mutants -- bioluminescence
Аннотация: Using site directed mutagenesis, the conservative residue Cys158 of recombinant apoobelin was substituted for sera ine (C158S, S-mutant) or alanine (C158A, A-mutant). These point mutations resulted in significant changes in the apoobelin structure accompanied by slowing of photoprotein complex formation, decrease of its stability, and changing of its bioluminescence characteristics. The enzymatic properties of the photoprotein decreased in the series: wild-type protein > S-mutant > A-mutant. This is consistent with rank of nucleophilicity SH > OH > CH3 of cysteine, serine, and alanine side chain functional groups, respectively. Possible mechanisms of the involvement of the apoobelin Cys158 SH-group in the formation of the enzyme-substrate complex are considered.

Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Bondar, V.S.; Purtov, K.V.; Malikova, N.P.; Frank, L.A.; Illarionov, B.A.

Найти похожие
11.


   
    Protein-based fluorescent bioassay for low-dose gamma radiation exposures / A. S. Petrova [et al.] // Anal. Bioanal. Chem. - 2018, DOI 10.1007/s00216-018-1282-5 . - ISSN 1618-2642
Кл.слова (ненормированные):
Bioassay -- Enzymes -- Fluorescence/luminescence -- Fluorescent protein -- Gamma radiation -- Radiotoxicity -- Efficiency -- Enzymes -- Fluorescence -- Gamma rays -- Proteins -- Proton transfer -- Fluorescence characteristics -- Fluorescence intensities -- Fluorescence spectra -- Fluorescence/luminescence -- Fluorescent protein -- Photochemical process -- Physiological liquids -- Radiotoxicity -- Bioassay
Аннотация: The study suggests an application of a coelenteramide-containing fluorescent protein (CLM-CFP) as a simplest bioassay for gamma radiation exposures. “Discharged obelin,” a product of the bioluminescence reaction of the marine coelenterate Obelia longissima, was used as a representative of the CLM-CFP group. The bioassay is based on a simple enzymatic reaction—photochemical proton transfer in the coelenteramide-apoprotein complex. Components of this reaction differ in fluorescence color, providing, by this, an evaluation of the proton transfer efficiency in the photochemical process. This efficiency depends on the microenvironment of the coelenteramide within the protein complex, and, hence, can evaluate a destructive ability of gamma radiation. The CLM-CFP samples were exposed to gamma radiation (137Cs, 2 mGy/h) for 7 and 16 days at 20 °C and 5 °C, respectively. As a result, two fluorescence characteristics (overall fluorescence intensity and contributions of color components to the fluorescence spectra) were identified as bioassay parameters. Both parameters demonstrated high sensitivity of the CLM-CFP-based bioassay to the low-dose gamma radiation exposure (up to 100 mGy). Higher temperature (20 °C) enhanced the response of CLM-CFP to gamma radiation. This new bioassay can provide fluorescent multicolor assessment of protein destruction in cells and physiological liquids under exposure to low doses of gamma radiation. [Figure not available: see fulltext.]. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Krasnoyarsk State Agrarian University, Mira Avenue 90, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodnyy Ave 79, Krasnoyarsk, Russian Federation
Institute of Biophysics SB RAS, FRC KSC SB RAS, Krasnoyarsk, Russian Federation
Department of Radiology, University of Pennsylvania, 3401 N Broad St., Philadelphia, PA, United States

Доп.точки доступа:
Petrova, A. S.; Lukonina, A. A.; Dementyev, D. V.; Bolsunovsky, A. Ya. ; Popov, A. V.; Kudryasheva, N. S.

Найти похожие
12.


   
    Properties of PHA bi-, ter-, and quarter-polymers containing 4-hydroxybutyrate monomer units / N. Zhila, E. Shishatskaya // Int. J. Biol. Macromol. - 2018. - Vol. 111. - P1019-1026, DOI 10.1016/j.ijbiomac.2018.01.130. - Cited References:39. - The research was supported by the Russian Science Foundation (grant No. 17-15-01352). . - ISSN 0141-8130. - ISSN 1879-0003
РУБ Biochemistry & Molecular Biology + Chemistry, Applied + Polymer Science
Рубрики:
ALCALIGENES-FAECALIS T1
   COMAMONAS-ACIDOVORANS

   ENZYMATIC DEGRADATION

Кл.слова (ненормированные):
Polyhydroxyalkanoates -- 4-Hydroxybutyrate monomer units -- Physicochemical -- and mechanical properties
Аннотация: The present study investigates physicochemical, mechanical, and biological properties of polyhydroxyalkanoate (PHA) copolymers containing 4-hydroxybutyrate (4HB) synthesized in Cupriavidus eutrophus B10646 culture. In poly(3-hydroxybutyrate/4-hydroxybutyrate) [P(3HB/4HB)]bipolymers, 4HB varied between 10.4 and 75.0 mol%; in poly(3-hydroxybutyrate/3-hydroxyvalerate/4-hydroxybutyrate) terpolymers, 4HB constituted 28.7-55.6 mol%; and in poly(3-hydroxybutyrate/3-hydroxyvalerate/4-hydroxybutyrate/3-hydroxyhexanoate) quaterpolymers, 4HB varied between 9.3 and 13.3 mol%. The degree of crystallinity of P(3HB/4HB) copolymers decreased consistently with an increase in 4HB content, reaching 38%. The incorporation of 3-hydroxyvalerate and 3-hydroxyhexanoate into copolymers enhanced that effect. The effect of 4HB monomer units on temperature properties of copolymers was exhibited as lowering of the melting temperature and crystallization temperature, which improved the processing-related properties of the copolymers. All copolymers containing 4HB showed enhanced elongation at break compared to poly(3-hydroxybutyrate). Polymer films prepared from PHA5 with different chemical composition had similar microstructure and porosity and had no toxic effect on mouse fibroblast NIH 3 T3 cells, proving their high biocompatibility. (C) 2018 Elsevier B.V. All rights reserved.

WOS,
Смотреть статью
Держатели документа:
Siberian Fed Univ, 79 Svobodnyi Ave, Krasnoyarsk 660041, Russia.
RAS, Krasnoyarsk Sci Ctr, Fed Res Ctr, Inst Biophys,SB, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Zhila, Natalia; Shishatskaya, Ekaterina; Russian Science Foundation [17-15-01352]

Найти похожие
13.


   
    Pollutant toxicity and detoxification by humic substances: mechanisms and quantitative assessment via luminescent biomonitoring [Text] / N. S. Kudryasheva, A. S. Tarasova // Environ. Sci. Pollut. Res. - 2015. - Vol. 22, Is. 1. - P155-167, DOI 10.1007/s11356-014-3459-6. - Cited References:120. - The work was supported by the Russian Foundation for Basic Research,Grant No. 13-04-98072-sibir-a. Part of the work (analysis ofdetoxification of radioactive solutions) was supported by the RussianScience Foundation, Grant No. 14-14-00076. . - ISSN 0944-1344. - ISSN 1614-7499
РУБ Environmental Sciences
Рубрики:
PHOTOBACTERIUM-LEIOGNATHI LUCIFERASE
   DISSOLVED ORGANIC-MATTER

Кл.слова (ненормированные):
Detoxification mechanisms -- Humic substances -- Pollutants -- Bioassays -- Bioluminescence
Аннотация: The paper considers mechanisms of detoxification of pollutant solutions by water-soluble humic substances (HSs), natural detoxifying agents. The problems and perspectives of bioassay application for toxicity monitoring of complex solutions are discussed from ecological point of view. Bioluminescence assays based on marine bacteria and their enzymes are of special attention here; they were shown to be convenient tools to study the detoxifying effects on cellular and biochemical levels. The advantages of bioluminescent enzymatic assay for monitoring both integral and oxidative toxicities in complex solutions of model pollutants and HS were demonstrated. The efficiencies of detoxification of the solutions of organic oxidizers and salts of metals (including radioactive ones) by HS were analyzed. The dependencies of detoxification efficiency on time of exposure to HS and HS concentrations were demonstrated. Antioxidant properties of HS were considered in detail. The detoxifying effects of HS were shown to be complex and regarded as 'external' (binding and redox processes in solutions outside the organisms) and/or 'internal' organismal processes. The paper demonstrates that the HS can stimulate a protective response of bacterial cells as a result of (1) changes of rates of biochemical reactions and (2) stabilization of mucous layers outside the cell walls. Acceleration of auto-oxidation of NADH, endogenous reducer, by HS was suggested as a reason for toxicity increase in the presence of HS due to abatement of reduction ability of intracellular media.

WOS
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
RAS, Inst Biophys, SB, Krasnoyarsk 660036, Russia.
ИБФ СО РАН

Доп.точки доступа:
Kudryasheva, N.S.; Tarasova, A.S.; Russian Foundation for Basic Research [13-04-98072-sibir-a]; RussianScience Foundation [14-14-00076]

Найти похожие
14.


   
    On mechanism of antioxidant effect of fullerenols / A. S. Sachkova [et al.] // Biochem. Biophys. Rep. - 2017. - Vol. 9. - P1-8, DOI 10.1016/j.bbrep.2016.10.011 . - ISSN 2405-5808
Кл.слова (ненормированные):
Antioxidant activity -- Bacterial enzymes -- Fullerenol -- Hormesis -- Luminous marine bacteria -- Ultralow concentrations
Аннотация: Fullerenols are nanosized water-soluble polyhydroxylated derivatives of fullerenes, specific allotropic form of carbon, bioactive compounds and perspective pharmaceutical agents. Antioxidant activity of fullerenols was studied in model solutions of organic and inorganic toxicants of oxidative type – 1,4-benzoquinone and potassium ferricyanide. Two fullerenol preparations were tested: С60О2–4(ОН)20–24 and mixture of two types of fullerenols С60О2–4(ОН)20–24+С70О2–4(ОН)20–24. Bacteria-based and enzyme-based bioluminescent assays were used to evaluate a decrease in cellular and biochemical toxicities, respectively. Additionally, the enzyme-based assay was used for the direct monitoring of efficiency of the oxidative enzymatic processes. The bacteria-based and enzyme-based assays showed similar peculiarities of the detoxification processes: (1) ultralow concentrations of fullerenols were active (ca 10–17–10?4 and 10–17–10? 5 g/L, respectively), (2) no monotonic dependence of detoxification efficiency on fullerenol concentrations was observed, and (3) detoxification of organic oxidizer solutions was more effective than that of the inorganic oxidizer. The antioxidant effect of highly diluted fullerenol solutions on bacterial cells was attributed to hormesis phenomenon; the detoxification was concerned with stimulation of adaptive cellular response under low-dose exposures. Sequence analysis of 16S ribosomal RNA was carried out; it did not reveal mutations in bacterial DNA. The suggestion was made that hydrophobic membrane-dependent processes are involved to the detoxifying mechanism. Catalytic activity of fullerenol (10? 8 g/L) in NADH-dependent enzymatic reactions was demonstrated and supposed to contribute to adaptive bacterial response. © 2016 The Authors

Scopus,
Смотреть статью
Держатели документа:
National Research Tomsk Polytechnic University, Tomsk, Russian Federation
Institute of Biophysics SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Physics SB RAS, Krasnoyarsk, Russian Federation
SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russian Federation

Доп.точки доступа:
Sachkova, A. S.; Kovel, E. S.; Churilov, G. N.; Guseynov, O. A.; Bondar, A. A.; Dubinina, I. A.; Kudryasheva, N. S.

Найти похожие
15.


   
    Mechanism and color modulation of fungal bioluminescence / Z. M. Kaskova [et al.] // Sci. Adv. - 2017. - Vol. 3, Is. 4. - Ст. e1602847, DOI 10.1126/sciadv.1602847. - Cited References:40. - This work was supported by the Sao Paulo Research Foundation [FAPESP grants 10/11578-5 (to A.G.O.), 13/16885-1 (to C.V.S.), 14/14866-2 (to E.L.B.), 13/07914-8 (to E.P. and F.A.D.), and 2012/12663-1 (to P.D.M.) and CEPID Redoxoma 2013/07937-8 (to P.D.M.)], the National Council for Scientific and Technological Development (CNPq) [301307/2013-0 (to P.D.M.)], NAP Redoxoma (PRPUSP) [2011.1.9352.1.8. (to P.D.M.)], the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI) [grant no. 16K07715 (to Y.O.)], Chubu University [grant AII28II M01 (to Y.O.)], and the Russian Science Foundation (grant 16-14-00052 to all Russian authors). . - ISSN 2375-2548
РУБ Multidisciplinary Sciences
Рубрики:
SINGLET MOLECULAR-OXYGEN
   QUANTUM YIELDS

   CHEMILUMINESCENCE

Аннотация: Bioluminescent fungi are spread throughout the globe, but details on their mechanism of light emission are still scarce. Usually, the process involves three key components: an oxidizable luciferin substrate, a luciferase enzyme, and a light emitter, typically oxidized luciferin, and called oxyluciferin. We report the structure of fungal oxyluciferin, investigate the mechanism of fungal bioluminescence, and describe theuseof simple synthetic alpha-pyrones as luciferins to produce multicolor enzymatic chemiluminescence. A high-energy endoperoxide is proposed as an intermediate of the oxidation of the native luciferin to the oxyluciferin, which is a pyruvic acid adduct of caffeic acid. Luciferase promiscuity allows the use of simple alpha-pyrones as chemiluminescent substrates.

WOS,
Смотреть статью
Держатели документа:
Russian Acad Sci, Inst Bioorgan Chem, Miklukho Maklaya 16-10, Moscow 117997, Russia.
Pirogov Russian Natl Res Med Univ, OStrovitianov 1, Moscow 117997, Russia.
SB RAS, Fed Res Ctr Krasnoyarsk Sci Ctr, Inst Biophys, Krasnoyarsk 660036, Russia.
Univ Sao Paulo, Fac Ciencias Farmaceut, Dept Anal Clin & Toxicolgicas, BR-05508900 Sao Paulo, Brazil.
Nagoya Univ, Grad Sch Bioagr Sci, Nagoya, Aichi 4648601, Japan.
Univ Sao Paulo, Inst Quim, Dept Bioquim, BR-05508900 Sao Paulo, Brazil.
Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05508900 Sao Paulo, Brazil.
Univ Sao Paulo, Inst Oceanografico, Dept Oceanografia Fis Quim & Geol, BR-05508120 Sao Paulo, Brazil.
Chubu Univ, Dept Environm Biol, Kasugai, Aichi 4878501, Japan.

Доп.точки доступа:
Kaskova, Zinaida M.; Dorr, Felipe A.; Petushkov, Valentin N.; Purtov, Konstantin V.; Tsarkova, Aleksandra S.; Rodionova, Natalja S.; Mineev, Konstantin S.; Guglya, Elena B.; Kotlobay, Alexey; Baleeva, Nadezhda S.; Baranov, Mikhail S.; Arseniev, Alexander S.; Gitelson, Josef I.; Lukyanov, Sergey; Suzuki, Yoshiki; Kanie, Shusei; Pinto, Ernani; Di Mascio, Paolo; Waldenmaier, Hans E.; Pereira, Tatiana A.; Carvalho, Rodrigo P.; Oliveira, Anderson G.; Oba, Yuichi; Bastos, Erick L.; Stevani, Cassius V.; Yampolsky, Ilia V.; Sao Paulo Research Foundation [FAPESP] [10/11578-5, 13/16885-1, 14/14866-2, 13/07914-8, 2012/12663-1]; CEPID Redoxoma [2013/07937-8]; National Council for Scientific and Technological Development (CNPq) [301307/2013-0]; NAP Redoxoma (PRPUSP) [2011.1.9352.1.8]; Japan Society for the Promotion of Science [16K07715]; Chubu University [AII28II M01]; Russian Science Foundation [16-14-00052]

Найти похожие
16.


   
    Handheld Enzymatic Luminescent Biosensor for Rapid Detection of Heavy Metals in Water Samples / K. A. Lukyanenko [et al.] // Chemosensors. - 2019. - Vol. 7, Is. 1. - Ст. 16, DOI 10.3390/chemosensors7010016. - Cited References:39. - This research was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science, to the research project #18-44-242003: "Designing an enzyme reagent for bioluminescent analysis: mechanisms for increasing sensitivity and accuracy". . - ISSN 2227-9040
РУБ Chemistry, Analytical
Рубрики:
ON-A-CHIP
   SILICON PHOTOMULTIPLIER

   OPTICAL BIOSENSORS

   CELL

Кл.слова (ненормированные):
chemical measurements -- silicon photomultiplier -- optical biosensor -- bioassay -- microfluidics -- luciferase -- bioluminescence
Аннотация: Enzymatic luminescent systems are a promising tool for rapid detection of heavy metals ions for water quality assessment. Nevertheless, their widespread use is limited by the lack of test procedure automation and available sensitive handheld luminometers. Herein we describe integration of disposable microfluidic chips for bioluminescent enzyme-inhibition based assay with a handheld luminometer, which detection system is based on a thermally stabilized silicon photomultiplier (SiPM). Microfluidic chips were made of poly(methyl methacrylate) by micro-milling method and sealed using a solvent bonding technique. The composition of the bioluminescent system in microfluidic chip was optimized to achieve higher luminescence intensity and storage time. Results indicate that developed device provided comparable sensitivity with bench-scale PMT-based commercial luminometers. Limit of detection for copper (II) sulfate reached 2.5 mg/L for developed biosensor. Hereby we proved the concept of handheld enzymatic optical biosensors with disposable chips for bioassay. The proposed biosensor can be used as an early warning field-deployable system for rapid detection of heavy metals salts and other toxic chemicals, which affect bioluminescent signal of enzymatic reaction.

WOS,
Смотреть статью,
Scopus
Держатели документа:
SB RAS, Krasnoyarsk Sci Ctr, Fed Res Ctr, Lab Digital Controlled Drugs & Theranost, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Lab Bioluminescent Biotechnol, Krasnoyarsk 660041, Russia.
Krasnoyarsk State Med Univ, Res Inst Mol Med & Pathobiochem, Krasnoyarsk 660022, Russia.
SB RAS, Inst Biophys, Lab Photobiol, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Lukyanenko, Kirin A.; Denisov, Ivan A.; Sorokin, Vladimir V.; Yakimov, Anton S.; Esimbekova, Elena N.; Belobrov, Peter, I; Lukyanenko, Kirill; Russian Foundation for Basic Research, Government of Krasnoyarsk Territory [18-44-242003]

Найти похожие
17.


   
    Exploring Bioluminescence Function of the Ca2+-regulated Photoproteins with Site-directed Mutagenesis / E. V. Eremeeva, E. S. Vysotski // Photochem. Photobiol. - 2019. - Vol. 95, Is. 1. - P8-23, DOI 10.1111/php.12945. - Cited References:88. - This work was supported by grant 17-04-00764 of Russian Foundation for Basic Research and the state budgetallocated to the fundamental research at the Russian Academy of Sciences (project 0356-2017-0017). . - ISSN 0031-8655. - ISSN 1751-1097
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
CALCIUM-BINDING PHOTOPROTEIN
   GREEN-FLUORESCENT PROTEIN

   JELLYFISH

Кл.слова (ненормированные):
bioluminescence -- coelenterazine -- aequorin -- obelin -- clytin -- mitrocomin -- EF-hand protein
Аннотация: Site-directed mutagenesis is a powerful tool to investigate the structure-function relationship of proteins and a function of certain amino acid residues in catalytic conversion of substrates during enzymatic reactions. Hence, it is not surprising that this approach was repeatedly applied to elucidate the role of certain amino acid residues in various aspects of photoprotein bioluminescence, mostly for aequorin and obelin, and to design mutant photoproteins with altered properties (modified calcium affinity, faster or slower bioluminescence kinetics, different emission color) which would either allow the development of novel bioluminescent assays or improvement of characteristics of the already existing ones. This information, however, is scattered over different articles. In this review, we systematize the findings that were made using site-directed mutagenesis studies regarding the impact of various amino acid residues on bioluminescence of hydromedusan Ca2+-regulated photoproteins. All key residues that have been identified are pinpointed, and their influence on different aspects of photoprotein functioning such as active photoprotein complex formation, bioluminescence reaction, calcium response and light emitter formation is discussed.

WOS,
Смотреть статью
Держатели документа:
RAS, SB, Inst Biophys, Fed Res Ctr,Krasnoyarsk Sci Ctr,Photobiol Lab, Krasnoyarsk, Russia.

Доп.точки доступа:
Eremeeva, Elena V.; Vysotski, Eugene S.; Russian Foundation for Basic Research [17-04-00764]; Russian Academy of Sciences [0356-2017-0017]

Найти похожие
18.


   
    Enzymatic responses to low-intensity radiation of tritium / T. V. Rozhko, E. V. Nemtseva, M. V. Gardt [et al.] // Int. J. Mol. Sci. - 2020. - Vol. 21, Is. 22. - Ст. 8464. - P1-15, DOI 10.3390/ijms21228464 . - ISSN 1661-6596
Кл.слова (ненормированные):
Bacterial luciferase -- Enzymes -- Fluorescent protein -- Hormesis -- Low-dose radiation -- Oxidoreductase -- Tritium
Аннотация: The present study considers a possible role of enzymatic reactions in the adaptive response of cells to the beta-emitting radionuclide tritium under conditions of low-dose exposures. Effects of tritiated water (HTO) on the reactions of bacterial luciferase and NAD(P)H:FMN-oxidoreductase, as well as a coupled system of these two reactions, were studied at radioactivity concentrations ? 200 MBq/L. Additionally, one of the simplest enzymatic reactions, photobiochemical proton transfer in Coelenteramide-containing Fluorescent Protein (CLM-FP), was also investigated. We found that HTO increased the activity of NAD(P)H:FMN-oxidoreductase at the initial stage of its reaction (by up to 230%); however, a rise of luciferase activity was moderate (<20%). The CLM-FP samples did not show any increase in the rate of the photobiochemical proton transfer under the exposure to HTO. The responses of the enzyme systems were compared to the ‘hormetic’ response of luminous marine bacterial cells studied earlier. We conclude that (1) the oxidoreductase reaction contributes significantly to the activation of the coupled enzyme system and bacterial cells by tritium, and (2) an increase in the organization level of biological systems promotes the hormesis phenomenon. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Department of Medical and Biological Physics, Krasnoyarsk State Medical Academy, Krasnoyarsk, 660022, Russian Federation
Biophysics Department, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Department of Chemistry, Moscow State University, Moscow, 119991, Russian Federation

Доп.точки доступа:
Rozhko, T. V.; Nemtseva, E. V.; Gardt, M. V.; Raikov, A. V.; Lisitsa, A. E.; Badun, G. A.; Kudryasheva, N. S.

Найти похожие
19.


   
    Enzymatic Responses to Low-Intensity Radiation of Tritium / T. V. Rozhko, E. V. Nemtseva, M. V. Gardt [et al.] // Int. J. Mol. Sci. - 2020. - Vol. 21, Is. 22. - Ст. 8464, DOI 10.3390/ijms21228464. - Cited References:59. - This work was supported by RFBR-Krasnoyarsk Regional Foundation N 18-44-240004, 18-44-242002. . - ISSN 1422-0067
РУБ Biochemistry & Molecular Biology + Chemistry, Multidisciplinary
Рубрики:
LUMINOUS MARINE-BACTERIA
   IONIZING-RADIATION

   DISCHARGED-OBELIN

Кл.слова (ненормированные):
hormesis -- low-dose radiation -- tritium -- enzymes -- bacterial luciferase -- oxidoreductase -- fluorescent protein
Аннотация: The present study considers a possible role of enzymatic reactions in the adaptive response of cells to the beta-emitting radionuclide tritium under conditions of low-dose exposures. Effects of tritiated water (HTO) on the reactions of bacterial luciferase and NAD(P)H:FMN-oxidoreductase, as well as a coupled system of these two reactions, were studied at radioactivity concentrations <= 200 MBq/L. Additionally, one of the simplest enzymatic reactions, photobiochemical proton transfer in Coelenteramide-containing Fluorescent Protein (CLM-FP), was also investigated. We found that HTO increased the activity of NAD(P)H:FMN-oxidoreductase at the initial stage of its reaction (by up to 230%); however, a rise of luciferase activity was moderate (<20%). The CLM-FP samples did not show any increase in the rate of the photobiochemical proton transfer under the exposure to HTO. The responses of the enzyme systems were compared to the 'hormetic' response of luminous marine bacterial cells studied earlier. We conclude that (1) the oxidoreductase reaction contributes significantly to the activation of the coupled enzyme system and bacterial cells by tritium, and (2) an increase in the organization level of biological systems promotes the hormesis phenomenon.

WOS
Держатели документа:
Krasnoyarsk State Med Acad, Dept Med & Biol Phys, Krasnoyarsk 660022, Russia.
Siberian Fed Univ, Biophys Dept, Krasnoyarsk 660041, Russia.
RAS, Inst Biophys, SB, FRC,KSC, Krasnoyarsk 660036, Russia.
Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119991, Russia.

Доп.точки доступа:
Rozhko, Tatiana V.; Nemtseva, Elena V.; Gardt, Maria V.; Raikov, Alexander V.; Lisitsa, Albert E.; Badun, Gennadii A.; Kudryasheva, Nadezhda S.; Nemtseva, Elena; Kudryasheva, Nadezhda; Rozko, Tat'ana; Lisitsa, Albert; RFBR-Krasnoyarsk Regional Foundation [N 18-44-240004, 18-44-242002]

Найти похожие
20.


   
    Enzymatic Biotesting: Scientific Basis and Application / E. N. Esimbekova, I. G. Torgashina, V. P. Kalyabina, V. A. Kratasyuk // Contemp. Probl. Ecol. - 2021. - Vol. 14, Is. 3. - P290-304, DOI 10.1134/S1995425521030069. - Cited By :1 . - ISSN 1995-4255
Кл.слова (ненормированные):
bioluminescence -- biotesting -- environmental monitoring -- enzymatic bioassays -- heavy metals -- pesticides
Аннотация: Abstract: The paper provides a review of the current state of research in the field of biotesting, and the problems of environmental studies and ways to solve them are discussed. The basic principles and examples of using enzymes for detecting toxicants in various environmental samples are considered. Based on an analysis of numerous published data, the advantages and limitations, as well as the prospects for using enzymes for performing biotesting tasks, are assessed. A separate section of the review is devoted to bioluminescent enzymatic bioassays developed by the authors and successfully used for environmental monitoring of water, soil, and air. The necessity of developing a battery of enzymatic bioassays is substantiated. It allows one to have the most complete and accurate information about the degree of pollution of environmental objects. © 2021, Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Esimbekova, E. N.; Torgashina, I. G.; Kalyabina, V. P.; Kratasyuk, V. A.

Найти похожие
 1-20    21-40   41-47 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)