Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (38)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=evolution<.>)
Общее количество найденных документов : 58
Показаны документы с 1 по 20
 1-20    21-40   41-58 
1.


   
    Phylogeny of Salmonoid Fishes (Salmonoidei) Based on mtDNA COI Gene Sequences (Barcoding) / V. S. Artamonova [et al.] // Contemp. Probl. Ecol. - 2018. - Vol. 11, Is. 3. - P271-285, DOI 10.1134/S1995425518030022. - Cited References:102. - We are very grateful to colleagues who helped collect samples: E.G. Berestovskii, I.N. Bolotov, E.A. Borovikova, I.V. Vikhrev, L.A. Glushchenko, V.V. Ignatenko, D.P. Karabanov, A.P. Novoselov, V.M. Spitsyn, V.A. Shirokov, and I.L. Shchurov; employees of Trout Hatchery "Adler", the Federal Breeding and Genetic Center for Fish Culture, and Vygsky and Kemsky fish hatcheries; and residents of Barabash-Levada, Len-lu, and Chupa settlements. We also thank S.S. Alekseev for identifying sharp-snouted and blunt-snouted lenoks. This work was supported by the Russian Science Foundation, project no. 16-14-10001. . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology
Рубрики:
MOLECULAR DATING ANALYSIS
   GROWTH-HORMONE INTRONS

   SALMONIFORMES

Кл.слова (ненормированные):
evolution -- network -- molecular clock -- amino acid sequence -- reproductive -- isolation -- immobilization -- fishes
Аннотация: We have analyzed the partial sequences of the mitochondrial COI gene along with the amino acid sequences of cytochrome oxidase subunit I, encoded by this gene region, in representatives of 11 genera of salmonoid fish. For amino acid sequences, two alternative networks are constructed with outgroups represented by either Esocoidei or Osmeroidei as the supposed ancestral groups. This way, Osmeroidei appear to be closer to the salmonoid fish than Esocoidei, and their presence in the network as an outgroup explains the available data on the morphology and karyology of salmonoids much better. A number of the results of this study are fundamentally new. In particular, the slowing down of the molecular evolution of the grayling (Thymallidae) is shown. We conclude that the charr (Salvelinus) is one of the modern genera of salmonoids closest to their ancestor. The hypothesis of the phylogenetic proximity of the genera Brachymystax, Hucho, and Salmo has been confirmed. We also discuss the possibility that it is namely the changes in the amino acid sequence of cytochrome oxidase subunit I that lead to postzygotic reproductive isolation between taxa.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Russian Acad Sci, Severtsov Inst Ecol & Evolut, Moscow 119071, Russia.
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Inst Biophys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Artamonova, V. S.; Kolmakova, O. V.; Kirillova, E. A.; Makhrov, A. A.; Russian Science Foundation [16-14-10001]

Найти похожие
2.


   
    Postglacial Colonization of the North European Seas by Pacific Fishes and Lamprey / A. A. Makhrov, D. L. Lajus // Contemp. Probl. Ecol. - 2018. - Vol. 11, Is. 3. - P247-258, DOI 10.1134/S1995425518030071. - Cited References:134. - This work was supported by Russian Science Foundation, project no. 16-14-10001. . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology
Рубрики:
MULTIPLE GLACIAL REFUGIA
   GENETIC DIFFERENTIATION

   SPECIES COMPLEX

   1956

Кл.слова (ненормированные):
Arctic Ocean -- zoogeography -- phylogeography -- fish -- lamprey -- evolution -- immobilization
Аннотация: A critical analysis of literature data on the distribution, morphology, and phylogeography of the Arctic lamprey (Lethenteron camtschaticum) and five species of marine and anadromous fish such as navaga (Eleginus navaga), pollock (Theragra chalcogramma), rainbow smelt (Osmerus mordax dentex), Pacific herring (Clupea pallasii), and pond smelt (Hypomesus olidus) has been performed. The results show that all these species have colonized Northern European seas, distributing along the Arctic coastline of Eurasia after the glacier retreat. The reasons that the dispersal of these species in the Atlantic Ocean may be impeded (preference for a cold environment, competition, and decrease of the evolutionary potential) are discussed.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Russian Acad Sci, Severtsov Inst Ecol & Evolut, Moscow 119071, Russia.
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Inst Biophys, Krasnoyarsk 660036, Russia.
St Petersburg State Univ, St Petersburg 199178, Russia.

Доп.точки доступа:
Makhrov, A. A.; Lajus, D. L.; Russian Science Foundation [16-14-10001]

Найти похожие
3.


   
    A narrowing of the phenotypic diversity range after large rearrangements of the karyotype in salmonidae: The relationship between saltational genome rearrangements and gradual adaptive evolution / A. A. Makhrov // Genes. - 2017. - Vol. 8, Is. 11, DOI 10.3390/genes8110297 . - ISSN 2073-4425
Кл.слова (ненормированные):
Ecology -- Evolution -- Genome -- Karyotype -- Morphology -- ecology -- gene rearrangement -- genome -- karyotype -- morphology -- nonhuman -- salmonid
Аннотация: The problem of how a gradual development of ecological and morphological adaptations combines with large genome rearrangements, which have been found to occur in the phylogeny of many groups of organisms, is a matter of discussion in the literature. The objective of this work was to study the problem with the example of salmonids, whose evolution included at least six events of multiple chromosome fusions. Large karyotype rearrangements are associated with a decrease in ecological and morphological diversity in salmonids. In the above example, genome rearrangements seem to distort the function of the genetic systems that are responsible for the occurrence of certain ecological forms in salmonids. © 2017 by the authors; Licensee MDPI, Basel, Switzerland.

Scopus,
Смотреть статью
Держатели документа:
A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russian Federation
Institute of Biophysics of Siberian Branch of Federal Research Center, “Krasnoyarsk Science Center” of Russian Academy of Sciences, Akademgorodok, 50/50, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Makhrov, A. A.

Найти похожие
4.


   
    Effects of zebra mussels on cladoceran communities under eutrophic conditions / I. Feniova [et al.] // Hydrobiologia. - 2018. - P1-18, DOI 10.1007/s10750-018-3699-4 . - ISSN 0018-8158
Кл.слова (ненормированные):
Chlorophyll -- Food quality -- Life-table experiments -- Phosphorus limitation -- Zooplankton
Аннотация: The purpose of this study was to determine how zebra mussels affected cladoceran community structure under eutrophic conditions. We conducted a mesocosm study where we manipulated the presence of zebra mussels and the presence of large-bodied Daphnia (Daphnia magna and Daphnia pulicaria). We also conducted a complimentary life-table experiment to determine how water from the zebra mussel treatment affected the life history characteristics of the cladoceran species. We anticipated that small- and large-bodied cladoceran species would respond differently to changes in algal quality and quantity under the effects of zebra mussels. Large-bodied Daphnia successfully established in the zebra mussel treatment but failed to grow in the control. We did not observe positive relationships between food concentrations and cladoceran abundances. However, the phosphorus content in the seston indicated that food quality was below the threshold level for large-bodied cladocerans at the beginning of the experiment. We believe that zebra mussels quickly enhanced the phosphorus content in the seston due to the excretion of inorganic phosphorus, thus facilitating the development of large-bodied Daphnia. In conclusion, our results suggest that zebra mussels can alter the phosphorus content of seston in lakes and this can affect the dynamics of crustacean zooplankton. © 2018 Springer International Publishing AG, part of Springer Nature

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, Moscow, Russian Federation
Department of Hydrobiology, Faculty of Biology, Biological and Chemical Research Center, University of Warsaw, Zwirki i Wigury 101, Warsaw, Poland
Nencki Institute of Experimental Biology, Hydrobiological Station, Lesna 13, Mikolajki, Poland
Institute of Biophysics of Federal Research Centre, Krasnoyarsk Science Centre of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodny Av. 79, Krasnoyarsk, Russian Federation
Department of Lake Fisheries, Inland Fisheries Institute in Olsztyn, Rajska 2, Gizycko, Poland
Department of Hydrobiology, Institute of Biology, University of Bialystok, Ciolkowskiego 1J, Bialystok, Poland
Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, Poland
The Scientific and Practical Center for Bioresources, National Academy of Sciences of Belarus, Str. Akademicheskaya, 27, Minsk, Belarus
Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States

Доп.точки доступа:
Feniova, I.; Dawidowicz, P.; Ejsmont-Karabin, J.; Gladyshev, M.; Kalinowska, K.; Karpowicz, M.; Kostrzewska-Szlakowska, I.; Majsak, N.; Petrosyan, V.; Razlutskij, V.; Rzepecki, M.; Sushchik, N.; Dzialowski, A. R.

Найти похожие
5.


   
    Status, trends, and future dynamics of freshwater ecosystems in Europe and Central Asia / R. E. Gozlan [et al.] // Inland Waters. - 2019, DOI 10.1080/20442041.2018.1510271 . - Article in press. - ISSN 2044-2041
Кл.слова (ненормированные):
aquatic -- biodiversity -- conservation -- habitat
Аннотация: This review is part of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) report on Europe and Central Asia (ECA) and provides a critical assessment of issues facing decision-makers, including freshwater biodiversity and ecosystem trends as well as drivers of change. Freshwater systems are well established as the most threatened ecosystem type in the ECA region, with the quantity and quality of habitats and abundance of many species rapidly declining. Only about half (53%) of the EU's rivers and lakes achieved good ecological status in 2015 (as defined by the Water Framework Directive in terms of the quality of the biological community), and many lakes, ponds, and streams are disappearing as a consequence of agricultural intensification and inefficient irrigation and urbanisation, combined with climate change. The situation regarding freshwater biodiversity remains highly critical in ECA as many species remain threatened with extinction, including >50% of known species for some groups (e.g., molluscs, amphibians). Drivers of ECA freshwater taxa include the destruction or modification of their habitat, including water abstraction, which affects ?89% of all amphibian threatened species and ?26% of threatened freshwater invertebrate species. Of particular concern is the lack of data for freshwater invertebrates. Current status is available for only a minority of species, and the impact of alien invasive species is often unknown, especially in Central Asia. Based on current freshwater biodiversity trends, it is highly unlikely that ECA will achieve either the respective Aichi biodiversity targets by 2020 (i.e., targets 2 to 4, 6 to 12, and 14) or Target 1 of the Biodiversity Strategy. © 2019, © 2019 International Society of Limnology (SIL).

Scopus,
Смотреть статью,
WOS
Держатели документа:
ISEM UMR226, Universite de Montpellier, CNRS, IRD, EPHE, Montpellier, 34090, France
Department of ecology and water resources management, Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan
Institute of Biophysics, Krasnoyarsk Scientific Center, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Severtsov Institute of Ecology and Evolution, Moscow, Russian Federation
Aquatic Ecology Group, University of Vic–Central University of Catalonia, Vic, Spain
Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain

Доп.точки доступа:
Gozlan, R. E.; Karimov, B. K.; Zadereev, E.; Kuznetsova, D.; Sandra Brucet S, S.

Найти похожие
6.


   
    Genetically encodable bioluminescent system from fungi / A. A. Kotlobay [et al.] // Proc. Natl. Acad. Sci. U. S. A. - 2018. - Vol. 115, Is. 50. - P12728-12732, DOI 10.1073/pnas.1803615115 . - ISSN 0027-8424
Кл.слова (ненормированные):
Bioluminescence -- Fungal luciferase -- Fungal luciferin biosynthesis
Аннотация: Bioluminescence is found across the entire tree of life, conferring a spectacular set of visually oriented functions from attracting mates to scaring off predators. Half a dozen different luciferins, molecules that emit light when enzymatically oxidized, are known. However, just one biochemical pathway for luciferin biosynthesis has been described in full, which is found only in bacteria. Here, we report identification of the fungal luciferase and three other key enzymes that together form the biosynthetic cycle of the fungal luciferin from caffeic acid, a simple and widespread metabolite. Introduction of the identified genes into the genome of the yeast Pichia pastoris along with caffeic acid biosynthesis genes resulted in a strain that is autoluminescent in standard media. We analyzed evolution of the enzymes of the luciferin biosynthesis cycle and found that fungal bioluminescence emerged through a series of events that included two independent gene duplications. The retention of the duplicated enzymes of the luciferin pathway in nonluminescent fungi shows that the gene duplication was followed by functional sequence divergence of enzymes of at least one gene in the biosynthetic pathway and suggests that the evolution of fungal bioluminescence proceeded through several closely related stepping stone nonluminescent biochemical reactions with adaptive roles. The availability of a complete eukaryotic luciferin biosynthesis pathway provides several applications in biomedicine and bioengineering. © 2018 National Academy of Sciences. All Rights Reserved.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russian Federation
Planta LLC, Moscow, 121205, Russian Federation
Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
Medical Research Council London Institute of Medical Sciences, Imperial College London, London, W12 0NN, United Kingdom
Centre for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, 08003, Spain
Universitat Pompeu Fabra, Barcelona, 08003, Spain
Evrogen JSC, Moscow, 117997, Russian Federation
Institute of Biophysics, Federal Research Center Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow, 142290, Russian Federation
Pirogov Russian National Research Medical University, Moscow, 117997, Russian Federation
Biomedical Nanomaterials, National Research Technological University (MISiS), Moscow, 119049, Russian Federation
Skolkovo Institute of Science and Technology, Moscow, 121205, Russian Federation
Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
Departamento de Oceanografia Fisica, Quimica e Geologica, Instituto Oceanografico, Universidade de Sao Paulo, Sao Paulo, 05508-120, Brazil
Department of Environmental Biology, Chubu University, Kasugai, 487-8501, Japan
Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
Departamento de Quimica Fundamental, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil

Доп.точки доступа:
Kotlobay, A. A.; Sarkisyan, K. S.; Mokrushina, Y. A.; Marcet-Houben, M.; Serebrovskaya, E. O.; Markina, N. M.; Somermeyer, L. G.; Gorokhovatsky, A. Y.; Vvedensky, A.; Purtov, K. V.; Petushkov, V. N.; Rodionova, N. S.; Chepurnyh, T. V.; Fakhranurova, L. I.; Guglya, E. B.; Ziganshin, R.; Tsarkova, A. S.; Kaskova, Z. M.; Shender, V.; Abakumov, M.; Abakumova, T. O.; Povolotskaya, I. S.; Eroshkin, F. M.; Zaraisky, A. G.; Mishin, A. S.; Dolgov, S. V.; Mitiouchkina, T. Y.; Kopantzev, E. P.; Waldenmaier, H. E.; Oliveira, A. G.; Oba, Y.; Barsova, E.; Bogdanova, E. A.; Gabaldon, T.; Stevani, C. V.; Lukyanov, S.; Smirnov, I. V.; Gitelson, J. I.; Kondrashov, F. A.; Yampolsky, I. V.

Найти похожие
7.


   
    Morphological specificities of vendace (Salmoniformes: Salmonidae: Coregoninae: Coregonus albula) population in Lake Pleshcheyevo (the Volga River basin): relationships of two phylogenetic lineages in a new zone of secondary contact / E. A. Borovikova, V. S. Artamonova // Org. Divers. Evol. - 2018. - Vol. 18, Is. 3. - P355-366, DOI 10.1007/s13127-018-0375-5. - Cited References:46. - The preparation of this manuscript was supported by the Russian Science Foundation, grant no. 16-14-10001. . - ISSN 1439-6092. - ISSN 1618-1077
РУБ Evolutionary Biology + Zoology
Рубрики:
ECOLOGICAL DIVERGENCE
   SPECIES PAIR

   ORIGIN

   EVOLUTIONARY

   WHITEFISH

Кл.слова (ненормированные):
Vendace -- Morphological characters -- Allopatric origin -- Phylogenetic -- lineages -- Lake Pleshcheyevo
Аннотация: This is the report about the secondary contact zone of coregonids in the Upper Volga basin. Two mitochondrial DNA (mtDNA) phylogenetic lineages of vendace Coregonus albula (Linnaeus, 1758) living in Lake Pleshcheyevo have been analyzed and compared in terms of morphological characters. These lineages have developed under the conditions of allopatry and are characterized by strong differences of the mitochondrial DNA sequences. The lineages have coexisted in the same lake since the last glaciation maximum (about 10,000years ago). The morphological analysis has shown that representatives of both lineages correspond to C. albula, while slight, morphological variations between lineages indicate different food preferences and locomotor abilities. Scenarios where multiple distinct coexisting phylogenetic lineages are characterized by low levels of morpho-ecological divergence are uncommon. These situations are important for understanding biodiversity dynamics and the mechanisms that drive coexistence, adaptive divergence, hybridization, and extinction when genetically divergent lineages meet in secondary contact.

WOS,
Смотреть статью,
Scopus
Держатели документа:
RAS, Papanin Inst Biol Inland Waters, Lab Fish Ecol, Borok 152742, Yaroslavl Regio, Russia.
RAS, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia.
RAS, Severtsov Inst Ecol & Evolut, Leninski Prosp 33, Moscow 119071, Russia.

Доп.точки доступа:
Borovikova, Elena A.; Artamonova, Valentina S.; Russian Science Foundation [16-14-10001]

Найти похожие
8.


   
    The general evolution of energy–matter interactions on earth: From a gas whirlwind to a technogenic civilization / N. S. Pechurkin, A. N. Shuvaev // Biophysics. - 2015. - Vol. 60, Is. 2. - P331-334, DOI 10.1134/S0006350915020153 . - ISSN 0006-3509
Кл.слова (ненормированные):
biosphere -- energy transfer -- evolution -- Animalia -- Mammalia -- Protozoa
Аннотация: An idea of the general evolution through the long-term response of the Earth to the external flow of radiant energy from the Sun is proposed. Due to the finiteness of matter on Earth, as well as on any other planet, the continuous pumping flow of radiant energy has been shown to lead to cyclization of transformations and mass transfer along the emerging gradients. The evolution of the energy–matter interaction follows the pathway of capturing and transferring more energy by a smaller quantity of matter, i.e., the pathway of the increase in the amount of energy used by each unit mass. According to this parameter, the least effective mass transfer is a simple transfer as vortices of gases along the gradients of temperature and pressure, which took place on the primary surface of the planet. Long-term natural selection towards water accumulation on the planet has played a special role in the development of the interaction between energy and matter. Phase transitions (ice, water, and vapor) and mechanical transfers are the most common energy–matter processes. Chemical transformation of substances became possible based on water cycles, cyclic transfers, and transformations and developed with time into biological transformation. This type of energy–matter interaction is the most efficient. In particular, the energy of our star is captured during photosynthesis and utilized in the most active region of its radiation spectrum. During the biological evolution of heterotrophs, a increase in the coefficient that characterizes the energy exchange intensity from protozoa to mammals by several hundred times is most illustrative. The development and current dominance of humans as the species that is most active in the capturing of energy and meaningful organization of its new flows, in particular, based on the organic debris of former biospheres, is amazing but quite natural from the energy standpoint. During the technological evolution of humankind, the energy-exchange intensity for homoiotherms (warm-blooded animals) has increased by 20 times if it is recalculated for the technological energy that is used by the average inhabitant of the Earth. Thus, the victory of our species in planetary evolution fits well into the mainstream of the general evolution through energy–matter interactions: a multiple increase in star energy has been used to transform the matter on the surface of the irradiated planet. © 2015, Pleiades Publishing, Inc.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Pechurkin, N.S.; Shuvaev, A.N.

Найти похожие
9.


   
    Pre-biotic stage of life origin under non-photo synthetic conditions [Text] / S. I. Bartsev, V. V. Mezhevikin ; ed. SI Bartse // SPACE LIFE SCIENCES: CLOSED ECOLOGICAL SYSTEMS: EARTH AND SPACE APPLICATIONS. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON-ELSEVIER SCIENCE LTD, 2005. - Vol. 35: Workshop on Closed Ecological Systems (JUL, 2004, Paris, FRANCE), Is. 9. - P. 1643-1647, DOI 10.1016/j.asr.2005.04.072. - Cited References: 14 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Ecology + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Кл.слова (ненормированные):
life origin -- pre-biotic autocatalytic system -- phase-separated autocatalytic particles -- multivariate oligomeric autocatalyst
Аннотация: Spontaneous assembling of a simplest bacterial cell even if all necessary molecules are present in a solution seems to be extremely rare event and from the scientific standpoint has to be considered as impossible. Therefore, a predecessor of a living cell has to be very simple for providing its self-assembling and at the same time it should be able of progressive increase in complexity. Now phase-separated particles, first of all micelles, are put forward as possible predecessors of living cell. According to the offered working concept only phase-separated particles possessing autocatalytic properties can be considered as predecessors of living cells. The first stage of evolution of these phase-separated autocatalytic systems is the appearance of pre-biotic metabolism providing synthesis of amphiphiles for formation of capsules of these systems. This synthesis is maintained by the energy of a base reaction being a component of a planet-chemical cycle. Catalytic system providing functioning of pre-biotic metabolism is based on multivariate oligomeric autocatalyst, which reproduces itself from monomers, penetrating the particles from the outside. Since the autocatalyst realizes random polymerization then a collection of other oligomers possessing different catalytic functions is produced. In the paper the functioning of multivariate oligomeric autocatalyst in flow reactor is analyzed. (c) 2005 Published by Elsevier Ltd on behalf of COSPAR.

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Lab Theoret Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Bartsev, S.I.; Mezhevikin, V.V.; Bartse, SI \ed.\

Найти похожие
10.


   
    The effect of biota on global climate [Текст] / D. A. Semenov, R. G. Khlebopros // Biofizika. - 2005. - Vol. 50, Is. 4. - P. 748-751. - Cited References: 6 . - ISSN 0006-3029
РУБ Biophysics

Кл.слова (ненормированные):
biosphere -- climate -- modeling -- CO2 balance -- energy balance
Аннотация: A model consisting of two blocks (equations) was proposed for the analytical, study of the biosphere-climate system over great periods of time. The first equation describes the balance of carbon dioxide in the Atmosphere and re presents the biological block of the model. The second equation is the equation of the energy balance or the physical block of the system. The model is based on the most general conceptions of living matter and the evolution process. A possible interpretation of some events and phenomena in the earth history in terms of the model is given.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Div, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Semenov, D.A.; Khlebopros, R.G.

Найти похожие
11.


   
    Triploidy does not decrease contents of eicosapentaenoic and docosahexaenoic acids in filets of pink salmon Oncorhynchus gorbuscha / M. I. Gladyshev [et al.] // Food Chem. - 2017. - Vol. 216. - P66-69, DOI 10.1016/j.foodchem.2016.08.021 . - ISSN 0308-8146
Кл.слова (ненормированные):
Essential fatty acids -- Filets -- Triploid fish -- Aquaculture -- Fish -- Polyunsaturated fatty acids -- Unsaturated fatty acids -- Docosahexaenoic acid -- Eicosapentaenoic acid -- Essential fatty acids -- Fa compositions -- Filets -- Muscle tissues -- Pink salmon -- White sea -- Fatty acids
Аннотация: Triploid fish has become an important item of commercial aquaculture, but data on its fatty acid (FA) composition are still controversial, especially regarding essential polyunsaturated fatty acids, eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA). We studied FA composition and content of diploid and triploid pink salmon Oncorhynchus gorbuscha, reared in aquaculture in a bay of the White Sea (Russia). FA composition, measured as percentages of total FA of triploids and immature diploid females significantly differed from that of mature diploid fish. Specifically, mature diploids had higher percentage of EPA and DHA in their muscle tissue (filets) compared to that of triploids and immature diploid females. Nevertheless, the contents of EPA and DHA per mass of the filets in diploid and triploid specimens were similar. Thus, no special efforts are needed to improve EPA and DHA contents in filets of triploids. © 2016 Elsevier Ltd

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodny av. 79, Krasnoyarsk, Russian Federation
A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky Prospect, 33, Moscow, Russian Federation

Доп.точки доступа:
Gladyshev, M. I.; Artamonova, V. S.; Makhrov, A. A.; Sushchik, N. N.; Kalachova, G. S.; Dgebuadze, Y. Y.

Найти похожие
12.


   
    Fatty acid composition of fish species with different feeding habits from an Arctic Lake / M. I. Gladyshev [et al.] // Doklad. Biochem. Biophys. - 2017. - Vol. 474, Is. 1. - P220-223, DOI 10.1134/S1607672917030164 . - ISSN 1607-6729
Аннотация: We compared the composition and content of fatty acids (FAs) in fish with different feeding habits (sardine (least) cisco Coregonus sardinella, goggle-eyed charr (pucheglazka) form of Salvelinus alpinus complex, humpback whitefish Coregonus pidschian, broad whitefish Coregonus nasus, boganid charr Salvelinus boganidae, and northern pike Esox lucius from an Arctic Lake. Feeding habits of the studied fish (planktivore, benthivore, or piscivore) significantly affected the composition of biomarker fatty acids and the ratio of stable isotopes of carbon and nitrogen in their biomass. The hypothesis on a higher content of eicosapentaenoic and docosahexaenoic acids in the fish of higher trophic level (piscivores) when compared within the same taxonomic group (order Salmoniformes) was confirmed. © 2017, Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Research Institute of Ecology of Fishery Water Bodies, Krasnoyarsk, Russian Federation
Joint Management Board of Taimyr Nature Reserves, Norilsk, Russian Federation
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
Lomonosov Moscow State University, Moscow, Russian Federation

Доп.точки доступа:
Gladyshev, M. I.; Sushchik, N. N.; Glushchenko, L. A.; Zadelenov, V. A.; Rudchenko, A. E.; Dgebuadze, Y. Y.

Найти похожие
13.


   
    Evolution and present status of experimental manned ecological systems for long-term human life support - Bios, developed by the institute of biophysics of Russian academy of sciences in Krasnoyarsk (Siberia) / J. I. Gitelson, A. G. Degermendzhy // Proceedings of the International Astronautical Congress, IAC : International Astronautical Federation, IAF, 2015. - Vol. 1: 66th International Astronautical Congress 2015: Space - The Gateway for Mankind's Future, IAC 2015 (12 October 2015 through 16 October 2015, ) Conference code: 122921. - P243-250
Кл.слова (ненормированные):
Arid regions -- Biochemistry -- Biospherics -- Plant shutdowns -- Proteins -- Reconfigurable hardware -- Closed ecological systems -- Corrective actions -- Essential proteins -- Extreme conditions -- Human intelligence -- Long-term experiments -- Physiological effects -- Russian Academy of Sciences -- Ecology
Аннотация: Closed ecological systems are of two-fold interest - as models of the Earth's biosphere explorable in experiments and as a facility for long-term autonomous human life support beyond the Earth. Theoretical analysis and experimental implementation of highly closed manned systems has been the subject of studies at the Institute of Biophysics (Russian Academy of Sciences, Siberian Branch) for many years. BIOS systems of increasing complexity with complete regeneration of atmosphere, water and partially food have been realized. In BIOS-3 experiments the system inhabited by 2-3 researchers for 4-6 months maintained its metabolic equilibrium without any negative physiological effect on the crew, which proves its sustainable condition. Specific for BIOS-3 is internal control by the people inhabiting the system. So, BIOS-3 is the first experimental implementation of V.l. Vernadsky's idea about the noosphere - habitable Biosphere controlled by human intelligence. Contrary to predictions of many environmentalists the closedness of the ecosystem is a factor that does not reduce, but increases its sustainability and makes its use for reliable life support outside the Earth realistic. The system is sustainable owing to permanent feedback between the monitoring of few key parameters of the system and automatic corrective actions on them. Main object of control is photo-biosynthesis regenerating parameters of human habitat disturbed by his vital activities. This principle has been realized in BIOS system and proved its reliability in long-term experiments. A new challenge is specified-optimal increase of trophic closedness of the system by reproduction within it essential proteins (peptides and amino acids), lipids, vitamins and other essential compounds. Alternative lines of attack on this problem by state-of-the-art biotechnological methods, GMO including, are under analysis. Reduced BIOS version - without complete closure - can be a breakthrough instrument to improve the quality of life of people living under extreme conditions on the Earth - in polar latitudes (Arctic, Antarctic), in deserts, in high mountains.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Gitelson, J. I.; Degermendzhy, A. G.

Найти похожие
14.


   
    Biotic fluxes of matter and energy between aquatic and terrestrial ecosystems / Y. Y. Dgebuadze, M. I. Gladyshev // Contemp. Probl. Ecol. - 2016. - Vol. 9, Is. 4. - P391-395, DOI 10.1134/S1995425516040041 . - ISSN 1995-4255
Кл.слова (ненормированные):
amphibionts -- biodiversity -- biological invasions -- ecotone -- fluxes of matter and energy -- water–land interface -- Animalia
Аннотация: This paper is an introduction to a special issue of the journal. A brief historical delineation of the question of studying interfaces between adjacent ecosystems (ecotones) is presented. High biodiversity of ecotones and their vulnerability to natural and anthropogenic impacts, including invasions of alien species, are noted. It is supposed that there is no contradiction between the ecotone and river continuum concepts. The important ecological role of amphibiotic animals and plants in interactions and functioning of the adjacent ecosystems is emphasized. The issue of studying the quantitative parameters of fluxes of matter and energy between ecosystems in conjunction with their qualitative parameters (chemical elemental and biochemical compositions) is considered in the present paper. © 2016, Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, pr. Leninsky 33, Moscow, Russian Federation
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/50, Krasnoyarsk, Russian Federation
Siberian Federal University Krasnoyarsk, pr. Svobodnyi 79, Moscow, Russian Federation

Доп.точки доступа:
Dgebuadze, Y. Y.; Gladyshev, M. I.

Найти похожие
15.


   
    Transfer efficiency of carbon, nutrients, and polyunsaturated fatty acids in planktonic food webs under different environmental conditions / M. Karpowicz, I. Feniova, M. I. Gladyshev [et al.] // Ecology and Evolution. - 2021, DOI 10.1002/ece3.7651 . - Article in press. - ISSN 2045-7758
Кл.слова (ненормированные):
biogeochemical cycle -- dystrophication -- essential substances -- eutrophication -- food quality -- phytoplankton -- zooplankton
Аннотация: The trophic transfer efficiency (TTE) is an important indicator of ecosystem functioning. However, TTE data from freshwater food webs are ambiguous due to differences in time scales and methods. We investigated the transfer of essential substances (carbon, nutrients, and polyunsaturated fatty acids) through plankton communities in 30 Polish lakes with different trophic status in the middle of summer. The results of our study revealed that different essential substances were transferred from phytoplankton to zooplankton with varying efficiencies. The average TTE of C, N, P, and the sum of ?-3 PUFA were 6.55%, 9.82%, 15.82%, and 20.90%, respectively. Our results also show a large mismatch between the elemental and biochemical compositions of zooplankton and their food during the peak of the summer stagnation, which may further promote the accumulation of essential substances. There were also large differences in TTEs between trophic conditions, with the highest efficiencies in oligotrophic lakes and the lowest in dystrophic and eutrophic lakes. Therefore, our study indicates that disturbances like eutrophication and dystrophication similarly decrease the TTE of essential substances between phytoplankton and zooplankton in freshwater food webs. © 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Scopus
Держатели документа:
Department of Hydrobiology, Faculty of Biology, University of Bialystok, Bialystok, Poland
Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
Institute of Biophysics of Federal Research Centre, Krasnoyarsk Science Centre of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Research Station in Mikolajki, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States

Доп.точки доступа:
Karpowicz, M.; Feniova, I.; Gladyshev, M. I.; Ejsmont-Karabin, J.; Gorniak, A.; Sushchik, N. N.; Anishchenko, O. V.; Dzialowski, A. R.

Найти похожие
16.


   
    Efficiency of Transfer of Essential Substances from Phytoplankton to Planktonic Crustaceans in Mesotrophic Conditions / I. Y. Feniova, E. G. Sakharova, Z. F. Buseva [et al.] // Inland Water Biol. - 2021. - Vol. 14, Is. 1. - P49-59, DOI 10.1134/S1995082920040033 . - ISSN 1995-0829
Кл.слова (ненормированные):
carbon -- efficiency of transfer of substances -- fish -- mesocosms -- mesotrophic conditions -- nitrogen -- phosphorus -- phytoplankton -- planktonic crustaceans -- primary and secondary production
Аннотация: Abstract: We assessed the efficiency of the transfer of essential substances (carbon, phosphorus, nitrogen, and fatty acids (FA), including polyunsaturated fatty acids (PUFAs)) from phytoplankton to planktonic crustaceans in experimental mesocosms in the presence and absence of fish. The experiments were conducted under mesotrophic conditions in 300 L mesocosms. We have found that transfer efficiencies from producers to consumers are different for different substances. In particular, FA, including PUFAs, are transferred less efficiently than carbon. In contrast, the efficiency of nutrient transfer, especially phosphorus, is higher than that of carbon. This evidences that zooplankton can accumulate nutrients, increasing their quality as a resource for higher trophic levels. Fish significantly reduced the efficiency of carbon transfer from phytoplankton to zooplankton per unit of water volume, but did not affect the transfer of substances per unit of biomass. Thus, the quality of zooplankton as a food resource for higher trophic levels did not decrease in the presence of fish, despite the decline in the efficiency of the transfer of the essential substances per unit of water volume under their influence. Since the efficiency of essential substances transfered from phytoplankton to zooplankton determines the functioning of the entire trophic web, we should seek ways to increase it. © 2021, Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Nekouzskii raion, Yaroslavl oblast, Borok, Russian Federation
Scientific and Practical Center for Bioresources, National Academy of Sciences of Belarus, Minsk, Belarus
Institute of Biophysics of Federal Research Centre, Krasnoyarsk Science Centre, Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Department of Hydrobiology, Institute of Biology, University of Bialystok, Bialystok, Poland

Доп.точки доступа:
Feniova, I. Y.; Sakharova, E. G.; Buseva, Z. F.; Gladyshev, M. I.; Sushchik, N. N.; Gorelysheva, Z. I.; Karpowicz, M.; Semenchenko, V. P.

Найти похожие
17.


   
    The Center of Origin and Colonization Routes of Noble Salmons of the Genus Salmo (Salmonidae, Actinopterigii) / V. S. Artamonova, S. A. Afanasyev, N. V. Bardukov [et al.] // Doklad. Biochem. Biophys. - 2020. - Vol. 493, Is. 1. - P171-177, DOI 10.1134/S160767292004002X . - ISSN 1607-6729
Кл.слова (ненормированные):
barcoding -- brown trout -- molecular evolution -- phylogeny -- phylogeography -- salmonids
Аннотация: Abstract: Genetic diversity and colonization routes of noble salmons were studied using a partial nucleotide sequence of the mitochondrial COI gene. The brown trout S. trutta, which is the most ancient species of the genus, was concluded to originate from the modern southeastern Pontic-Caspian area, which is currently inhabited by members of the subspecies S. trutta oxianus. Migrating westward while the Paratethys was in existence (5–34 million years ago), species of the genus colonized ancient water bodies in the modern Mediterranean basin and formed many isolated populations that survived desiccation of the Mediterranean Sea (5–6 million years ago). The Strait of Gibraltar mediated brown trout migrations to Northern Europe; the subspecies S. trutta trutta belongs to a relatively young phylogenetic lineage of the species. A separate brown trout lineage, currently classified as the subspecies S. trutta labrax, formed most likely in the area of the modern Danube basin, which was a relatively separate part of the Paratethys and was sometimes isolated as the Pannonian Lake. A highly divergent phylogenetic lineage of Atlantic salmon (S. salar) haplotypes originates from a haplotype of the brown trout that inhabited the area of the modern Strait of Gibraltar. © 2020, Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
Institute of Biophysics of Federal Research Center “Krasnoyarsk Science Center,” Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/50, Krasnoyarsk, Russian Federation
Institute of Hydrobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Federal Selection and Genetic Center of Fish Farming, Ropsha settlement, Leningrad oblast, Russian Federation
Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
Federal State Budgetary Educational Institution of Higher Education Kerch State Maritime Technological University, Kerch, Crimea, Russian Federation
Azov–Black Sea Branch, VNIRO (AzNIIRKh), Krasnodar branch, Rostov-on-Don, Russian Federation
Abovyan Armenian State Pedagogical University, Yerevan, Armenia
Kuban State University, Krasnodar, Russian Federation

Доп.точки доступа:
Artamonova, V. S.; Afanasyev, S. A.; Bardukov, N. V.; Golod, V. M.; Kokodiy, S. V.; Koulish, A. V.; Pashkov, A. N.; Pipoyan, S. K.; Reshetnikov, S. I.; Makhrov, A. A.

Найти похожие
18.


   
    Transfer efficiency of carbon, nutrients, and polyunsaturated fatty acids in planktonic food webs under different environmental conditions / M. Karpowicz, I. Feniova, M. I. Gladyshev [et al.] // Ecol. Evol. - 2021, DOI 10.1002/ece3.7651. - Cited References:62. - This research was supported by the Polish National Science Centre (2016/21/B/NZ8/00434). The research was also supported by Federal Tasks for Institute of Biophysics SB RAS No. 51.1.1 and Federal Tasks for Siberian Federal University No. FSRG-2020-0019. The authors are thankful to Joanna Kozowska for her help in the collection of samples. . - Article in press. - ISSN 2045-7758
РУБ Ecology + Evolutionary Biology
Рубрики:
PHOSPHORUS STOICHIOMETRY
   LIGHT-INTENSITY

   ZOOPLANKTON

   TEMPERATURE

Кл.слова (ненормированные):
biogeochemical cycle -- dystrophication -- essential substances -- eutrophication -- food quality -- phytoplankton -- zooplankton
Аннотация: The trophic transfer efficiency (TTE) is an important indicator of ecosystem functioning. However, TTE data from freshwater food webs are ambiguous due to differences in time scales and methods. We investigated the transfer of essential substances (carbon, nutrients, and polyunsaturated fatty acids) through plankton communities in 30 Polish lakes with different trophic status in the middle of summer. The results of our study revealed that different essential substances were transferred from phytoplankton to zooplankton with varying efficiencies. The average TTE of C, N, P, and the sum of omega-3 PUFA were 6.55%, 9.82%, 15.82%, and 20.90%, respectively. Our results also show a large mismatch between the elemental and biochemical compositions of zooplankton and their food during the peak of the summer stagnation, which may further promote the accumulation of essential substances. There were also large differences in TTEs between trophic conditions, with the highest efficiencies in oligotrophic lakes and the lowest in dystrophic and eutrophic lakes. Therefore, our study indicates that disturbances like eutrophication and dystrophication similarly decrease the TTE of essential substances between phytoplankton and zooplankton in freshwater food webs.

WOS
Держатели документа:
Univ Bialystok, Dept Hydrobiol, Fac Biol, Ciolkowskiego 1J, PL-15245 Bialystok, Poland.
Russian Acad Sci, Inst Ecol & Evolut, Moscow, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Siberian Branch, Inst Biophys,Fed Res Ctr, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Polish Acad Sci, Nencki Inst Expt Biol, Res Stn Mikolajki, Warsaw, Poland.
Oklahoma State Univ, Dept Integrat Biol, Stillwater, OK 74078 USA.

Доп.точки доступа:
Karpowicz, Maciej; Feniova, Irina; Gladyshev, Michail I.; Ejsmont-Karabin, Jolanta; Gorniak, Andrzej; Sushchik, Nadezhda N.; Anishchenko, Olesya V.; Dzialowski, Andrew R.; Polish National Science Centre [2016/21/B/NZ8/00434]; Federal Tasks for Institute of Biophysics SB RAS [51.1.1]; Federal Tasks for Siberian Federal University [FSRG-2020-0019]

Найти похожие
19.
   Е071
   Б 63


    Печуркин, Николай Савельевич.
    Непрерывный рост интенсивности энерго-вещественных взаимодействий в эволюции геобиосферы Земли [Текст] = Transparent growth of the energy/matter interactions on Earth in the evolution of geobiosphere / Н. С. Печуркин, А. Н. Шуваев, Л. А. Сомова, Бархатов Ю. В., Хромечек Е. Б., Дегерменджи Н. Н. Толомеев А. П., Дегерменджи А. Г. Дроботов А. В. // Биофизика для экологии и медицины: к 90-летию академика РАН И. И. Гительзона / И. И. Гительзон, Т. Г. Волова, А. Г. Дегерменджи [и др.] ; ред., авт. предисл. Т. Г. Волова. - Новосибирск : Издательство Сибирского отделения Российской академии наук, 2019. - С. 248-254 . - ISBN 978-5-7692-1650-3
УДК
ББК Е071я43 + Р252.0я43


Доп.точки доступа:
Гительзон, Иосиф Исаевич; Волова, Татьяна Григорьевна; Дегерменджи, Андрей Георгиевич; Дегерменджи, Н. Н.; Шевырногов, Анатолий Петрович; Кратасюк, В. А.; Барцев, Сергей иванович; Болсуновский, Александр Яковлевич; Бондарь, Владимир Антонович; Буров, А. Е.; Величко, В. В.; Гладышев, Михаил Иванович; Есимбекова, Е. Н.; Дементьев, Д. В.; Задереев, Егор Сергеевич; Зотина, Т. А.; Косиненко, Сергей Васильевич; Медведева, С. Е.; Петушков, В. Н.; Прокопкин, И. Г.; Пузырь, А. П.; Пуртов, К. В.; Рогозин, Денис Юрьевич; Родионова, Н. С.; Ронжин, Н. О.; Сомова, Лидия Александровна; Тихомиров, Александр Аполлинариевич; Тихомирова, Наталья Александровна; Трифонов, С. В.; Ушакова, Софья Аврумовна; Франк, Л. А.; Хромечек, Е. Б.; Шишацкая, Е. И.; Шуваев, А. Н.; Толомеев А. П., Александр Павлович; Дегерменджи А. Г., Андрей Георгиевич; Бархатов, Ю. В.; Хромечек, Елена Борисовна; Дроботов А. В.; Российская академия наук. Сибирское отделение; Институт биофизики(Красноярск)

Имеются экземпляры в отделах: всего 1 : ИБФ-КФ (1)
Свободны: ИБФ-КФ (1)

Найти похожие
20.


   
    Properties of degradable polyhydroxyalkanoates (Phas) synthesized by a new strain, cupriavidus necator ibp/sfu-1, from various carbon sources / N. O. Zhila, K. Yu. Sapozhnikova, E. G. Kiselev [et al.] // Polym. - 2021. - Vol. 13, Is. 18. - Ст. 3142, DOI 10.3390/polym13183142 . - ISSN 2073-4360
Кл.слова (ненормированные):
Cell growth and PHA synthesis -- Cupriavidus necator IBP/SFU-1 -- PHA composition and properties -- Polymer films -- Various carbon sources -- Biodegradable polymers -- Carbon -- Carbon films -- Cell proliferation -- Crystallinity -- Fructose -- Glucose -- Long Term Evolution (LTE) -- Oleic acid -- Organic carbon -- Palm oil -- Polydispersity -- Semiconducting films -- Autotrophics -- Carbon source -- Cell growth and PHA synthesis -- Cupriavidu necator IBP/SFU-1 -- PHA composition and property -- Plant oil -- Polyhydroxyalkanoates -- Property -- Synthesised -- Various carbon source -- Polymer films
Аннотация: The bacterial strain isolated from soil was identified as Cupriavidus necator IBP/SFU-1 and investigated as a PHA producer. The strain was found to be able to grow and synthesize PHAs under autotrophic conditions and showed a broad organotrophic potential towards different carbon sources: sugars, glycerol, fatty acids, and plant oils. The highest cell concentrations (7–8 g/L) and PHA contents were produced from oleic acid (78%), fructose, glucose, and palm oil (over 80%). The type of the carbon source influenced the PHA chemical composition and properties: when grown on oleic acid, the strain synthesized the P(3HB-co-3HV) copolymer; on plant oils, the P(3HB-co-3HV-co-3HHx) terpolymer, and on the other substrates, the P(3HB) homopolymer. The type of the carbon source influenced molecular-weight properties of PHAs: P(3HB) synthesized under autotrophic growth conditions, from CO2, had the highest number-average (290 ± 15 kDa) and weight-average (850 ± 25 kDa) molecular weights and the lowest polydispersity (2.9 ± 0.2); polymers synthesized from organic carbon sources showed increased polydispersity and reduced molecular weight. The carbon source was not found to affect the degree of crystallinity and thermal properties of the PHAs. The type of the carbon source determined not only PHA composition and molecular weight but also surface microstructure and porosity of the polymer films. The new strain can be recommended as a promising P(3HB) producer from palm oil, oleic acid, and sugars (fructose and glucose) and as a producer of P(3HB-co-3HV) from oleic acid and P(3HB-co-3HV-co-3HHx) from palm oil. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk, 660041, Russian Federation
Federal Research Center, “Krasnoyarsk Science Center SB RAS”, Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Federal Research Center, “Krasnoyarsk Science Center SB RAS”, L.V. Kirensky Institute of Physics SB RAS, 50/38 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Federal Research Center, “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Zhila, N. O.; Sapozhnikova, K. Yu.; Kiselev, E. G.; Vasiliev, A. D.; Nemtsev, I. V.; Shishatskaya, E. I.; Volova, T. G.

Найти похожие
 1-20    21-40   41-58 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)