Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=hydrophilicity<.>)
Общее количество найденных документов : 10
Показаны документы с 1 по 10
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Volova T., Kiselev E., Nemtsev I., Lukyanenko А., Sukovatyi A., Kuzmin A., Ryltseva G., Shishatskaya E.
Заглавие : Properties of degradable polyhydroxyalkanoates with different monomer compositions
Место публикации : Int. J. Biol. Macromol.: Elsevier B.V., 2021. - Vol. 182. - С. 98-114. - ISSN 01418130 (ISSN), DOI 10.1016/j.ijbiomac.2021.04.008
Аннотация: Purpose: To synthesize and investigate polyhydroxyalkanoates (PHAs) with different monomer composition and percentages and polymer films prepared from them. Results: Various PHAs: homopolymer poly-3-hydroxybutyrate P(3HB) and 2-, 3-, and 4-component copolymers comprising various combinations of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB), and 3-hydroxyhexanoate (3HHx) monomers were synthesized under specialized conditions. Relationships were found between the monomer composition of PHAs and their molecular-weight and thermal properties and degree of crystallinity. All copolymers had decreased weight average molecular weights, Mw (to 390–600 kDa), and increased values of polydispersity (3.2–4.6) compared to the P(3HB). PHA copolymers showed different thermal behavior: an insignificant decrease in Tmelt and the presence of the second peak in the melting region and changes in parameters of crystallization and glass transition. At the same time, they retained thermostability, and the difference between Tmelt and Tdegr was at least 100–120 °C. Incorporation of 4HB, 3HV, and 3HHx monomer units into the 3-hydroxybutyrate chain caused changes in the amorphous to crystalline ratio and decreased the degree of crystallinity (Cx) to 20–40%. According to the degree to which the monomers reduced crystallinity, they were ranked as follows: 4HB – 3HHx – 3HV. A unique set of films was produced; their surface properties and physical/mechanical properties were studied as dependent on PHA composition; monomers other than 3-hydroxybutyrate were found to enhance hydrophilicity, surface development, and elasticity of polymer films. Conclusion: An innovative set of PHA copolymers was synthesized and solution-cast films were prepared from them; the copolymers and films were investigated as dependent on polymer chemical composition. Results obtained in the present study contribute to the solution of a critical issue of producing degradable polymer materials. © 2021 Elsevier B.V.
Scopus
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Boyandin, Anatoly Nikolayevich, Sukhanova, Anna Alekseevna, Nikolaeva, Elena Dmitrievna, Nemtsev, Ivan Vasilievich
Заглавие : Chemical Modification of Films from Biosynthetic Poly-3-Hydroxybutyrate Aimed to Improvement of Their Surface Properties
Колич.характеристики :4 с
Коллективы : Ministry of Science and Higher Education of the Russian Federation [FEFE-2020-0015]
Место публикации : Macromol. Symp.: WILEY-V C H VERLAG GMBH, 2021. - Vol. 395: 4th International Conference on Progress on Polymers and Composites (NOV 26-28, 2020, ELECTR NETWORK), Is. 1. - Ст.2000281. - ISSN 1022-1360, DOI 10.1002/masy.202000281. - ISSN 1521-3900(eISSN)
Примечания : Cited References:11. - This work was carried out by the team of the scientific laboratory "Smart Materials and Structures" within the state assignment of the Ministry of Science and Higher Education of the Russian Federation for the implementation of the project "Development of multifunctional smart materials and structures based on modified polymer composite materials capable to function in extreme conditions" (No. FEFE-2020-0015). The surface of the samples was investigated using a scanning electron microscope Hitachi TM3000 in the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center "Krasnoyarsk Science Center SB RAS".
Аннотация: Films from biodegradable poly-3-hydroxybutyrate are treated with chemical reagents to improve their hydrophilicity and biocompatibility. Two approaches are tested: a single treatment with alkali, acids, oxidizing or reducing agents, and a step-by step treatment of the alkali pre-activated surface of polymer films with bromine water and amino-compounds (ammonia or triethylamine). The maximal level of hydrophilicity (the lowest water contact angle and the highest polar component of the surface free energy) is registered after a single treatment with NaOH and after the step-by-step treatment. These samples also showed the best adhesion of mouse fibroblasts of NIH 3T3 line on the film surface. So, the proposed methods can be used to enhance hydropilicity and biocompatibility of biopolymer surface.
WOS
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Volova T. G., Golubev A. I., Nemtsev I. V., Lukyanenko A. V., Dudaev A. E., Shishatskaya E. I.
Заглавие : Laser processing of polymer films fabricated from phas differing in their monomer composition
Место публикации : Polym.: MDPI AG, 2021. - Vol. 13, Is. 10. - Ст.1553. - ISSN 20734360 (ISSN), DOI 10.3390/polym13101553
Аннотация: The study reports results of using a CO2-laser in continuous wave (3 W; 2 m/s) and quasi-pulsed (13.5 W; 1 m/s) modes to treat films prepared by solvent casting technique from four types of polyhydroxyalkanoates (PHAs), namely poly-3-hydroxybutyrate and three copolymers of 3-hydroxybutyrate: with 4-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate (each second monomer constituting about 30 mol.%). The PHAs differed in their thermal and molecular weight properties and degree of crystallinity. Pristine films differed in porosity, hydrophilicity, and roughness parameters. The two modes of laser treatment altered these parameters and biocompatibility in diverse ways. Films of P(3HB) had water contact angle and surface energy of 92? and 30.8 mN/m, respectively, and average roughness of 144 nm. The water contact angle of copolymer films decreased to 80–56? and surface energy and roughness increased to 41–57 mN/m and 172–290 nm, respectively. Treatment in either mode resulted in different modifications of the films, depending on their composition and irradiation mode. Laser-treated P(3HB) films exhibited a decrease in water contact angle, which was more considerable after the treatment in the quasi-pulsed mode. Roughness parameters were changed by the treatment in both modes. Continuous wave line-by-line irradiation caused formation of sintered grooves on the film surface, which exhibited some change in water contact angle (76–80? ) and reduced roughness parameters (to 40–45 mN/m) for most films. Treatment in the quasi-pulsed raster mode resulted in the formation of pits with no pronounced sintered regions on the film surface, a more considerably decreased water contact angle (to 67–76? ), and increased roughness of most specimens. Colorimetric assay for assessing cell metabolic activity (MTT) in NIH 3T3 mouse fibroblast culture showed that the number of fibroblasts on the films treated in the continuous wave mode was somewhat lower; treatment in quasi-pulsed radiation mode caused an increase in the number of viable cells by a factor of 1.26 to 1.76, depending on PHA composition. This is an important result, offering an opportunity of targeted surface modification of PHA products aimed at preventing or facilitating cell attachment. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Scopus
Найти похожие
4.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Volova T., Kiselev E., Nemtsev I., Lukyanenko A., Sukovatyi A., Kuzmin A., Ryltseva G., Shishatskaya E.
Заглавие : Properties of degradable polyhydroxyalkanoates with different monomer compositions
Колич.характеристики :17 с
Коллективы : RFBRRussian Foundation for Basic Research (RFBR) [19-43-240012]; Ministry of Education and Science of the Russian FederationMinistry of Education and Science, Russian Federation [FSRZ-2020-0006]
Место публикации : Int. J. Biol. Macromol.: ELSEVIER, 2021. - Vol. 182. - С. 98-114. - ISSN 0141-8130, DOI 10.1016/j.ijbiomac.2021.04.008. - ISSN 1879-0003(eISSN)
Примечания : Cited References:106. - The part of the reported study on polymer synthesis and examinationwas funded by RFBR and KKRF [Grant No. 19-43-240012 "Biological and physical principles of production of new generation biomaterials"]. The work on production and investigation of polymer films was carried out as part of the State Assignment of the Ministry of Education and Science of the Russian Federation [Grant No. FSRZ-2020-0006].
Предметные рубрики: PALM KERNEL OIL
RALSTONIA-EUTROPHA
BIODEGRADABLE POLYMERS
Аннотация: Purpose: To synthesize and investigate polyhydroxyalkanoates (PHAs) with different monomer composition and percentages and polymer films prepared from them. Results: Various PHAs: homopolymer poly-3-hydroxybutyrate P(3HB) and 2-, 3-, and 4-component copolymers comprising various combinations of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB), and 3-hydroxyhexanoate (3HHx) monomers were synthesized under specialized conditions. Relationships were found between the monomer composition of PHAs and their molecular-weight and thermal properties and degree of crystallinity. All copolymers had decreased weight average molecular weights, Mw (to 390-600 kDa), and increased values of polydispersity (3.2-4.6) compared to the P(3HB). PHA copolymers showed different thermal behavior: an insignificant decrease in Tmelt and the presence of the second peak in the melting region and changes in parameters of crystallization and glass transition. At the same time, they retained thermostability, and the difference between Tmelt and Tdegr was at least 100-120 degrees C. Incorporation of 4HB, 3HV, and 3HHx monomer units into the 3-hydroxybutyrate chain caused changes in the amorphous to crystalline ratio and decreased the degree of crystallinity (Cx) to 20-40%. According to the degree to which the monomers reduced crystallinity, they were ranked as follows: 4HB - 3HHx - 3HV. A unique set of films was produced; their surface properties and physical/mechanical properties were studied as dependent on PHA composition; monomers other than 3hydroxybutyrate were found to enhance hydrophilicity, surface development, and elasticity of polymer films. Conclusion: An innovative set of PHA copolymers was synthesized and solution-cast films were prepared from them; the copolymers and films were investigated as dependent on polymer chemical composition. Results obtained in the present study contribute to the solution of a critical issue of producing degradable polymer materials. (C) 2021 Elsevier B.V. All rights reserved.
WOS
Найти похожие
5.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Volova, Tatiana G., Golubev, Alexey, I, Nemtsev, Ivan, V, Lukyanenko, Anna, V, Dudaev, Alexey E., Shishatskaya, Ekaterina, I
Заглавие : Laser Processing of Polymer Films Fabricated from PHAs Differing in Their Monomer Composition
Колич.характеристики :24 с
Коллективы : Russian Foundation for Basic Research/Regional State Autonomous Institution "Krasnoyarsk Regional Fund for the Support of Scientific and ScientificTechnical Activities" foundations [19-43-240012]; Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0006]
Место публикации : Polymers: MDPI, 2021. - Vol. 13, Is. 10. - Ст.1553. - ISSN 2073-4360(eISSN), DOI 10.3390/polym13101553
Примечания : Cited References:87. - This work was supported by the Russian Foundation for Basic Research/Regional State Autonomous Institution "Krasnoyarsk Regional Fund for the Support of Scientific and ScientificTechnical Activities" foundations under Grant number 19-43-240012 (laser treatment and films properties) and by the State Assignment of the Ministry of Science and Higher Education of the Russian Federation No. FSRZ-2020-0006 (polymer synthesis).
Предметные рубрики: CHEMOMECHANICAL PROPERTIES
PHYSICOCHEMICAL PROPERTIES
SURFACE
Аннотация: The study reports results of using a CO2-laser in continuous wave (3 W; 2 m/s) and quasi-pulsed (13.5 W; 1 m/s) modes to treat films prepared by solvent casting technique from four types of polyhydroxyalkanoates (PHAs), namely poly-3-hydroxybutyrate and three copolymers of 3-hydroxybutyrate: with 4-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate (each second monomer constituting about 30 mol.%). The PHAs differed in their thermal and molecular weight properties and degree of crystallinity. Pristine films differed in porosity, hydrophilicity, and roughness parameters. The two modes of laser treatment altered these parameters and biocompatibility in diverse ways. Films of P(3HB) had water contact angle and surface energy of 92 degrees and 30.8 mN/m, respectively, and average roughness of 144 nm. The water contact angle of copolymer films decreased to 80-56 degrees and surface energy and roughness increased to 41-57 mN/m and 172-290 nm, respectively. Treatment in either mode resulted in different modifications of the films, depending on their composition and irradiation mode. Laser-treated P(3HB) films exhibited a decrease in water contact angle, which was more considerable after the treatment in the quasi-pulsed mode. Roughness parameters were changed by the treatment in both modes. Continuous wave line-by-line irradiation caused formation of sintered grooves on the film surface, which exhibited some change in water contact angle (76-80 degrees) and reduced roughness parameters (to 40-45 mN/m) for most films. Treatment in the quasi-pulsed raster mode resulted in the formation of pits with no pronounced sintered regions on the film surface, a more considerably decreased water contact angle (to 67-76 degrees), and increased roughness of most specimens. Colorimetric assay for assessing cell metabolic activity (MTT) in NIH 3T3 mouse fibroblast culture showed that the number of fibroblasts on the films treated in the continuous wave mode was somewhat lower; treatment in quasi-pulsed radiation mode caused an increase in the number of viable cells by a factor of 1.26 to 1.76, depending on PHA composition. This is an important result, offering an opportunity of targeted surface modification of PHA products aimed at preventing or facilitating cell attachment.
WOS
Найти похожие
6.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Boyandin A. N., Sukhanova A. A., Nikolaeva E. D., Nemtsev I. V.
Заглавие : Chemical Modification of Films from Biosynthetic Poly-3-Hydroxybutyrate Aimed to Improvement of Their Surface Properties
Место публикации : Macromol. Sympos.: Wiley-VCH Verlag, 2021. - Vol. 395, Is. 1. - Ст.2000281. - ISSN 10221360 (ISSN), DOI 10.1002/masy.202000281
Аннотация: Films from biodegradable poly-3-hydroxybutyrate are treated with chemical reagents to improve their hydrophilicity and biocompatibility. Two approaches are tested: a single treatment with alkali, acids, oxidizing or reducing agents, and a step-by step treatment of the alkali pre-activated surface of polymer films with bromine water and amino-compounds (ammonia or triethylamine). The maximal level of hydrophilicity (the lowest water contact angle and the highest polar component of the surface free energy) is registered after a single treatment with NaOH and after the step-by-step treatment. These samples also showed the best adhesion of mouse fibroblasts of NIH 3T3 line on the film surface. So, the proposed methods can be used to enhance hydropilicity and biocompatibility of biopolymer surface. © 2021 Wiley-VCH GmbH
Scopus
Найти похожие
7.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Shishatskaya E., Nemtsev I., Lukyanenko A., Vasiliev A., Kiselev E., Sukovatyi A., Volova T.
Заглавие : Polymer Films of Poly-3-hydroxybutyrate Synthesized by Cupriavidus necator from Different Carbon Sources
Место публикации : J. Polym. Environ.: Springer, 2021. - Vol. 29, Is. 3. - С. 837-850. - ISSN 15662543 (ISSN), DOI 10.1007/s10924-020-01924-3
Аннотация: Films were prepared from 2% solutions of biodegradable poly-3-hydroxybutyrate [P(3HB)] and investigated. The polymer was synthesized by the Cupriavidus necator B-10646 bacterium cultivated using various carbon sources (glucose and glycerol of different degrees of purity, containing 0.3 to 17.93% impurities). Glycerol as the substrate influenced molecular-weight properties and crystallinity of the polymer without affecting its temperature characteristics. The P(3HB) specimens synthesized from glycerol had reduced Mw (300–400 kDa) and degree of crystallinity (50–55%) compared to the specimens synthesized from glucose (860 kDa and 76%, respectively). The low-crystallinity P(3HB) specimens, regardless of the degree of purity of glycerol, produced a beneficial effect on the properties of polymer films, which had a better developed folded surface and increased hydrophilicity. The values of the highest roughness (Ra) of the films synthesized from glycerol were 1.8 to 4.0 times lower and the water angles 1.4–1.6 times smaller compared to the films synthesized from glucose (71.75 nm and 87.4°, respectively). Those films performed better as cell scaffolds: the number of viable NIH fibroblasts was 1.7–1.9 times higher than on polystyrene (control) or films of P(3HB) synthesized from glucose. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
Scopus
Найти похожие
8.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Shishatskaya, Ekaterina, Nemtsev, Ivan, Lukyanenko, Anna, Vasiliev, Alexander, Kiselev, Evgeniy, Sukovatyi, Aleksey, Volova, Tatiana
Заглавие : Polymer Films of Poly-3-hydroxybutyrate Synthesized byCupriavidus necatorfrom Different Carbon Sources
Колич.характеристики :14 с
Коллективы : RFBRRussian Foundation for Basic Research (RFBR); KKRF [19-43-240012]; Ministry of Education and Science of the Russian FederationMinistry of Education and Science, Russian Federation [FSRZ-2020-0006]
Место публикации : J. Polym. Environ.: SPRINGER, 2020. - Article in press. - ISSN 1566-2543, DOI 10.1007/s10924-020-01924-3. - ISSN 1572-8919(eISSN)
Примечания : Cited References:54. - The reported study was funded by RFBR and KKRF Grant No. 19-43-240012 "Biological and physical principles of production of new generation biomaterials". The work was carried out as part of the State Assignment of the Ministry of Education and Science of the Russian Federation No. FSRZ-2020-0006. The authors would like to express their special thanks to Krasnoyarsk Regional Center of Research Equipment of Federal Research Center "Krasnoyarsk Science Center SB RAS" for providing equipment to ensure the accomplishment of this project.
Предметные рубрики: CHEMOMECHANICAL PROPERTIES
RALSTONIA-EUTROPHA
SURFACE-ROUGHNESS
Аннотация: Films were prepared from 2% solutions of biodegradable poly-3-hydroxybutyrate [P(3HB)] and investigated. The polymer was synthesized by theCupriavidus necatorB-10646 bacterium cultivated using various carbon sources (glucose and glycerol of different degrees of purity, containing 0.3 to 17.93% impurities). Glycerol as the substrate influenced molecular-weight properties and crystallinity of the polymer without affecting its temperature characteristics. The P(3HB) specimens synthesized from glycerol had reduced M-w(300-400 kDa) and degree of crystallinity (50-55%) compared to the specimens synthesized from glucose (860 kDa and 76%, respectively). The low-crystallinity P(3HB) specimens, regardless of the degree of purity of glycerol, produced a beneficial effect on the properties of polymer films, which had a better developed folded surface and increased hydrophilicity. The values of the highest roughness (R-a) of the films synthesized from glycerol were 1.8 to 4.0 times lower and the water angles 1.4-1.6 times smaller compared to the films synthesized from glucose (71.75 nm and 87.4 degrees, respectively). Those films performed better as cell scaffolds: the number of viable NIH fibroblasts was 1.7-1.9 times higher than on polystyrene (control) or films of P(3HB) synthesized from glucose.
WOS
Найти похожие
9.

Вид документа : Статья из сборника (выпуск продолж. издания)
Шифр издания :
Автор(ы) : Shevyrnogov A., Vysotskaya G.
Заглавие : Ocean processes revealing by seasonal dynamics of surface chlorophyll concentration (by satellite data)
Место публикации : Proceedings of SPIE - The International Society for Optical Engineering. - 2011. - Vol. 8175: Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2011 (21 September 2011 through 22 September 2011, Prague) Conference code: 87287. - Ст.1. - , DOI 10.1117/12.897819
Ключевые слова (''Своб.индексиров.''): chlorophyll concentration--modis--ocean--sea surface temperature--seawifs--chlorophyll concentration--modis--ocean--sea surface temperatures--seawifs--atmospheric temperature--band structure--chlorophyll--dynamics--ecology--hydrophilicity--productivity--remote sensing--satellites--sea ice--space optics--spatial distribution--surface properties--time series--time series analysis--oceanography
Аннотация: Continuous monitoring of phytopigment concentrations and sea surface temperature in the ocean by space-borne methods makes possible to estimate ecological condition of biocenoses in critical areas. In the papers of the authors (Shevyrnogov A.P., Vysotskaya G.S., Gitelzon J.I. 1996) existence of zones, which are quasi-stationary with similar seasonal dynamics of chlorophyll concentration at surface layer of ocean, was shown. Results were obtained on the base of processing of time series of satellite images SeaWiFS. It was shown that fronts and frontal zones coincide with dividing lines between quasi-stationary areas, especially in areas of large oceanic streams. The usage of the seasonal dynamics gives a possibility to circumvent influence of high-frequency component in investigation of dynamics of spatial distribution of surface streams. In addition, an analyses of unstable ocean productivity phenomena, stood out time series of satellite images, showed existence of areas with different types of instability in the all Global ocean. They are observed as adjacent nonstationary zones of different size, which are associated by different ways with known oceanic phenomena. It is evident that dynamics of a spatial distribution of biological productivity and sea surface temperature can give an additional knowledge of complicated picture of surface oceanic layer hydrology. В© 2011 SPIE.
Scopus
Найти похожие
10.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Slabko V.V., Volova T.G., Krasnov P.O., Kuzubov A.A., Shishatskaya E.I.
Заглавие : Surface modification of bioresorbable polymer scaffolds by laser treatment
Место публикации : Biophysics. - 2010. - Vol. 55, Is. 2. - С. 234-238. - ISSN 00063509 (ISSN) , DOI 10.1134/S0006350910020120
Ключевые слова (''Своб.индексиров.''): hydrophilicity--laser irradiation--microbial biocompatible and biodegradable polymers--polyhydroxybuturate--surface properties
Аннотация: The effect of laser irradiation on the properties of the surface of films prepared from a bioresorbable polymer poly(hydroxybuturate) has been studied. To determine the spectral region of the polymer optimal for the effective action of radiation on electron molecular bonds, theoretical investigations have been performed, which have shown that, for modifying the surface of PHB scaffolds, it is expedient to use a vacuum laser at a wavelength of 160 nm. Using laser irradiation at a power from 3 to 30 W, a series of films with modified surface, from roughnesses to perforations, have been obtained. The microstructure and properties of the film surface depending on the mode of irradiation have been examined, and conditions have been found under which the contact marginal angles of film wetting with water can be decreased to 50В° (compared with 76-80В° in starting products). Thus, conditions of laser treatment of PHB scaffolds have been theoretically substantiated and experimentally realized that provide a beneficial effect on the properties of the surface without destroying the structure of the material. В© 2010 Pleiades Publishing, Ltd.
Scopus
Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)