Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (3)Иностранные журналы библиотеки Института биофизики СО РАН (1)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=limnology<.>)
Общее количество найденных документов : 16
Показаны документы с 1 по 16
1.


   
    Understanding the mechanisms of blooming of phytoplankton in Lake Shira, a saline lake in Siberia (the Republic of Khakasia) / A. G. Degermendzhy, R. D. Gulati // Aquatic Ecology. - 2002. - Vol. 36, Is. 2. - P331-340 . - ISSN 1386-2588
Кл.слова (ненормированные):
Carbon budget -- Cyanobacteria -- Heterotrophic bacteria -- Hydrogen sulphide -- Mathematical models of stratification -- Meromictic lakes -- Microbial loop -- Stratification -- Trophic scheme -- algal bloom -- ecosystem modeling -- limiting factor -- nutrient availability -- phytoplankton -- saline lake -- trophic interaction -- Russian Federation -- algae -- Bacteria (microorganisms) -- Cyanobacteria -- Lyngbya -- Lyngbya contorta
Аннотация: The paper summarises the results of a three-year research study (European Union Grant: INTAS 97-0519) aimed at investigating the planktonic populations and trophic organization of the Lake Shira ecosystem - a saline lake in Khakasia, Siberia. The lake exhibits a stable summer-autumn stratification of the chemical-biological components. The mechanisms responsible for the 'blooming' of phytoplankton in the deeper layers were investigated in greater detail, using data from both field and laboratory experiments. The spectra of nutrition were examined to estimate the relationships between the specific growth rates of the hydrobionts and the influence of the limiting factors: light, nutrients. The observed heterotrophic capability of a metalimnetic phytoplankton population might help explain the development in the deeper waters of Lyngbya contorta. The scheme of trophic interactions was put up, based on the assessment of the carbon pools and carbon flows in the pelagic zone of the lake. A mathematical model of the vertical structure of the lake's plankton populations was constructed, using the ecosystem description and data of vertical turbulent diffusion. The role of light and nutrient limitations and grazing mortality in forming the vertical inhomogeneities, particularly in lowering the depth of the maximal cyanobacterial biomass, has been demonstrated. The theoretical curves for the stratification of chemical and biological parameters have been brought in conformity with the field observations, e.g. for the different patterns of the peaks, and for the biomass maxima of cyanobacteria, purple and green sulphur bacteria, oxygen, and hydrogen sulphide. The calculations revealed that for an adequate assessment of the parameters for the hydrogen sulphide zone it is necessary to introduce flows of allochthonous organic matter. Based on the form of the sulphur distribution curve, the allochthonous input of organic matter and the inflow of hydrogen sulphide from the bottom have been theoretically discriminated for the first time. It has also been ascertained that irrespective of the depth the allochthonous substances limiting bacterial growth, the bacteria are uniformly distributed over depth and can serve as an indicator of the presence of limitation (the effect of autostabilisation in space). Of indisputable interest to limnology are the specific methods developed for understanding the functioning of Lake Shira ecosystem. These include the autostabilisation of the limiting factors, the on-the-spot fluorescent method of determining the three classes of microalgae, the algal mixotrophy and the planktonic population interactions and feedbacks, and development of a more sensitive, bioluminescent method for mapping the nonhomogeneities. Owing to a balanced combination of classical approaches (field observations, in situ data on production-decomposition) and the more recent ones (satellite monitoring, biophysical methods of estimating interactions of populations, mathematical models based on the field and experimental data), many of the structural-function relationships in the ecosystem can now be explained, and the models can provide 'mutual control and mutual agreement' between the data collected using different approaches.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Degermendzhy, A.G.; Gulati, R.D.

Найти похожие
2.


   
    Status, trends, and future dynamics of freshwater ecosystems in Europe and Central Asia / R. E. Gozlan [et al.] // Inland Waters. - 2019, DOI 10.1080/20442041.2018.1510271 . - Article in press. - ISSN 2044-2041
Кл.слова (ненормированные):
aquatic -- biodiversity -- conservation -- habitat
Аннотация: This review is part of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) report on Europe and Central Asia (ECA) and provides a critical assessment of issues facing decision-makers, including freshwater biodiversity and ecosystem trends as well as drivers of change. Freshwater systems are well established as the most threatened ecosystem type in the ECA region, with the quantity and quality of habitats and abundance of many species rapidly declining. Only about half (53%) of the EU's rivers and lakes achieved good ecological status in 2015 (as defined by the Water Framework Directive in terms of the quality of the biological community), and many lakes, ponds, and streams are disappearing as a consequence of agricultural intensification and inefficient irrigation and urbanisation, combined with climate change. The situation regarding freshwater biodiversity remains highly critical in ECA as many species remain threatened with extinction, including >50% of known species for some groups (e.g., molluscs, amphibians). Drivers of ECA freshwater taxa include the destruction or modification of their habitat, including water abstraction, which affects ?89% of all amphibian threatened species and ?26% of threatened freshwater invertebrate species. Of particular concern is the lack of data for freshwater invertebrates. Current status is available for only a minority of species, and the impact of alien invasive species is often unknown, especially in Central Asia. Based on current freshwater biodiversity trends, it is highly unlikely that ECA will achieve either the respective Aichi biodiversity targets by 2020 (i.e., targets 2 to 4, 6 to 12, and 14) or Target 1 of the Biodiversity Strategy. © 2019, © 2019 International Society of Limnology (SIL).

Scopus,
Смотреть статью,
WOS
Держатели документа:
ISEM UMR226, Universite de Montpellier, CNRS, IRD, EPHE, Montpellier, 34090, France
Department of ecology and water resources management, Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan
Institute of Biophysics, Krasnoyarsk Scientific Center, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Severtsov Institute of Ecology and Evolution, Moscow, Russian Federation
Aquatic Ecology Group, University of Vic–Central University of Catalonia, Vic, Spain
Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain

Доп.точки доступа:
Gozlan, R. E.; Karimov, B. K.; Zadereev, E.; Kuznetsova, D.; Sandra Brucet S, S.

Найти похожие
3.


   
    Spatial and temporal variation in Arctic freshwater chemistry-Reflecting climate-induced landscape alterations and a changing template for biodiversity / B. J. Huser, M. N. Futter, D. Bogan [et al.] // Freshw. Biol. - 2020, DOI 10.1111/fwb.13645. - Cited References:98. - Environment and Climate Change Canada; Cumulative Impact Monitoring Program, Government of Northwest Territories . - Article in press. - ISSN 0046-5070. - ISSN 1365-2427
РУБ Ecology + Marine & Freshwater Biology
Рубрики:
DISSOLVED ORGANIC-CARBON
   PERMAFROST THAW

   CHEMICAL LIMNOLOGY

Кл.слова (ненормированные):
biogeochemistry -- eutrophication -- lakes -- oligotrophication -- rivers
Аннотация: Freshwater chemistry across the circumpolar region was characterised using a pan-Arctic data set from 1,032 lake and 482 river stations. Temporal trends were estimated for Early (1970-1985), Middle (1986-2000), and Late (2001-2015) periods. Spatial patterns were assessed using data collected since 2001. Alkalinity, pH, conductivity, sulfate, chloride, sodium, calcium, and magnesium (major ions) were generally higher in the northern-most Arctic regions than in the Near Arctic (southern-most) region. In particular, spatial patterns in pH, alkalinity, calcium, and magnesium appeared to reflect underlying geology, with more alkaline waters in the High Arctic and Sub Arctic, where sedimentary bedrock dominated. Carbon and nutrients displayed latitudinal trends, with lower levels of dissolved organic carbon (DOC), total nitrogen, and (to a lesser extent) total phosphorus (TP) in the High and Low Arctic than at lower latitudes. Significantly higher nutrient levels were observed in systems impacted by permafrost thaw slumps. Bulk temporal trends indicated that TP was higher during the Late period in the High Arctic, whereas it was lower in the Near Arctic. In contrast, DOC and total nitrogen were both lower during the Late period in the High Arctic sites. Major ion concentrations were higher in the Near, Sub, and Low Arctic during the Late period, but the opposite bulk trend was found in the High Arctic. Significant pan-Arctic temporal trends were detected for all variables, with the most prevalent being negative TP trends in the Near and Sub Arctic, and positive trends in the High and Low Arctic (mean trends ranged from +0.57%/year in the High/Low Arctic to -2.2%/year in the Near Arctic), indicating widespread nutrient enrichment at higher latitudes and oligotrophication at lower latitudes. The divergent P trends across regions may be explained by changes in deposition and climate, causing decreased catchment transport of P in the south (e.g. increased soil binding and trapping in terrestrial vegetation) and increased P availability in the north (deepening of the active layer of the permafrost and soil/sediment sloughing). Other changes in concentrations of major ions and DOC were consistent with projected effects of ongoing climate change. Given the ongoing warming across the Arctic, these region-specific changes are likely to have even greater effects on Arctic water quality, biota, ecosystem function and services, and human well-being in the future.

WOS
Держатели документа:
Swedish Univ Agr Sci, Dept Aquat Sci & Assessment, Box 7050, S-75007 Uppsala, Sweden.
Univ Alaska Anchorage, Alaska Ctr Conservat Sci, Anchorage, AK USA.
Norwegian Water Resources & Energy Directorate, Oslo, Norway.
Univ Oslo, Nat Hist Museum, Oslo, Norway.
Wilfrid Laurier Univ, Cold Regions Res Ctr, Waterloo, ON, Canada.
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk, Russia.
Umea Univ, Climate Impacts Res Ctr, Dept Ecol & Environm Sci, Umea, Sweden.
Queens Univ, Dept Biol, Paleoecol Environm Assessment & Res Lab PEARL, Kingston, ON, Canada.
Norwegian Inst Nat Res, Oslo, Norway.
Univ New Brunswick, Canadian Rivers Inst, Fredericton, NB, Canada.
Univ New Brunswick, Dept Biol, Fredericton, NB, Canada.

Доп.точки доступа:
Huser, Brian J.; Futter, Martyn N.; Bogan, Daniel; Brittain, John E.; Culp, Joseph M.; Goedkoop, Willem; Gribovskaya, Iliada; Karlsson, Jan; Lau, Danny C. P.; Ruhland, Kathleen M.; Schartau, Ann Kristin; Shaftel, Rebecca; Smol, John P.; Vrede, Tobias; Lento, Jennifer; Environment and Climate Change Canada; Cumulative Impact Monitoring Program, Government of Northwest Territories

Найти похожие
4.


   
    Preface: Value and dynamics of salt lakes in a changing world / O. Aharon [et al.] // J. Oceanol. Limnol. - 2018. - Vol. 36, Is. 6. - P1901-1906, DOI 10.1007/s00343-018-8301-4. - Cited References:26 . - ISSN 2096-5508
РУБ Limnology + Oceanography
Рубрики:
ARAL SEA

WOS,
Смотреть статью,
Scopus
Держатели документа:
Hebrew Univ Jerusalem, Alexander Silberman Inst Life Sci, Dept Plant & Environm Sci, Edmond J Safra Campus, IL-9190401 Jerusalem, Israel.
Tianjin Univ Sci & Engn, Coll Marine Sci & Engn, Tianjin Key Lab Marine Resources & Chem, Tianjin 200347, Peoples R China.
Russian Acad Sci, Inst Marine Biol Res, Sevastopol 299011, Russia.
CAGS, Inst Mineral Resources, MLR Key Lab Saline Lake Resources & Environm, Beijing 100037, Peoples R China.
Russian Acad Sci, Siberian Branch, Krasnoyarsk Res Ctr, Inst Biophys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodniy 79, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Aharon, Oren; Deng, T. L.; Shadrin, Nikolai V.; Zheng, M. P.; Zadereev, Egor S.

Найти похожие
5.


   
    Intraspecies variability of fatty acid content and composition of a cosmopolitan benthic invertebrate, Gammarus lacustris / O. N. Makhutova [et al.] // Inland Waters. - 2018. - Vol. 8, Is. 3. - P356-367, DOI 10.1080/20442041.2018.1487157 . - ISSN 2044-2041
Кл.слова (ненормированные):
essential polyunsaturated fatty acids -- fish -- food quality -- salinity -- temperature
Аннотация: Aquatic invertebrates are valuable dietary sources of essential polyunsaturated fatty acids, eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), for fish. Phylogeny, diet, and various ecological factors affect the fatty acid composition of aquatic invertebrates. We focused our study on the effect of ecological factors to a cosmopolitan species inhabiting lakes that differed in salinity, temperature, and presence/absence of predators (fish). To avoid the effect of phylogeny, which strongly influences the fatty acid composition of animals, we studied several populations of one cosmopolitan benthic species, Gammarus lacustris Sars. We found that differences in fatty acid percentages of G. lacustris were mainly affected by differences in their diets. Some populations preferred dinoflagellates, cryptophytes, green algae/cyanobacteria, and bacteria; other populations selected diatoms; and still other populations consumed zooplankton or allochthonous (terrestrial) organic matter. The salinity and presence/absence of fish affected the contents of EPA and DHA in G. lacustris. Populations from saline and fishless lakes had significantly higher contents of EPA and DHA. Thus, stocking of fishless lakes dominated by G. lacustris with fish could lead to a decrease in EPA and DHA contents in the gammarids. We propose that some saline and fishless lakes could be used as a source of gammarids for aquaculture fish feeding. © 2018, © 2018 International Society of Limnology (SIL).

Scopus,
Смотреть статью
Держатели документа:
Institute of Biophysics of Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Tyumen Scientific Centre Siberian Branch, Russian Academy of Sciences, Institute of the problems of Northern development, Tyumen, Russian Federation

Доп.точки доступа:
Makhutova, O. N.; Shulepina, S. P.; Sharapova, T. A.; Kolmakova, A. A.; Glushchenko, L. A.; Kravchuk, E. S.; Gladyshev, M. I.

Найти похожие
6.


   
    Infochemical-mediated trophic interactions between the rotifer Brachionus calyciflorus and its food algae / A. M. Verschoor, Y. S. Zadereev, W. M. Mooij // Limnology and Oceanography. - 2007. - Vol. 52, Is. 5. - P2109-2119 . - ISSN 0024-3590
Кл.слова (ненормированные):
alga -- aquatic ecosystem -- assimilation efficiency -- experimental study -- feeding behavior -- food web -- freshwater environment -- ingestion rate -- trophic interaction -- algae -- Brachionus calyciflorus -- Rotifera -- Scenedesmus -- Scenedesmus obliquus
Аннотация: We studied how chemicals obtained as filtrates from algal monocultures (algal chemicals) and from rotifer cultures with or without algae (rotifer chemicals) affected feeding rates of the rotifer Brachionus calyciflorus on its food algae, both directly and indirectly (through chemical-induced changes in algal morphology). Algal chemicals had a strong stimulating effect on the feeding rate of B. calyciflorus, but these effects were counteracted by rotifer chemicals. In functional response experiments, rotifer chemicals lowered maximum ingestion rates and had strong effects on assimilation rates and assimilation efficiencies of B. calyciflorus, probably due to the release of unspecific (auto)toxic metabolites. Furthermore, rotifer chemicals induced colony formation in the food alga Scenedesmus obliquus. Above the optimum particle size for ingestion by B. calyciflorus, larger algal colony sizes increased the food-handling time, thus lowering ingestion and assimilation rates. Through their effects on trophic interactions, infochemicals may play a role in structuring and the functioning of aquatic food webs. В© 2007, by the American Society of Limnology and Oceanography, Inc.

Scopus
Держатели документа:
Netherlands Institute of Ecology (NIOO-KNAW), Centre for Limnology, Rijksstraatweg 6, 3631 AC Nieuwersluis, Netherlands
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Verschoor, A.M.; Zadereev, Y.S.; Mooij, W.M.

Найти похожие
7.


   
    Global data set of long-term summertime vertical temperature profiles in 153 lakes / R. M. Pilla, E. M. Mette, C. E. Williamson [et al.] // Sci. Data. - 2021. - Vol. 8, Is. 1. - Ст. 200, DOI 10.1038/s41597-021-00983-y . - ISSN 2052-4463
Аннотация: Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change. © 2021, The Author(s).

Scopus
Держатели документа:
Miami University, Department of Biology, Oxford, OH, United States
Belarusian State University, Faculty of Biology, Minsk, Belarus
Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Ecosystem Research, Berlin, Germany
INRAE, University of Savoie Mont-Blanc, CARRTEL, Thonon-les-Bains, France
University of Comahue: INIBIOMA, CONICET, Neuquen, Argentina
University of Shiga Prefecture, Hikone, Shiga, Japan
University of Nevada, Reno, Global Water Center, Reno, NV, United States
Uppsala University, Department of Ecology and Genetics/Limnology, Uppsala, Sweden
University of Montana, Flathead Lake Biological Station, Polson, Montana, United States
Universidad del Valle de Guatemala Centro de Estudios Atitlan, Guatemala, Guatemala
University of Innsbruck, Research Department for Limnology Mondsee, Mondsee, Austria
Mohonk Preserve, Daniel Smiley Research Center, New Paltz, NY, United States
UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster, United Kingdom
Seqwater, Ipswich, QLD, Australia
Florida International University, Department of Biological Sciences and Institute of Environment, Miami, FL, United States
U.S. National Park Service, Crater Lake National Park, Crater Lake, OR, United States
University of Oklahoma, Department of Biology, Norman, OK, United States
Griffith University, Australian Rivers Institute, Nathan, Australia
University of Florida, Gainesville, FL, United States
University of Oslo, Department of Biosciences, Oslo, Norway
LUBW Landesanstalt fur Umwelt, Messungen und Naturschutz Baden-Wurttemberg, Institut fur Seenforschung, Langenargen, Germany
IISD Experimental Lake Area Inc., Winnipeg, MB, Canada
FAO, BELSPO, Brussels, Belgium
University of Eastern Finland, Department of Environmental and Biological Sciences, Joensuu, Finland
Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dubendorf, Switzerland
CSIRO, Land and Water, Canberra, Australia
Laurentian University, Cooperative Freshwater Ecology Unit, Sudbury, Ontario, Canada
Fairfield University, Biology Department, Fairfield, CT, United States
University of Minnesota, Itasca Biological Station and Laboratories, Lake Itasca, MN, United States
Finnish Environment Institute SYKE, Freshwater Center, Helsinki, Finland
A.N. Severtsov Institute of Ecology and Evolution of The Russian Academy of Sciences, Laboratory of Ecology of Water Communities and Invasions, Moscow, Russian Federation
Zurich Water Supply, City of Zurich, Zurich, Switzerland
University of Regina, Institute of Environmental Change and Society, Regina, SK, Canada
Milano-Bicocca University, Milan, Italy
University of Applied Sciences and Arts of Southern Switzerland, Department for Environment, Constructions and Design, Canobbio, Switzerland
Kamchatka Research Institute of Fisheries & Oceanography, now Kamchatka Branch of Russian Federal Research Institute of Fisheries and Oceanography, Petropavlovsk-Kamchatsky, Russian Federation
University of Wisconsin, Center for Limnology, Boulder Junction, WI, United States
Federal Agency for Water Management, Institute for Aquatic Ecology and Fisheries Management, Mondsee, Austria
University of California Santa Barbara, Department of Ecology, Evolution and Marine Biology, Santa Barbara, California, United States
University of Waikato, Environmental Research Institute, Hamilton, New Zealand
Ryerson University, Department of Chemistry and Biology, Toronto, ON, Canada
University of Hamburg, Department of Biology, Hamburg, Germany
Dominion Diamond Mines, Environment Department, Calgary, AB, Canada
Ontario Ministry of the Environment, Conservation and Parks, Dorset Environmental Science Centre, Dorset, ON, Canada
Irkutsk State University, Institute of Biology, Irkutsk, Russian Federation
University of Liege, Chemical Oceanography Unit, Institut de Physique (B5A), Liege, Belgium
SUNY New Paltz, Biology Department, New Paltz, NY, United States
The Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
CNR Water Research institute, Verbania, Verbania, Pallanza, Italy
Krasnoyarsk Scientific Center SB RAS, Institute of Biophysics, Krasnoyarsk, Russian Federation
University of California Davis, Department of Environmental Science and Policy, Davis, CA, United States
Fondazione Edmund Mach, Research and Innovation Centre, San Michele all’Adige, Italy
University of Maine, Climate Change Institute, Orono, ME, United States
University of Turku, Turku, Finland
Universite Laval, Departments of Biology and Geography, Quebec, Canada
University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA, United States
The Technical University of Kenya, Department of Geosciences and the Environment, Nairobi, Kenya
University of Innsbruck, Department of Ecology, Innsbruck, Austria
University of Konstanz, Limnological Institute, Konstanz, Germany
Dickinson College, Department of Environmental Science, Carlisle, PA, United States
Archbold Biological Station, Venus, FL, United States
University of Michigan, Biological Station, Pellston, MI, United States
Vrije Universiteit Brussel, Department of Hydrology and Hydraulic Engineering, Brussels, Belgium
ETH Zurich, Institute for Atmospheric and Climate Science, Zurich, Switzerland
National Institute of Water & Atmospheric Research, Hamilton, New Zealand
University of Alberta, Department of Biological Sciences, Edmonton, AB, Canada
Cary Institute of Ecosystem Studies, Millbrook, NY, United States

Доп.точки доступа:
Pilla, R. M.; Mette, E. M.; Williamson, C. E.; Adamovich, B. V.; Adrian, R.; Anneville, O.; Balseiro, E.; Ban, S.; Chandra, S.; Colom-Montero, W.; Devlin, S. P.; Dix, M. A.; Dokulil, M. T.; Feldsine, N. A.; Feuchtmayr, H.; Fogarty, N. K.; Gaiser, E. E.; Girdner, S. F.; Gonzalez, M. J.; Hambright, K. D.; Hamilton, D. P.; Havens, K.; Hessen, D. O.; Hetzenauer, H.; Higgins, S. N.; Huttula, T. H.; Huuskonen, H.; Isles, P. D.F.; Joehnk, K. D.; Keller, W. B.; Klug, J.; Knoll, L. B.; Korhonen, J.; Korovchinsky, N. M.; Koster, O.; Kraemer, B. M.; Leavitt, P. R.; Leoni, B.; Lepori, F.; Lepskaya, E. V.; Lottig, N. R.; Luger, M. S.; Maberly, S. C.; MacIntyre, S.; McBride, C.; McIntyre, P.; Melles, S. J.; Modenutti, B.; Muller-Navarra, D. C.; Pacholski, L.; Paterson, A. M.; Pierson, D. C.; Pislegina, H. V.; Plisnier, P. -D.; Richardson, D. C.; Rimmer, A.; Rogora, M.; Rogozin, D. Y.; Rusak, J. A.; Rusanovskaya, O. O.; Sadro, S.; Salmaso, N.; Saros, J. E.; Sarvala, J.; Saulnier-Talbot, E.; Schindler, D. E.; Shimaraeva, S. V.; Silow, E. A.; Sitoki, L. M.; Sommaruga, R.; Straile, D.; Strock, K. E.; Swain, H.; Tallant, J. M.; Thiery, W.; Timofeyev, M. A.; Tolomeev, A. P.; Tominaga, K.; Vanni, M. J.; Verburg, P.; Vinebrooke, R. D.; Wanzenbock, J.; Weathers, K.; Weyhenmeyer, G. A.; Zadereev, E. S.; Zhukova, T. V.

Найти похожие
8.


   
    Effects of zooplankton carcasses degradation on freshwater bacterial community composition and implications for carbon cycling / O. V. Kolmakova [et al.] // Environ. Microbiol. - 2018, DOI 10.1111/1462-2920.14418 . - Article in press. - ISSN 1462-2912
Аннотация: Non-predatory mortality of zooplankton provides an abundant, yet, little studied source of high quality labile organic matter (LOM) in aquatic ecosystems. Using laboratory microcosms, we followed the decomposition of organic carbon of fresh 13C-labelled Daphnia carcasses by natural bacterioplankton. The experimental setup comprised blank microcosms, that is, artificial lake water without any organic matter additions (B), and microcosms either amended with natural humic matter (H), fresh Daphnia carcasses (D) or both, that is, humic matter and Daphnia carcasses (HD). Most of the carcass carbon was consumed and respired by the bacterial community within 15 days of incubation. A shift in the bacterial community composition shaped by labile carcass carbon and by humic matter was observed. Nevertheless, we did not observe a quantitative change in humic matter degradation by heterotrophic bacteria in the presence of LOM derived from carcasses. However, carcasses were the main factor driving the bacterial community composition suggesting that the presence of large quantities of dead zooplankton might affect the carbon cycling in aquatic ecosystems. Our results imply that organic matter derived from zooplankton carcasses is efficiently remineralized by a highly specific bacterial community, but does not interfere with the bacterial turnover of more refractory humic matter. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Siberian Federal University, Institute of Fundamental Biology and Biotechnology, Krasnoyarsk, Russian Federation
Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
GFZ German Research Centre for Geosciencess, Section 5.3 Geomicrobiology, Potsdam, Germany
Experimental Phycology and Culture Collection of Algae (SAG), University of Gottingen, Gottingen, Germany
Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany

Доп.точки доступа:
Kolmakova, O. V.; Gladyshev, M. I.; Fonvielle, J. A.; Ganzert, L.; Hornick, T.; Grossart, H. -P.

Найти похожие
9.


   
    Effect of chemical interactions on the diapause induction in zooplankton [Text] / Y. S. Zadereev ; ed. Acad Sci, Kirensky Inst Phys, Siberian Div, Aka Gorodok, Krasnoyarsk 660036, Russia Russi // International Association of Theoretical and Applied Limnology, Vol 29, Pt 1, Proceedings. Ser. INTERNATIONAL ASSOCIATION OF THEORETICAL AND APPLIED LIMNOLOGY - PROCEEDINGS : E SCHWEIZERBART'SCHE VERLAGSBUCHHANDLUNG, 2005. - Vol. 29: 29th Congress of the International-Association-of-Theoretical-and-Applied-Limnology (AUG 08-14, 2004, Lahti, FINLAND). - P. 227-230. - Cited References: 24 . - ISBN 0368-0770. - ISBN 3-510-54065-4
РУБ Limnology
Рубрики:
PREDATOR-INDUCED DIAPAUSE
   BRACHIONUS-PLICATILIS

   DAPHNIA-MAGNA

   REPRODUCTION

   CLADOCERA

   REDUCTION

   CRUSTACEA

   DENSITY

   GROWTH

   PULEX

Кл.слова (ненормированные):
embryonic diapause -- density dependence -- predator avoidance -- chemical interactions

WOS
Держатели документа:
RAS, SB, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Zadereev, Y.S.; Russi, Acad Sci, Kirensky Inst Phys, Siberian Div, Aka Gorodok, Krasnoyarsk 660036, Russia \ed.\

Найти похожие
10.


   
    Differences in organic matter and bacterioplankton between sections of the largest Arctic river: Mosaic or continuum? [Text] / M. I. Gladyshev [et al.] // Limnol. Oceanogr. - 2015. - Vol. 60, Is. 4. - P1314-1331, DOI 10.1002/lno.10097. - Cited References:75. - At the stage of laboratory analyses, calculations, and generalizations, the work was supported by the project No. 6.1089.214/K of Siberian Federal University, carried out according to Federal Tasks of Ministry of Education and Science of Russian Federation, and by Russian Federal Tasks of Fundamental Research (project No. 51.1.1). The research cruise was supported by the Attracting Leading Scientists to Russian Educational Institutions Program of the Russian Federation, agreement 11.G34.31.0014. . - ISSN 0024-3590. - ISSN 1939-5590
РУБ Limnology + Oceanography
Рубрики:
FATTY-ACID-COMPOSITION
   KARA SEA

   YENISEI RIVER

   CARBON-CYCLE

Аннотация: We studied biogeochemical characteristics, including organic carbon and nitrogen contents, fatty acid (FA) composition, stable isotope ratios, and primary production in conjunction with species composition of bacterioplankton, using next generation sequencing, in the Yenisei River along a distance similar to 1800km. Basing on FA composition of particulate organic matter (POM) and on other indicators of sources of POM, the river was subdivided into four sections. The upper section 1, situated in mountain region, was the net source of high-quality autochthonous organic matter, produced primarily by diatoms and partly consumed by specialized bacteria species. Section 2 in plain taiga was net sink of high quality allochthonous and autochthonous organic matter, produced by cyanobacteria and green algae. Section 3 was net sink of organic matter, primarily allochthonous, consumed by the specialized species of bacteria. The lowest section 4, situated in tundra, was primarily the conduit of recalcitrant terrestrial organic matter, but also the net source of autochthonous organic matter, produced by diatoms. Biogeochemical traits of sections of the Yenisei River evidently shaped dominant species composition of bacterioplankton of these sections. Regarding the biogeochemical and microbiological data, we concluded that the Yenisei River ecosystem complexly combines features of river mosaic, river continuum, and "neutral pipe."

WOS,
Scopus
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Gladyshev, Michail I.; Kolmakova, Olesia V.; Tolomeev, Alexander P.; Anishchenko, Olesia V.; Makhutova, Olesia N.; Kolmakova, Anzhelika A.; Kravchuk, Elena S.; Glushchenko, Larisa A.; Kolmakov, Vladimir I.; Sushchik, Nadezhda N.; Siberian Federal University [6.1089.214/K]; Russian Federal Tasks of Fundamental Research [51.1.1]; Attracting Leading Scientists to Russian Educational Institutions Program of the Russian Federation [11.G34.31.0014]

Найти похожие
11.


   
    Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes / R. M. Pilla, C. E. Williamson, B. V. Adamovich [et al.] // Sci. Rep. - 2020. - Vol. 10, Is. 1. - Ст. 20514, DOI 10.1038/s41598-020-76873-x . - ISSN 2045-2322
Аннотация: Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade?1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m?3 decade?1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade?1), but had high variability across lakes, with trends in individual lakes ranging from ? 0.68 °C decade?1 to + 0.65 °C decade?1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences. © 2020, The Author(s).

Scopus
Держатели документа:
Department of Biology, Miami University, Oxford, OH, United States
Faculty of Biology, Belarusian State University, Minsk, Belarus
Department of Ecosystems Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
Freie Universitat Berlin, Berlin, Germany
CARRTEL, INRAE, Thonon-les-Bains, France
Global Water Center, University of Nevada, Reno, NV, United States
Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
Flathead Lake Biological Station, University of Montana, Polson, MT, United States
Instituto de Investigacones, Universidad del Valle de Guatemala, Guatemala, Guatemala
Research Department for Limnology Mondsee, University of Innsbruck, Mondsee, Austria
Department of Biological Sciences, Florida International University, Miami, FL, United States
Crater Lake National Park, U.S. National Park Service, Crater Lake, OR, United States
Department of Biology, Plankton Ecology and Limnology Lab and Geographical Ecology Group, University of Oklahoma, Norman, OK, United States
Australian Rivers Institute, Griffith University, Nathan, Australia
Florida Sea Grant and UF/IFAS, University of Florida, Gainesville, FL, United States
Department of Biosciences, University of Oslo, Oslo, Norway
IISD Experimental Lake Area Inc, Winnipeg, MB, Canada
Freshwater Center, Finnish Environment Institute SYKE, Helsinki, Finland
Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland
Land and Water, CSIRO, Canberra, Australia
Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
Cooperative Freshwater Ecology Unit, Laurentian University, Ramsey Lake Road, Sudbury, ON, Canada
Itasca Biological Station and Laboratories, University of Minnesota, Lake Itasca, MN, United States
Institute of Environmental Change and Society, University of Regina, Regina, SK, Canada
Institute for Global Food Security, Queen’s University Belfast, Belfast Co., Antrim, United Kingdom
Department for Environment, Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland, Canobbio, Switzerland
Federal Agency for Water Management AT, Mondsee, Austria
Lake Ecosystems Group, UK Centre for Ecology & Hydrology, Lancaster, United Kingdom
Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, United States
Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
Department of Biology, University of Hamburg, Hamburg, Germany
Institute of Biology, Irkutsk State University, Irkutsk, Russian Federation
University of Liege, Liege, Belgium
Department of Biology, SUNY New Paltz, New Paltz, NY, United States
The Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
CNR Water Research Institute, Verbania Pallanza, Italy
Dorset Environmental Science Centre, Ontario Ministry of the Environment, Conservation, and Parks, Dorset, ON, Canada
Department of Environmental Science and Policy, University of California Davis, Davis, CA, United States
Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele All’Adige, Italy
Climate Change Institute, University of Maine, Orono, ME, United States
Centre D’Etudes Nordiques, Universite Laval, Quebec, QC, Canada
School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
Surface Waters-Research and Management, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
Department of Geosciences and the Environment, The Technical University of Kenya, Nairobi, Kenya
Department of Ecology, University of Innsbruck, Innsbruck, Austria
Limnological Institute, University of Konstanz, Konstanz, Germany
Department of Environmental Science, Dickinson College, Carlisle, PA, United States
Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium
Institute for Atmospheric and Climate Science, Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland
National Institute of Water and Atmospheric Research, Hamilton, New Zealand
Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
Institute of Biophysics, Krasnoyarsk Scientific Center Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Pilla, R. M.; Williamson, C. E.; Adamovich, B. V.; Adrian, R.; Anneville, O.; Chandra, S.; Colom-Montero, W.; Devlin, S. P.; Dix, M. A.; Dokulil, M. T.; Gaiser, E. E.; Girdner, S. F.; Hambright, K. D.; Hamilton, D. P.; Havens, K.; Hessen, D. O.; Higgins, S. N.; Huttula, T. H.; Huuskonen, H.; Isles, P. D.F.; Joehnk, K. D.; Jones, I. D.; Keller, W. B.; Knoll, L. B.; Korhonen, J.; Kraemer, B. M.; Leavitt, P. R.; Lepori, F.; Luger, M. S.; Maberly, S. C.; Melack, J. M.; Melles, S. J.; Muller-Navarra, D. C.; Pierson, D. C.; Pislegina, H. V.; Plisnier, P. -D.; Richardson, D. C.; Rimmer, A.; Rogora, M.; Rusak, J. A.; Sadro, S.; Salmaso, N.; Saros, J. E.; Saulnier-Talbot, E.; Schindler, D. E.; Schmid, M.; Shimaraeva, S. V.; Silow, E. A.; Sitoki, L. M.; Sommaruga, R.; Straile, D.; Strock, K. E.; Thiery, W.; Timofeyev, M. A.; Verburg, P.; Vinebrooke, R. D.; Weyhenmeyer, G. A.; Zadereev, E.

Найти похожие
12.


   
    Application of satellite data for investigation of dynamic processes in inland water bodies: Lake Shira (Khakasia, Siberia), a case study / A. P. Shevyrnogov, A. V. Kartushinsky, G. S. Vysotskaya // Aquatic Ecology. - 2002. - Vol. 36, Is. 2. - P153-163, DOI 10.1023/A:1015658927683 . - ISSN 1386-2588
Кл.слова (ненормированные):
Modelling -- Phytopigments -- Satellite data -- Satellite equipment -- Software -- Temperature -- AVHRR -- hydrodynamics -- lake -- limnology -- remote sensing -- saline lake -- satellite data -- water temperature -- Russian Federation
Аннотация: This work describes avenues to use satellite information to analyse dynamic processes in aquatic ecosystems. Information for this analysis, was retrieved from AVHRR satellite sensor data. This information consisteds of time series of images of radiation temperature and turbidity. We expect this information will be of great value in analysing inland water bodies. Methods to process satellite information using original software and data processing techniques are proposed. For the investigation of the process and analyses of satellite information Shira Lake (Khakasia, Siberia) was used as a case study. To study the variability of the surface temperature and turbidity of the Lake in summer, the satellite and ground-truth data of the lake was applied. This study represents the first evaluation of the dynamic processes for Lake Shira based on satellite, ground-truth and modelling data. We developed algorithms and software to process satellite images to enable the reconstruction of time dependence of temperature and spectral reflectance of water bodies in the visible range, and to make computer-animated films visualising the spatial and temporal dynamics of the study parameters. The analyses of morphometric, meteorological and hydrological characteristics of Lake Shira have provided a realistic opportunity for processing the satellite information and to develop numerical models of variability of the hydrological regime of the lake. The results obtained demonstrate the feasibility of systematically retrieving the spatial information from the satellite data on the dynamics of the surface water temperature and of the suspended matter in the lake.

Scopus
Держатели документа:
Institute of Biophysics of SB RAS, Akademgorodok, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shevyrnogov, A.P.; Kartushinsky, A.V.; Vysotskaya, G.S.

Найти похожие
13.


   
    Agent-based modeling of the complex life cycle of a cyanobacterium (Anabaena) in a shallow reservoir / F. L. Hellweger [et al.] // Limnology and Oceanography. - 2008. - Vol. 53, Is. 4. - P1227-1241 . - ISSN 0024-3590
Кл.слова (ненормированные):
algal bloom -- annual variation -- cyanobacterium -- ecological modeling -- Eulerian analysis -- experimental study -- Lagrangian analysis -- life cycle -- nutrient availability -- phytoplankton -- population dynamics -- reservoir -- shallow water -- survival -- water column -- Bugach Reservoir -- Eurasia -- Krasnoyarsk [Russian Federation] -- Russian Federation -- Anabaena -- Anabaena flos-aquae
Аннотация: The cyanobacterium Anabaena flos-aquae and many other phytoplankton species have a complex life cycle that includes a resting stage (akinete). We present a new agent-based (also known as individual-based) model of Anabaena that includes the formation and behavior of akinetes. The model is part of a coupled Eulerian-Lagrangian model and can reproduce the main features of the observed seasonal and interannual population dynamics in Bugach Reservoir (Siberia), including an unexpectedly large bloom in a year with low nutrient concentrations. Model analysis shows that the internal loading of phosphorus (P) due to germination from the sediment bed is ?10% of the total input. However, most of the long-term nutrient uptake for Anabaena occurs in the sediment bed, which suggests that the sediment bed is not just a convenient overwintering location but may also be the primary source of nutrients. An in silico tracing experiment showed that most water column cells (?90%) originated from cells located in the sediment bed during the preceding winter. An in silico gene knockout experiment (akinete formation is prohibited) showed that the formation of resting stages is of critical importance to the survival of the population on an annual basis. A nutrient-reduction management scenario indicates that Anabaena densities increase because they are less sensitive to water column nutrient levels (because of the sediment bed source) than other species. В© 2008, by the American Society of Limnology and Oceanography, Inc.

Scopus
Держатели документа:
Civil and Environmental Engineering Department, Northeastern University, Boston, MA 02115, United States
Center for Urban Environmental Studies, Northeastern University, Boston, MA 02115, United States
Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
Siberian Federal University, Krasnoyarsk 660041, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Hellweger, F.L.; Kravchuk, E.S.; Novotny, V.; Gladyshev, M.I.

Найти похожие
14.


   
    Advances in the use of molecular tools in ecological and biodiversity assessment of aquatic ecosystems / M. J. Feio, A. F. Filipe, A. Garcia-Raventos [et al.] // Limnetica. - 2020. - Vol. 39: 19th Congress of the Iberian-Association-of-Limnology (AIL) (JUN 24-29, 2018, Coimbra, PORTUGAL), Is. 1. - P419-440, DOI 10.23818/limn.39.27. - Cited References:92. - We are grateful to all participants of the special session "The use of molecular tools in ecological and biodiversity assessment of aquatic ecosystems" for the productive discussions during the AIL 2018 meeting (XIX Iberian Association of Limnology meeting in Coimbra (Portugal, June 2018). M.J. Feio is supported by MARE strategic program (UID/MAR/04292/2013); SFP Almeida is supported by GeoBioTec strategic program UID/GEO/04035/2019. R. Cordeiro was supported by a Ph.D. Grant (M3.1.a/F/017/2011) from Fundo Regional da Ciencia e Tecnologia (FRCT); A.F. Filipe and A. Garcia-Raventos were supported by FRESHING Project "Next-generation biomonitoring: freshwater bioassessment and species conservation improved with metagenomics" funded by the Portuguese Foundation for Science and Technology (FCT) and COMPETE (PTDC/AAG-MAA/2261/2014 -POCI-01-0145-FEDER-356 016824); F.M.S. Martins was supported by a FCT PhD grant (SFRH/BD/104703/2014); A.R. Calapez was supported by a grant from the FCT-PhD programme FLUVIO (PD\BD\52510\2014); A.M. Pujante acknowledges the BIOWAT-KIT_E!11892 Eurostars project; Maria Fais and Sofia Duarte were supported, respectively, by a PhD (SFRH/BD/113547/2015) and a post-doc fellowship (SFRH/BPD/109842/2015), from FCT; and C. Murria acknowledges the Fundacio Aigues de Barcelona for funding his research. . - ISSN 0213-8409. - ISSN 1989-1806
РУБ Limnology + Marine & Freshwater Biology
Рубрики:
BARCODE REFERENCE LIBRARY
   METABARCODING APPROACH

   RAPID ASSESSMENT

Кл.слова (ненормированные):
eDNA -- metabarcoding -- conservation -- ecological quality -- species -- detection -- rivers -- lakes -- thermal springs -- estuaries -- lagoons
Аннотация: Conservation and sustainable management of aquatic ecosystems is a priority in environmental programs worldwide. However, these aims are highly dependent on the efficiency, accuracy and cost of existent methods for the detection of keystone species and monitoring of biological communities. Rapid advances in eDNA, barcoding and metabarcoding promoted by high-throughput sequencing technologies are generating millions of sequences in a fast way, with a promising cost reduction, and overcoming some difficulties of the traditional taxonomic approaches. This paper provides an updated broad perspective of the current developments in this dynamic field presented in the special session (SS) "The use of molecular tools in ecological and biodiversity assessment of aquatic ecosystems" of the XIX Congress of the Iberian Association of Limnology (AIL2018), held in Coimbra, Portugal. Developments presented are mainly focused on the Iberian Peninsula (Portugal and Spain, including Atlantic Macaronesian islands) but include studies in France, Germany, Finland, Russia (Siberia) and South America. The networks within which these researchers are involved are yet even broader, profiting from existing molecular facilities, and traditional taxonomic expertise, which can be viewed as a characteristic of this new research area. It was evident in the SS that the use of molecular tools is widespread, being used to study a diversity of aquatic systems, from rivers' headwaters to estuaries and coastal lagoons, and volcanic, mountain and frozen lakes to hot springs. The organisms targeted are likewise varied and include fish, macroinvertebrates, meiofauna, microalgae such as diatoms and dinoflagellates, other protists, fungi, and bacteria (cyanobacteria and other). Some studies address the whole biodiversity (i.e., all species present independently of the taxonomic group) from environmental samples of water, biofilms and preservative solution from field samples (e.g., ethanol from macroinvertebrate samples). Great advances were acknowledged in the special session, namely in the use of metabarcoding for detecting hidden biodiversity, juvenile stages, low-abundance species, non-indigenous species and toxicity potential, and ultimately for ecological monitoring of diatoms and invertebrates. Yet, several drawbacks were highlighted and need further work, which include: taxonomic gaps in the reference databases (including gaps at species level and on intraspecific variability) or absence of public databases (e.g. for meiofauna), still high sequencing costs, the need of a substantial bioinformatics effort, difficulties in establishing the amount of environmental sample necessary for a good DNA extraction and the need for testing different genetic markers to obtain accurate results.

WOS
Держатели документа:
Marine & Environm Sci Ctr MARE, Coimbra, Portugal.
Univ Coimbra, Fac Sci & Technol, Dept Life Sci, Coimbra, Portugal.
Univ Porto, CIBIO InBio, Ctr Invest Biodiversidade & Recursos Genet, Campus Vairdo,Vila Conde, Porto, Portugal.
Univ Lisbon, Inst Super Agron, Ctr Invest Biodiversidade & Recursos Genet, CIBIO InBio, Lisbon, Portugal.
Univ Oviedo, Dept Funct Biol, C Julian Claveria S-N, E-33006 Oviedo, Spain.
Univ Lisbon, Sch Agr, Linking Landscape Environm Agr & Food LEAF, Lisbon, Portugal.
Labs Tecnol Levante SL, Avda Benjamin Franklin 16, Valencia 46980, Spain.
Univ Aveiro, Dept Biol & GeoBioTec GeoBioSci, GeoTechnol & GeoEngn Res Ctr, Campus Santiago, P-3810193 Aveiro, Portugal.
Univ Barcelona, Grup Recerca Freshwater Ecol Hydrol & Management, Avinguda Diagonal 643, E-08028 Barcelona, Spain.
Univ Barcelona, Inst Recerca Biodiversitat IRBio, Dept Biol Evolut Ecol & Ciencies Ambientals, Fac Biol, Avinguda Diagonal 643, E-08028 Barcelona, Spain.
Siberian Fed Univ, Fac Biol & Biotechnol, Dept Aquat & Terr Ecosyst, Svobodnyy 79, Krasnoyarsk 660041, Russia.
Univ Porto, Dept Biol, Fac Ciencias, Porto, Portugal.
Univ Minho, Ctr Mol & Environm Biol CBMA, Dept Biol, Campus Gualtar, P-4710057 Braga, Portugal.
Univ Cantabria, Environm Hydraul Inst, C Isabel Torres 15, Santander 39011, Spain.
Univ Acores, InBIO Lab Associado, Ctr Invest Biodiversidade & Recursos Genet, CIBIO,Fac Ciencias & Tecnol, P-9501801 Ponta Delgada, Portugal.
Univ Savoie Mt Blanc, INRA, CARRTEL, 75 Av Corzent, F-74200 Thonon Les Bains, France.
Univ Oulu, Dept Ecol & Genet, Stream Ecol Res Grp, Oulu, Finland.
CSIC, Natl Museum Nat Sci, Spanish Natl Res Council, Calle Jose Gutierrez Abascal 2, E-28006 Madrid, Spain.
Allgenetics, Edificio CICA,Campus Elvilia S-N, E-15008 La Coruna, Spain.
FAUNATICA, Kutojantie 11, Espoo, Finland.
Res Inst Ecosyst Anal & Assessment, Kackertstr 10, D-52072 Aachen, Germany.
Russian Acad Sci BI SB RAN, Biophys Inst, Siberian Branch, 50 Akad Gorodok,Str 50, Krasnoyarsk 660036, Russia.
Univ Perpignan, EPHE UPVD CNRS, 52 Ave Paul Alduy, F-66860 Perpignan, France.
CRIOBE, Lab Excellence Corail, BP 1013, Moorea, French Polynesi, France.

Доп.точки доступа:
Feio, Maria Joao; Filipe, Ana Filipa; Garcia-Raventos, Aina; Ardura, Alba; Calapez, Ana Raquel; Pujante, Ana Maria; Mortagua, Andreia; Murria, Cesc; Diaz-de-Quijano, Daniel; Martins, Filipa M. S.; Duarte, Sofia; Bariain, Marta Sainz; Cordeiro, Rita; Rivera, Sinziana F.; Vaisanen, Leif O. S.; Fonseca, Amelia; Goncalves, Vitor; Garcia-Vazquez, Eva; Rodriguez, David Vieites; Ivanova, Elena A.; Costa, Filipe O.; Barquin, Jose; Rojo, Veronica; Vierna, Joaquin; Fais, Maria; Suarez, Marcos; Nieminen, Marko; Hammers-Wirtz, Monica; Kolmakova, Olesia, V; Trusova, Maria Y.; Beja, Pedro; Gonzalez, Raquel; Planes, Serge; Almeida, Salome F. P.; MARE strategic program [UID/MAR/04292/2013]; GeoBioTec strategic program [UID/GEO/04035/2019]; Fundo Regional da Ciencia e Tecnologia (FRCT) [M3.1.a/F/017/2011]; FRESHING Project "Next-generation biomonitoring: freshwater bioassessment and species conservation improved with metagenomics" - Portuguese Foundation for Science and Technology (FCT); COMPETE [PTDC/AAG-MAA/2261/2014 -POCI-01-0145-FEDER-356 016824]; FCTPortuguese Foundation for Science and Technology [SFRH/BD/104703/2014, SFRH/BD/113547/2015, SFRH/BPD/109842/2015]; FCT-PhD programme FLUVIO [PD\BD\52510\2014]; Eurostars project [BIOWAT-KIT_E!11892]; Fundacio Aigues de Barcelona

Найти похожие
15.


   
    A model study of the effect of weather forcing on the ecology of a meromictic Siberian lake / I. G. Prokopkin, E. S. Zadereev // J. Oceanology Limnology. - 2018, DOI 10.1007/s00343-018-7329-9 . - Article in press. - ISSN 2096-5508
Кл.слова (ненормированные):
food web -- meromictic lake -- numerical model -- sensitivity analysis -- stratification -- weather forcing
Аннотация: We used a Lake Shira numerical model to estimate the response of the ecosystem of a saline meromictic lake to variations in weather parameters during the growing season. The sensitivity analysis of the model suggests that compared to other external (nutrient inflows) and internal (spring biomasses of food-web components) factors, weather parameters are among the most influential for both mixolimnetic (phyto- and zooplankton) and monimolimnetic (purple sulfur bacteria, sulfur reducing bacteria and hydrogen sulfide) food-web components. Calculations with different weather scenarios shows how changes in the water temperature and mixing depth affect mixolimnetic and monimolimnetic food-web components and the depth of the oxic-anoxic interface in a meromictic lake. When weather forcing stimulates an increase in the biomass of food-web components in the mixolimnion, it produces cascading effects that lead to three results: 1) a higher content of detritus in the water column; 2) a higher content of hydrogen sulfide in the monimolimnion; 3) raising of the oxic-anoxic interface closer to the water-air surface. This cascading effect is complicated by the negative correlation between two light dependent primary producers located at different depths—phytoplankton in the mixolimnion and purple sulfur bacteria at the oxic-anoxic interface. Thus, weather conditions that stimulate higher phytoplankton biomass are associated with a higher detritus content and lower biomass of purple sulfur bacteria, a higher content of hydrogen sulfide and a shallower oxic-anoxic interface. The same weather conditions (higher wind, lower cloud cover, and lower air temperature) promote a scenario of less stable thermal stratification. Thus, our calculations suggest that weather parameters during the summer season strongly control the mixing depth, water temperature and the mixolimnetic food web. An effect of biogeochemical and physical interactions on the depth of the oxicanoxic interface is also detectable. However, intra- and interannual climate and weather effects will be more important for the control of meromixis stability. © 2018, Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics SB RAS, Krasnoyarsk Scientific Center, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Svobodnii av. 79, Krasnoyarsk, 660079, Russian Federation

Доп.точки доступа:
Prokopkin, I. G.; Zadereev, E. S.

Найти похожие
16.


   
    A low-cost underwater particle tracking velocimetry system for measuring in situ particle flux and sedimentation rate in low-turbulence environments / S. Simoncelli [et al.] // Limnol. Oceanogr. Methods. - 2019, DOI 10.1002/lom3.10341 . - Article in press. - ISSN 1541-5856
Аннотация: We describe a low-cost three-dimensional underwater particle tracking velocimetry system to directly measure particle settling rate and flux in low-turbulence aquatic environments. The system consists of two waterproof cameras that acquire stereoscopic videos of sinking particles at 48 frames s?1 over a tunable sampling volume of about 45 ? 25 ? 24 cm. A dedicated software package has been developed to allow evaluation of particle velocities, concentration and flux, but also of morphometric parameters such as particle area, sinking angle, shape irregularity, and density. Our method offers several advantages over traditional approaches, like sediment trap or expensive in situ camera systems: (1) it does not require beforehand particle collection and handling; (2) it is not subjected to sediment trap biases from turbulence, horizontal advection, or presence of swimmers, that may alter particulate load and flux; (3) the camera system enables faster data processing and flux computation at higher spatial resolution; (4) apart from the particle settling rates, the particle size distribution, and morphology is determined. We tested the camera system in Lake Stechlin (Germany) in low turbulence and mean flow, and analyzed the morphological properties and settling rates of particles to determine their sinking behavior. The particle flux assessed from conventional sediment trap measurements agreed well with that determined by our system. By this, the low-cost approach demonstrated its reliability in low turbulence environments and a strong potential to provide new insights into particulate carbon transport in aquatic systems. Extension of the method to more turbulent and advective conditions is also discussed. © 2019 The Authors. Limnology and Oceanography: Methods published by Wiley Periodicals, Inc. on behalf of Association for the Sciences of Limnology and Oceanography.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Potsdam University, Institute for Biochemistry and Biology, Potsdam, Germany

Доп.точки доступа:
Simoncelli, S.; Kirillin, G.; Tolomeev, A. P.; Grossart, H. -P.

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)