Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (1)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=pesticides<.>)
Общее количество найденных документов : 27
Показаны документы с 1 по 20
 1-20    21-27 
1.


   
    Constructing slow-release formulations of herbicide metribuzin using its co-extrusion with biodegradable polyester poly-epsilon-caprolactone / A. N. Boyandin, E. A. Kazantseva // J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes. - 2021, DOI 10.1080/03601234.2021.1911206. - Cited References:43. - This study was financially supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning". . - Article in press. - ISSN 0360-1234. - ISSN 1532-4109
РУБ Environmental Sciences + Public, Environmental & Occupational Health

Кл.слова (ненормированные):
Polycaprolactone -- herbicide -- pesticide -- long-term -- extrusion
Аннотация: Different technologies to prepare long term pesticide forms include polymer coating, preparing composites and encapsulating pesticides in nanoparticles. A simple and low-cost method was proposed to obtain slow-release formulations by co-extrusion of a pesticide with a biodegradable polymer at a temperature above the melting points of both components. A herbicide metribuzin and low-melting polyester poly-epsilon-caprolactone were chosen for this work. Formulations containing 10%, 20%, and 40% herbicide were prepared. During 7 days of their exposition in water, it was released from 81% to 96% of initially loaded metribuzin; the highest release was detected for 40%-loaded forms. Biodegradation of the constructs and pesticide release were further studied in the model soil. Degradation rates of the specimens increased with an increase in pesticide content, from 9% to 20% over 14 weeks for the 10%/20%-loaded and the 40%-loaded specimens, respectively. The release of metribuzin reached, respectively, 37-38% and 55%. The herbicide content in soil was lower due to its partial degradation in soil; it reached 23-25% and 33%, respectively, from initially loaded into the polymer matrix. Release kinetics of metribuzin in water as in soil best fitted the First-order model. The used approach is promising for obtaining long-term release formulations for soil applications.

WOS
Держатели документа:
Russian Acad Sci, Krasnoyarsk Sci Ctr SB RAS, Fed Res Ctr, Inst Biophys,Siberian Branch, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.

Доп.точки доступа:
Boyandin, Anatoly N.; Kazantseva, Eugenia A.; Boyandin, Anatoly; Project "Agropreparations of the new generation: a strategy of construction and realization" [074-02-2018-328]; Government of the Russian Federation [220]

Найти похожие
2.


   
    Constructing slow-release formulations of herbicide metribuzin using its co-extrusion with biodegradable polyester poly-ε-caprolactone / A. N. Boyandin, E. A. Kazantseva // J. Environ. Sci. Health Part B Pestic. Food Contamin. Agric. Wastes. - 2021, DOI 10.1080/03601234.2021.1911206 . - Article in press. - ISSN 0360-1234
Кл.слова (ненормированные):
extrusion -- herbicide -- long-term -- pesticide -- Polycaprolactone -- Biodegradable polymers -- Biodegradation -- Degradation -- Extrusion -- Melting -- Plastic coatings -- Polyesters -- Soils -- Weed control -- Biodegradable polyesters -- Degradation rate -- First-order models -- Long-term release -- Low cost methods -- Partial degradation -- Release kinetics -- Soil applications -- Herbicides
Аннотация: Different technologies to prepare long term pesticide forms include polymer coating, preparing composites and encapsulating pesticides in nanoparticles. A simple and low-cost method was proposed to obtain slow-release formulations by co-extrusion of a pesticide with a biodegradable polymer at a temperature above the melting points of both components. A herbicide metribuzin and low-melting polyester poly-?-caprolactone were chosen for this work. Formulations containing 10%, 20%, and 40% herbicide were prepared. During 7 days of their exposition in water, it was released from 81% to 96% of initially loaded metribuzin; the highest release was detected for 40%-loaded forms. Biodegradation of the constructs and pesticide release were further studied in the model soil. Degradation rates of the specimens increased with an increase in pesticide content, from 9% to 20% over 14 weeks for the 10%/20%-loaded and the 40%-loaded specimens, respectively. The release of metribuzin reached, respectively, 37–38% and 55%. The herbicide content in soil was lower due to its partial degradation in soil; it reached 23–25% and 33%, respectively, from initially loaded into the polymer matrix. Release kinetics of metribuzin in water as in soil best fitted the First-order model. The used approach is promising for obtaining long-term release formulations for soil applications. © 2021 Taylor & Francis Group, LLC.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Boyandin, A. N.; Kazantseva, E. A.

Найти похожие
3.


   
    Design of bioluminescent biosensors for assessing contamination of complex matrices / E. N. Esimbekova, V. P. Kalyabina, K. V. Kopylova [et al.] // Talanta. - 2021. - Vol. 233. - Ст. 122509, DOI 10.1016/j.talanta.2021.122509. - Cited By :1 . - ISSN 0039-9140
Кл.слова (ненормированные):
Bioluminescent biosensor -- Complex matrices -- Enzyme inhibition-based assay -- Heavy metals -- Pesticides
Аннотация: The presence of potentially toxic xenobiotics in complex matrices has become rather the rule than the exception. Therefore, there is a need for highly sensitive inexpensive techniques for analyzing environmental and food matrices for toxicants. Enzymes are selectively sensitive to various toxic compounds, and, thus, they can be used as the basis for detection of contaminants in complex matrices. There are, however, a number of difficulties associated with the analysis of complex matrices using enzyme assays, including the necessity to take into account properties and effects of the natural components of the test media for accurate interpretation of results. The present study describes the six-stage procedure for designing new enzyme sensors intended for assessing the quality of complex matrices. This procedure should be followed both to achieve the highest possible sensitivity of the biosensor to potentially toxic substances and to minimize the effect of the uncontaminated components of complex mixtures on the activity of the biosensor. The proposed strategy has been tested in designing a bioluminescent biosensor for integrated rapid assessment of the safety of fruits and vegetables. The biosensor is based on the coupled enzyme system NAD(P)H:FMN-oxidoreductase and luciferase as the biorecognition element. The study describes methods and techniques for attaining the desired result in each stage. The proposed six-stage procedure for designing bioluminescent enzyme biosensors can be used to design the enzymatic biosensors based on other enzymes. © 2021 Elsevier B.V.

Scopus
Держатели документа:
Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Esimbekova, E. N.; Kalyabina, V. P.; Kopylova, K. V.; Torgashina, I. G.; Kratasyuk, V. A.

Найти похожие
4.


   
    Constructing Slow-Release Metribuzin Formulations by Co-extrusion of the Pesticide with Poly-?-Caprolactone / A. N. Boyandin, E. A. Kazantseva // Macromol. Sympos. - 2021. - Vol. 395, Is. 1. - Ст. 2000283, DOI 10.1002/masy.202000283 . - ISSN 1022-1360
Кл.слова (ненормированные):
extrusion -- herbicides -- long-term -- pesticides -- polycaprolactone -- Biodegradable polymers -- Biodegradation -- Degradation -- Extrusion -- Melting -- Soils -- Weed control -- Biodegradable polyesters -- Caprolactone -- Degradation rate -- Long-term release -- Low cost methods -- Pesticide formulations -- Soil applications -- Soil degradation -- Herbicides
Аннотация: A simple and low-cost method of obtaining slow-release pesticide formulations is proposed by co-extrusion of a herbicide metribuzin with a low-melting biodegradable polyester poly-?-caprolactone, at a temperature above the melting points of both components. Formulations containing 10%, 20%, and 40% herbicide are prepared. Metribuzin release in water during 7 days of exposition reached 81% from the formulations with the 10% loading and 96% from the specimens with the 40% herbicide loading. Biodegradation and pesticide release from the polymer constructs are studied in the model soil for 14 weeks. Degradation rates of the specimens increased with an increase in pesticide content: between 9% for the 10%-loaded specimen and 20% for the 40%-loaded specimen over 14 weeks. The release of metribuzin from the specimens with the 10–20% and 40% loadings reached 37–38% and 55%, respectively; thus, taking into account soil degradation of the herbicide, the herbicide content in soil reached 23–25% and 33%, respectively, of the initially loaded into the polymer matrix. The used approach is promising to obtain long-term release formulations for soil application. © 2021 Wiley-VCH GmbH

Scopus
Держатели документа:
Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Boyandin, A. N.; Kazantseva, E. A.

Найти похожие
5.


   
    Constructing Slow-Release Metribuzin Formulations by Co-extrusion of the Pesticide with Poly-epsilon-Caprolactone / A. N. Boyandin, E. A. Kazantseva // Macromol. Symp. - 2021. - Vol. 395: 4th International Conference on Progress on Polymers and Composites (NOV 26-28, 2020, ELECTR NETWORK), Is. 1. - Ст. 2000283, DOI 10.1002/masy.202000283. - Cited References:6. - This study was financially supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning". . - ISSN 1022-1360. - ISSN 1521-3900
РУБ Polymer Science

Кл.слова (ненормированные):
extrusion -- herbicides -- long‐ -- term -- pesticides -- polycaprolactone
Аннотация: A simple and low-cost method of obtaining slow-release pesticide formulations is proposed by co-extrusion of a herbicide metribuzin with a low-melting biodegradable polyester poly-epsilon-caprolactone, at a temperature above the melting points of both components. Formulations containing 10%, 20%, and 40% herbicide are prepared. Metribuzin release in water during 7 days of exposition reached 81% from the formulations with the 10% loading and 96% from the specimens with the 40% herbicide loading. Biodegradation and pesticide release from the polymer constructs are studied in the model soil for 14 weeks. Degradation rates of the specimens increased with an increase in pesticide content: between 9% for the 10%-loaded specimen and 20% for the 40%-loaded specimen over 14 weeks. The release of metribuzin from the specimens with the 10-20% and 40% loadings reached 37-38% and 55%, respectively; thus, taking into account soil degradation of the herbicide, the herbicide content in soil reached 23-25% and 33%, respectively, of the initially loaded into the polymer matrix. The used approach is promising to obtain long-term release formulations for soil application.

WOS
Держатели документа:
Russian Acad Sci, Krasnoyarsk Sci Ctr, Inst Biophys, Siberian Branch,Fed Res Ctr, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Boyandin, Anatoly Nikolayevich; Kazantseva, Eugenia Andreevna; Government of the Russian Federation [220, 074-02-2018-328]

Найти похожие
6.


   
    Biodegradable polymers - Perspectives and applications in agriculture / E. G. Kiselev, N. O. Zhila, T. G. Volova // IOP Conference Series: Earth and Environmental Science : IOP Publishing Ltd, 2021. - Vol. 689: 2020 International Conference on Germany and Russia: Ecosystems Without Borders, EcoSystConfKlgtu 2020 (5 October 2020 through 10 October 2020, ) Conference code: 167944, Is. 1. - Ст. 012036, DOI 10.1088/1755-1315/689/1/012036
Кл.слова (ненормированные):
Biodegradable polymers -- Ecosystems -- Fungi -- Glycerol -- Monounsaturated fatty acids -- Oilseeds -- Pesticides -- Substrates -- Sunflower oil -- Fenoxaprop-p-ethyl -- Natural materials -- Pesticide formulations -- Poly-3-hydroxybutyrate -- Polyhydroxyalkanoates -- Productive process -- Strategy of constructions -- Various substrates -- Palm oil
Аннотация: The paper presents a brief overview of the results of the implementation of the project "Agropreparations of the new generation: a strategy of construction and realization". The first part contains the analysis of the growth of the wild-type strain Cupriavidus necator B-10646 (formerly eutrophus) and the synthesis of polyhydroxyalkanoates by this strain on various substrates: glycerol, palm oil, Siberian oil seed, sunflower seed oils, and oleic acid. On refined glycerin, a highly productive process is implemented when scaling up, allowing to obtain 128 ± 11 g / L PHA. Evaluation of oils has shown that palm oil is the best carbon substrate. The second part presents the results of the development of environmentally friendly slow-release pesticide formulations. They are a degradable matrix of poly-3-hydroxybutyrate mixed with natural materials (peat, clay, wood flour), into which a pesticide (metribuzin, tribenuron-methyl, fenoxaprop-P-ethyl, azoxystrobin, epoxiconazole, and tebuconazole) has been. The developed preparations showed high activity against pathogenic fungi and weeds and had a much weaker negative effect on the soil microflora. Studies of the degradation of the developed preparations and the release of pesticides into the soil confirm their effectiveness over a long period of time, up to 90 days. © Published under licence by IOP Publishing Ltd.

Scopus
Держатели документа:
School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russian Federation
Laboratory of Chemoautotrophic Biosynthesis, Institute of Biophysics, SB, RAS, Federal Research Center, Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kiselev, E. G.; Zhila, N. O.; Volova, T. G.

Найти похожие
7.


   
    Enzymatic Biotesting: Scientific Basis and Application / E. N. Esimbekova, I. G. Torgashina, V. P. Kalyabina, V. A. Kratasyuk // Contemp. Probl. Ecol. - 2021. - Vol. 14, Is. 3. - P290-304, DOI 10.1134/S1995425521030069. - Cited By :1 . - ISSN 1995-4255
Кл.слова (ненормированные):
bioluminescence -- biotesting -- environmental monitoring -- enzymatic bioassays -- heavy metals -- pesticides
Аннотация: Abstract: The paper provides a review of the current state of research in the field of biotesting, and the problems of environmental studies and ways to solve them are discussed. The basic principles and examples of using enzymes for detecting toxicants in various environmental samples are considered. Based on an analysis of numerous published data, the advantages and limitations, as well as the prospects for using enzymes for performing biotesting tasks, are assessed. A separate section of the review is devoted to bioluminescent enzymatic bioassays developed by the authors and successfully used for environmental monitoring of water, soil, and air. The necessity of developing a battery of enzymatic bioassays is substantiated. It allows one to have the most complete and accurate information about the degree of pollution of environmental objects. © 2021, Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Esimbekova, E. N.; Torgashina, I. G.; Kalyabina, V. P.; Kratasyuk, V. A.

Найти похожие
8.


   
    Pesticides: formulants, distribution pathways and effects on human health-a review / V. P. Kalyabina, E. N. Esimbekova, K. V. Kopylova, V. A. Kratasyuk // Toxicol. Rep. - 2021. - Vol. 8. - P1179-1192, DOI 10.1016/j.toxrep.2021.06.004. - Cited References:211. - The research was funding by the Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science and Russian Foundation for Basic Research (project No 20-44-242001). . - ISSN 2214-7500
РУБ Toxicology
Рубрики:
GLYPHOSATE-BASED HERBICIDES
   ENDOCRINE-DISRUPTING CHEMICALS

   IN-VITRO

Кл.слова (ненормированные):
Pesticides -- Agricultural crops -- Health consequences -- Formulants -- Risk -- assessment
Аннотация: Pesticides are commonly used in agriculture to enhance crop production and control pests. Therefore, pesticide residues can persist in the environment and agricultural crops. Although modern formulations are relatively safe to non-target species, numerous theoretical and experimental data demonstrate that pesticide residues can produce long-term negative effects on the health of humans and animals and stability of ecosystems. Of particular interest are molecular mechanisms that mediate the start of a cascade of adverse effects. This is a review of the latest literature data on the effects and consequences of contamination of agricultural crops by pesticide residues. In addition, we address the issue of implicit risks associated with pesticide formulations. The effects of pesticides are considered in the context of the Adverse Outcome Pathway concept.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodny Prospect, Krasnoyarsk 660041, Russia.
RAS, SB, Inst Biophys, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kalyabina, Valeriya P.; Esimbekova, Elena N.; Kopylova, Kseniya, V; Kratasyuk, Valentina A.; Esimbekova, Elena; Kalyabina, Valeriya; Kopylova, Kseniya; Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [20-44-242001]

Найти похожие
9.


   
    A study of the properties and efficacy of microparticles based on P(3HB) and P(3HB/3HV) loaded with herbicides / R. Vijayamma, H. J. Maria, S. Thomas [et al.] // J. Appl. Polym. Sci. - 2021, DOI 10.1002/app.51756 . - Article in press. - ISSN 0021-8995
Кл.слова (ненормированные):
biodegradable -- drug delivery systems -- microparticles -- Agricultural robots -- Controlled drug delivery -- Solubility -- Targeted drug delivery -- Weed control -- 3-Hydroxybutyrate -- Average diameter -- Biodegradable -- Drug-delivery systems -- Human impact -- Metribuzin -- Micro particles -- Poly-3-hydroxybutyrate -- Polyhydroxyalkanoates -- Property -- Herbicides
Аннотация: The wide use of pesticides in agriculture has caused uncontrolled distribution of these chemicals in the environment, calling for the development and investigation of new environmentally friendly formulations, which would reduce human impact on nature. In the present study, the metribuzin (MET), tribenuron-methyl (TBM), and fenoxaprop-P-ethyl (FPE) herbicides were encapsulated in microparticles of degradable microbial polymers – polyhydroxyalkanoates (PHAs) – of two types – poly-3-hydroxybutyrate [P(3HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate [P(3HB/3HV)]. The use of P(3HB) resulted in higher yields of microparticles (63% to 79%) and larger sizes of the particles, whose average diameter was 0.60 ± 0.06–0.75 ± 0.11 ?m, while the average diameter of copolymer particles varied between 0.43 ± 0.12 and 0.55 ± 0.05 ?m. Encapsulation efficiency was rather determined by the type of herbicide and its solubility, varying from 24.7% to 48.2%. In vitro herbicide release from microparticles to water was affected by herbicide solubility and PHA chemical composition. The readily soluble MET showed the highest release rate, and over 30 days, 64% and 78% of the encapsulated amounts were released from P(3HB) and P(3HB/3HV) microparticles, respectively. High herbicidal activity of microparticles loaded with metribuzin and tribenuron-methyl was demonstrated in the laboratory stands of the Elsholtzia ciliata weed plant. © 2021 Wiley Periodicals LLC.

Scopus
Держатели документа:
Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russian Federation
International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, India
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
L.V. Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Scientific Laboratory, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Vijayamma, R.; Maria, H. J.; Thomas, S.; Shishatskaya, E. I.; Kiselev, E. G.; Nemtsev, I. V.; Sukhanova, A. A.; Volova, T. G.

Найти похожие
10.


   
    A study of the properties and efficacy of microparticles based on P(3HB) and P(3HB/3HV) loaded with herbicides / R. Vijayamma, H. J. Maria, S. Thomas [et al.] // J. Appl. Polym. Sci. - 2021. - Ст. e51756, DOI 10.1002/app.51756. - Cited References:57. - This work was supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning". Instruments of Krasnoyarsk Regional Center of Research Equipment of Federal Research Center Krasnoyarsk Science Center SB RAS were used. . - Article in press. - ISSN 0021-8995. - ISSN 1097-4628
РУБ Polymer Science
Рубрики:
FENOXAPROP-P-ETHYL
   CONTROLLED-RELEASE

   BIODEGRADABLE

Кл.слова (ненормированные):
biodegradable -- drug delivery systems -- microparticles
Аннотация: The wide use of pesticides in agriculture has caused uncontrolled distribution of these chemicals in the environment, calling for the development and investigation of new environmentally friendly formulations, which would reduce human impact on nature. In the present study, the metribuzin (MET), tribenuron-methyl (TBM), and fenoxaprop-P-ethyl (FPE) herbicides were encapsulated in microparticles of degradable microbial polymers - polyhydroxyalkanoates (PHAs) - of two types - poly-3-hydroxybutyrate [P(3HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate [P(3HB/3HV)]. The use of P(3HB) resulted in higher yields of microparticles (63% to 79%) and larger sizes of the particles, whose average diameter was 0.60 +/- 0.06-0.75 +/- 0.11 mu m, while the average diameter of copolymer particles varied between 0.43 +/- 0.12 and 0.55 +/- 0.05 mu m. Encapsulation efficiency was rather determined by the type of herbicide and its solubility, varying from 24.7% to 48.2%. In vitro herbicide release from microparticles to water was affected by herbicide solubility and PHA chemical composition. The readily soluble MET showed the highest release rate, and over 30 days, 64% and 78% of the encapsulated amounts were released from P(3HB) and P(3HB/3HV) microparticles, respectively. High herbicidal activity of microparticles loaded with metribuzin and tribenuron-methyl was demonstrated in the laboratory stands of the Elsholtzia ciliata weed plant.

WOS
Держатели документа:
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk, Russia.
Mahatma Gandhi Univ, Int & Inter Univ Ctr Nanosci & Nanotechnol, Kottayam, Kerala, India.
RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, Inst Biophys SB, Krasnoyarsk, Russia.
RAS, Krasnoyarsk Sci Ctr SB, Res Equipment Fed Res Ctr, Krasnoyarsk Reg Ctr, Krasnoyarsk, Russia.
RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, LV Kirensky Inst Phys, Krasnoyarsk, Russia.
Reshetnev Siberian State Univ Sci & Technol, Sci Lab, Krasnoyarsk, Russia.

Доп.точки доступа:
Vijayamma, Raji; Maria, Hanna J.; Thomas, Sabu; Shishatskaya, Ekaterina I.; Kiselev, Evgeniy G.; Nemtsev, Ivan V.; Sukhanova, Anna A.; Volova, Tatiana G.; Project "Agropreparations of the new generation: a strategy of construction and realization" [074-02-2018-328]; Government of the Russian Federation [220]

Найти похожие
11.


   
    Pesticides: formulants, distribution pathways and effects on human health – a review / V. P. Kalyabina, E. N. Esimbekova, K. V. Kopylova, V. A. Kratasyuk // Toxicol. Rep. - 2021. - Vol. 8. - P1179-1192, DOI 10.1016/j.toxrep.2021.06.004 . - ISSN 2214-7500
Кл.слова (ненормированные):
Agricultural crops -- Formulants -- Health consequences -- Pesticides -- Risk assessment
Аннотация: Pesticides are commonly used in agriculture to enhance crop production and control pests. Therefore, pesticide residues can persist in the environment and agricultural crops. Although modern formulations are relatively safe to non-target species, numerous theoretical and experimental data demonstrate that pesticide residues can produce long-term negative effects on the health of humans and animals and stability of ecosystems. Of particular interest are molecular mechanisms that mediate the start of a cascade of adverse effects. This is a review of the latest literature data on the effects and consequences of contamination of agricultural crops by pesticide residues. In addition, we address the issue of implicit risks associated with pesticide formulations. The effects of pesticides are considered in the context of the Adverse Outcome Pathway concept. © 2021 The Author(s)

Scopus
Держатели документа:
Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Kalyabina, V. P.; Esimbekova, E. N.; Kopylova, K. V.; Kratasyuk, V. A.

Найти похожие
12.


   
    Enzymatic Biotesting: Scientific Basis and Application / E. N. Esimbekova, I. G. Torgashina, V. P. Kalyabina, V. A. Kratasyuk // Contemp. Probl. Ecol. - 2021. - Vol. 14, Is. 3. - P290-304, DOI 10.1134/S1995425521030069. - Cited References:128. - This study was carried out with financial support from the Russian Foundation for Basic Research, project no. 19-14-50238\19. . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology
Рубрики:
ORGANOPHOSPHORUS PESTICIDES
   CHRONIC EXPOSURE

   BIOSENSOR

Кл.слова (ненормированные):
biotesting -- enzymatic bioassays -- bioluminescence -- environmental -- monitoring -- pesticides -- heavy metals
Аннотация: The paper provides a review of the current state of research in the field of biotesting, and the problems of environmental studies and ways to solve them are discussed. The basic principles and examples of using enzymes for detecting toxicants in various environmental samples are considered. Based on an analysis of numerous published data, the advantages and limitations, as well as the prospects for using enzymes for performing biotesting tasks, are assessed. A separate section of the review is devoted to bioluminescent enzymatic bioassays developed by the authors and successfully used for environmental monitoring of water, soil, and air. The necessity of developing a battery of enzymatic bioassays is substantiated. It allows one to have the most complete and accurate information about the degree of pollution of environmental objects.

WOS
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Esimbekova, E. N.; Torgashina, I. G.; Kalyabina, V. P.; Kratasyuk, V. A.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-14-50238\19]

Найти похожие
13.


   
    Design of bioluminescent biosensors for assessing contamination of complex matrices / E. N. Esimbekova, V. P. Kalyabina, K. V. Kopylova [et al.] // Talanta. - 2021. - Vol. 233. - Ст. 122509, DOI 10.1016/j.talanta.2021.122509. - Cited References:87. - The reported study was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science, to the research project No. 20-44-242001 and Ministry of Science and Higher Education of Russian Federation No. FSRZ-2020-0006. . - ISSN 0039-9140. - ISSN 1873-3573
РУБ Chemistry, Analytical
Рубрики:
SAMPLE PREPARATION
   PESTICIDES

   FOOD

   BIOMOLECULES

   SENSITIVITY

Кл.слова (ненормированные):
Bioluminescent biosensor -- Enzyme inhibition-based assay -- Complex -- matrices -- Pesticides -- Heavy metals
Аннотация: The presence of potentially toxic xenobiotics in complex matrices has become rather the rule than the exception. Therefore, there is a need for highly sensitive inexpensive techniques for analyzing environmental and food matrices for toxicants. Enzymes are selectively sensitive to various toxic compounds, and, thus, they can be used as the basis for detection of contaminants in complex matrices. There are, however, a number of difficulties associated with the analysis of complex matrices using enzyme assays, including the necessity to take into account properties and effects of the natural components of the test media for accurate interpretation of results. The present study describes the six-stage procedure for designing new enzyme sensors intended for assessing the quality of complex matrices. This procedure should be followed both to achieve the highest possible sensitivity of the biosensor to potentially toxic substances and to minimize the effect of the uncontaminated components of complex mixtures on the activity of the biosensor. The proposed strategy has been tested in designing a bioluminescent biosensor for integrated rapid assessment of the safety of fruits and vegetables. The biosensor is based on the coupled enzyme system NAD(P)H:FMN-oxidoreductase and luciferase as the biorecognition element. The study describes methods and techniques for attaining the desired result in each stage. The proposed six-stage procedure for designing bioluminescent enzyme biosensors can be used to design the enzymatic biosensors based on other enzymes.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodny Prospect, Krasnoyarsk 660041, Russia.
Inst Biophys SB RAS, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Esimbekova, Elena N.; Kalyabina, Valeriya P.; Kopylova, Kseniya, V; Torgashina, Irina G.; Kratasyuk, Valentina A.; Kopylova, Kseniya; Esimbekova, Elena; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR); Government of Krasnoyarsk Territory; Krasnoyarsk Regional Fund of Science [20-44-242001]; Ministry of Science and Higher Education of Russian Federation [FSRZ-2020-0006]

Найти похожие
14.


   
    The effect of the pesticide delivery method on the microbial community of field soil / S. Prudnikova, N. Streltsova, T. Volova // Environ. Sci. Pollut. Res. - 2020, DOI 10.1007/s11356-020-11228-7. - Cited References:119. - This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation, project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328). . - Article in press. - ISSN 0944-1344. - ISSN 1614-7499
РУБ Environmental Sciences
Рубрики:
CONTROLLED-RELEASE
   2,4-DICHLOROPHENOXYACETIC ACID

   DEGRADATION

Кл.слова (ненормированные):
Soil microorganisms -- Pesticides -- Slow release formulations -- Biodegradable polymer -- Poly-3-hydroxybutyrate -- P(3HB)-degrading -- microorganisms
Аннотация: The study deals with the effects of herbicides (metribuzin, tribenuron-methyl, fenoxaprop-P-ethyl) and fungicides (tebuconazole, epoxiconazole, azoxystrobin) applied to soil as free pesticides or as slow release formulations embedded in a biodegradable composite matrix on the structure of the soil microbial community. The matrix consisted of a natural biopolymer poly-3-hydroxybutyrate [P(3HB)] and a filler-one of the natural materials (peat, clay, and wood flour). The soil microbial community was characterized, including the major eco-trophic groups of bacteria, dominant taxa of bacteria and fungi, and primary P(3HB)-degrading microorganisms, such asPseudomonas,Bacillus,Pseudarthrobacter,Streptomyces,Penicillium, andTalaromyces. The addition of free pesticides adversely affected the abundance of soil microorganisms; the decrease varied from 1.4 to 56.0 times for different types of pesticides. The slow release pesticide formulations, in contrast to the free pesticides, exerted a much weaker effect on soil microorganisms, no significant inhibition in the abundance of saprotrophic bacteria was observed, partly due to the positive effects of the composite matrix (polymer/natural material), which was a supplementary substrate for microorganisms. The slow release fungicide formulations, like the free fungicides, reduced the total abundance of fungi and inhibited the development of the phytopathogensFusariumandAlternaria. Thus, slow release formulations of pesticides preserve the bioremediation potential of soil microorganisms, which are the main factor of removing xenobiotics from the biosphere.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.
Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Fed Res Ctr, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Prudnikova, Svetlana; Streltsova, Nadezhda; Volova, Tatiana; Ministry of Science and Higher Education of the Russian Federation, project "Agropreparations of the new generation: a strategy of construction and realization" [074-02-2018-328]

Найти похожие
15.


   
    Poly(3-hydroxybutyrate)/metribuzin formulations: characterization, controlled release properties, herbicidal activity, and effect on soil microorganisms / T. Volova [et al.] // Environ. Sci. Pollut. Res. - 2016. - Vol. 23, Is. 23. - P23936-23950, DOI 10.1007/s11356-016-7636-7. - Cited References:41. - This study was supported by the Russian Science Foundation (grant no. 14-26-00039). . - ISSN 0944-1344. - ISSN 1614-7499
РУБ Environmental Sciences
Рубрики:
METRIBUZIN RELEASE
   POLYHYDROXYALKANOATES

   POLYMER

   MATRIX

   PESTICIDES

Кл.слова (ненормированные):
Metribuzin -- Degradable poly-3-hydroxybutyrate -- Slow-release P(3HB)/MET -- formulations -- Release kinetics -- Agrostis stolonifera -- Setaria -- macrocheata
Аннотация: Slow-release formulations of the herbicide metribuzin (MET) embedded in the polymer matrix of degradable poly-3-hydroxybutyrate [P(3HB)] in the form of microparticles, films, microgranules, and pellets were developed and tested. The kinetics of polymer degradation, MET release, and accumulation in soil were studied in laboratory soil microecosystems with higher plants. The study shows that MET release can be controlled by using different techniques of constructing formulations and by varying MET loading. MET accumulation in soil occurs gradually, as the polymer is degraded. The average P(3HB) degradation rates were determined by the geometry of the formulation, reaching 0.17, 0.12, 0.04, and 0.05 mg/day after 60 days for microparticles, films, microgranules, and pellets, respectively. The herbicidal activities of P(3HB)/MET formulations and commercial formulation Sencor Ultra were tested on the Agrostis stolonifera and Setaria macrocheata plants. The parameters used to evaluate the herbicidal activity were plant density and the weight of fresh green biomass measured at days 10, 20, and 30 after sowing. All P(3HB)/MET formulations had pronounced herbicidal activity, which varied depending on MET loading and the stage of the experiment. In the early phases of the experiment, the herbicidal effect of P(3HB)/MET formulations with the lowest MET loading (10 %) was comparable with that of the commercial formulation. The herbicidal effect of P(3HB)/MET formulations with higher MET loadings (25 and 50 %) at later stages of the experiment were stronger than the effect of Sencor Ultra.

WOS,
Смотреть статью
Держатели документа:
Russian Acad Sci, Inst Biopshys, Siberian Branch, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, 79 Svobodny Ave, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Volova, Tatiana; Zhila, Natalia; Kiselev, Evgeniy; Prudnikova, Svetlana; Vinogradova, Olga; Nikolaeva, Elena; Shumilova, Anna; Shershneva, Anna; Shishatskaya, Ekaterina; Russian Science Foundation [14-26-00039]

Найти похожие
16.


   
    Herbicidal activity of slow-release herbicide formulations in wheat stands infested by weeds / N. Zhila [et al.] // J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes. - 2017. - Vol. 52, Is. 10. - P729-735, DOI 10.1080/03601234.2017.1356668. - Cited References:23. - The research was supported by the state budget allocated to the fundamental research at the Russian Academy of Sciences (project no. AAAA-A17-117013050028-8). . - ISSN 0360-1234. - ISSN 1532-4109
РУБ Environmental Sciences + Public, Environmental & Occupational Health
Рубрики:
POLYHYDROXYALKANOATES
   POLY-3-HYDROXYBUTYRATE

   FILMS

Кл.слова (ненормированные):
Metribuzin -- tribenuron-methyl -- poly-3-hydroxybutyrate -- slow-release -- formulations -- herbicidal activity -- wheat -- weeds
Аннотация: The present study reports the herbicidal activity of metribuzin and tribenuron-methyl embedded in the degradable matrix of natural poly-3-hydroxybutyrate [P(3HB)/MET and P(3HB)/TBM]. The developed formulations were constructed as films and microgranules, which were tested against the weeds such as white sweet clover Melilotus albus and lamb's quarters Chenopodium album in the presence of soft spring wheat (Triticum aestivum, cv. Altaiskaya 70) as the subject crop for investigation. The activity was measured in laboratory scale experiments by determining the density and weight of the vegetative organs of weeds. The study was also aimed at testing the effect of the experimental formulation on the growth of wheat crop as dependent on the method of herbicide delivery. The experimental MET and TBM formulations showed pronounced herbicidal activity against the weed species used in the study. The effectiveness of the experimental formulations in inhibiting weed growth was comparable to and, sometimes, higher than that of the commercial formulations (positive control). The amount of the biomass of the wheat treated with the experimental herbicide formulations was significantly greater than that of the wheat treated with commercial formulations.

WOS,
Смотреть статью
Держатели документа:
Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.

Доп.точки доступа:
Zhila, Natalia; Murueva, Anastasiya; Shershneva, Anna; Shishatskaya, Ekaterina; Volova, Tatiana; Russian Academy of Sciences [AAAA-A17-117013050028-8]

Найти похожие
17.


   
    Stabilization of Butyrylcholinesterase by the Entrapment into the Natural Polymer-Based Gels / V. I. Lonshakova-Mukina, E. N. Esimbekova, V. A. Kratasyuk // Doklad. Biochem. Biophys. - 2018. - Vol. 479, Is. 1. - P98-100, DOI 10.1134/S1607672918020126 . - ISSN 1607-6729
Аннотация: A new method for obtaining stable butyrylcholinesterase (BuChE) samples based on the enzyme immobilization in starch and gelatin gels followed by drying is proposed. Coimmobilization of BuChE with the thiol group indicator 5,5'-dithiobis(2-nitrobenzoic) acid did not reduce the activity of BuChE, which allowed us to simplify the procedure and reduce the time of analysis of organophosphorus pesticides. The resulting immobilized samples retained activity for at least 300 days. BuChE samples based on the starch gel showed a greater sensitivity in the determination of pesticides as compared to the samples based on the gelatin gel. © 2018, Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Federal Research Center, Krasnoyarsk Research Center, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Lonshakova-Mukina, V. I.; Esimbekova, E. N.; Kratasyuk, V. A.

Найти похожие
18.


   
    Microbial polymers as a degradable carrier for pesticide delivery / O. N. Voinova [et al.] // Applied Biochemistry and Microbiology. - 2009. - Vol. 45, Is. 4. - P384-388, DOI 10.1134/S0003683809040061 . - ISSN 0003-6838
Аннотация: The possibility of use of polyhydroxyalkanoates (PHAs), biodegradable microbial polyesters, as a carrier for pesticides (?-hexachlorcyclohexane and lindane) for targeted and controlled delivery of these compounds to soil was investigated. The kinetics of polymer degradation and the dynamics of pesticide release from the extended-release formulations was studied. It is shown that pesticides embedded in a degradable polymer (PHA) carrier are released gradually and slowly, without surges, as the polymer is degraded by the soil micro-flora. The microbial soil component actively responded to the addition of the polymer as an additional nutrient substrate: the latter was degraded and then utilized. The rate of the pesticide release to the soil can be regulated by varying the polymer-pesticide ratio. В© 2009 Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Forestry, Siberian Branch Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Voinova, O.N.; Kalacheva, G.S.; Grodnitskaya, I.D.; Volova, T.G.

Найти похожие
19.


   
    The prospects of the use of resorbable polyesters for designing safe pesticides / T. G. Volova [et al.] // Doklady Biological Sciences. - 2008. - Vol. 419, Is. 1. - P100-103, DOI 10.1134/S0012496608020099 . - ISSN 0012-4966
Кл.слова (ненормированные):
pesticide -- polyester -- article -- chemistry -- drug design -- metabolism -- microbiology -- Drug Design -- Pesticides -- Polyesters -- Soil Microbiology

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Forestry, Siberian Branch, Russian Academy of Sciences, Kransnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.G.; Voinova, O.N.; Kalacheva, G.S.; Grodnitskaya, I.D.

Найти похожие
20.


   
    Constructing herbicide metribuzin sustained-release formulations based on the natural polymer poly-3-hydroxybutyrate as a degradable matrix / T. G. Volova [et al.] // J. Environ. Sci. Health Part B Pestic. Food Contamin. Agric. Wastes. - 2016. - Vol. 51, Is. 2. - P113-125, DOI 10.1080/03601234.2015.1092833 . - ISSN 0360-1234
Кл.слова (ненормированные):
controlled release -- embedding -- metribuzin -- Poly(3-hydroxybutyrate) -- slow-release formulations -- Granulation -- Pelletizing -- Weed control -- Controlled release -- embedding -- Metribuzin -- Poly-3-hydroxybutyrate -- Slow release -- Herbicides
Аннотация: Polymer poly(3-hydroxybutyrate) [P(3HB)] has been used as a matrix in slow-release formulations of the herbicide metribuzin (MET). Physical P(3HB)/MET mixtures in the form of solutions, powders, and emulsions were used to construct different metribuzin formulations (films, granules, pellets, and microparticles). SEM, X-Ray, and DSC proved the stability of these formulations incubated in sterile water in vitro for long periods of time (up to 49 days). Metribuzin release from the polymer matrix has been also studied. By varying the shape of formulations (microparticles, granules, films, and pellets), we were able to control the release time of metribuzin, increasing or decreasing it. © 2016 Taylor & Francis Group, LLC.

Scopus,
WOS
Держатели документа:
Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T. G.; Zhila, N. O.; Vinogradova, O. N.; Nikolaeva, E. D.; Kiselev, E. G.; Shumilova, A. A.; Shershneva, A. M.; Shishatskaya, E. I.
Свободных экз. нет
Найти похожие
 1-20    21-27 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)