Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (3)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=photosynthetic<.>)
Общее количество найденных документов : 57
Показаны документы с 1 по 20
 1-20    21-40   41-57 
1.


   
    An ontogenetic approach to the assessment of plant resistance to stress factors based on the method of chlorophyll fluorescence induction. / T. V. Nesterenko, A. A. Tikhomirov // Doklady. Biochemistry and biophysics. - 2003. - Vol. 388. - P4-7 . - ISSN 1607-6729
Кл.слова (ненормированные):
chlorophyll -- adaptation -- aging -- article -- comparative study -- cucumber -- light -- metabolism -- methodology -- photostimulation -- photosynthesis -- physiology -- plant leaf -- radiation dose -- radiation exposure -- spectrofluorometry -- Adaptation, Physiological -- Aging -- Chlorophyll -- Cucumis sativus -- Light -- Photic Stimulation -- Photosynthetic Reaction Center Complex Proteins -- Plant Leaves -- Radiation Dosage -- Spectrometry, Fluorescence

Scopus
Держатели документа:
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036 Russia. : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Nesterenko, T.V.; Tikhomirov, A.A.

Найти похожие
2.


   
    An optimization model of the photosynthetic leaf: the model of optimal photosynthetic CO2 fixation within leaves of mesophytic C3 plants. / V. G. Soukhovolsky [et al.] // Doklady Biological Sciences. - 2002. - Vol. 382. - P28-30 . - ISSN 0012-4966
Кл.слова (ненормированные):
carbon dioxide -- ribulosebisphosphate carboxylase -- article -- biological model -- ecosystem -- light -- metabolism -- photosynthesis -- plant leaf -- radiation exposure -- Carbon Dioxide -- Ecosystem -- Light -- Models, Biological -- Photosynthesis -- Plant Leaves -- Ribulose-Bisphosphate Carboxylase

Scopus
Держатели документа:
Institute of Forest, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036 Russia. : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Soukhovolsky, V.G.; Fomina, I.R.; Bil, K.; Nishio, J.N.; Khlebopros, R.G.

Найти похожие
3.


   
    Analysis of the gas exchange and water balance in a closed experimental model of the artificial ecosystem intended for an estimated portion of a human / S. Ushakova [et al.] // Acta Astronaut. - 2018, DOI 10.1016/j.actaastro.2018.07.022 . - ISSN 0094-5765
Кл.слова (ненормированные):
Experimental model of a closed ecological system -- Higher plant community -- Human respiratory function -- Water balance -- СО2 and О2 gas exchange -- Carbon dioxide -- Evapotranspiration -- Closed ecological systems -- Gas exchange -- Higher plants -- Respiratory function -- Water balance -- Ecosystems
Аннотация: This study was performed to investigate water and gas exchange in the experimental model of a closed ecological system (CES) intended for an estimated portion of a human in the long-duration (several-month) experiment. The diversity of the vegetable conveyor in the system was increased. Human wastes were involved in mass exchange processes, and human respiratory function was periodically connected to the experimental model of a CES. The experimental model of a CES was used to quantify regeneration of the gaseous atmosphere with oxygen and carbon dioxide loops by linking the photosynthesizing compartment with the heterotrophic compartment (soil-like substrate) and by the periodic connection of the human respiratory function. Under the preset light and temperature conditions, atmospheric CO2 concentration in the CES model intended for a portion of a human was maintained at a level that neither limited photosynthetic processes nor was harmful to humans (800–2000 ppm) during the 154-day experiment. At the same time, O2 concentration did not either drop below 20.8% or rise above 22.6%. The amount of the evapotranspiration water collected in the system could satisfy 50% of the daily water requirement of a human (with all the water used and excreted by the human being processed and used to irrigate plants). The evapotranspiration water did not need to be additionally purified before being used by humans. Thus, in the experimental model of the closed ecological system, human oxygen and food requirements (per 0.05 portion of a human) were matched to the function of the heterotrophic compartment and the photosynthesizing activity of the multispecies uneven-aged higher plant community. © 2018 IAA

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ushakova, S.; Tikhomirova, N.; Velichko, V.; Trifonov, S.; Morozov, Y.; Kalacheva, G.; Pavlova, A.; Tikhomirov, A.

Найти похожие
4.


   
    Biological effects of the free and embedded metribuzin and tribenuron-methyl herbicides on various cultivated weed species / T. Volova, S. Baranovsky, O. Petrovskaya [et al.] // J. Environ. Sci. Health Part B Pestic. Food Contamin. Agric. Wastes. - 2020, DOI 10.1080/03601234.2020.1807835 . - Article in press. - ISSN 0360-1234
Кл.слова (ненормированные):
degradable P(3HB) -- Metribuzin -- photosynthetic activity -- tribenuron-methyl -- weed growth inhibition -- Electron transport properties -- Photosynthesis -- Plants (botany) -- Quantum chemistry -- Quantum yield -- Weed control -- Biological effects -- Cyclic electron transport -- Degradable polymers -- Herbicidal activity -- Main parameters -- Non-photochemical quenching -- Photosynthetic activity -- Poly-3-hydroxybutyrate -- Herbicides
Аннотация: The present study addresses the herbicidal activity and biological effects of the metribuzin (MET) and tribenuron-methyl (TBM) herbicides used to control various weed species (Amaranthus retroflexus, Sinapis arvensis, and Leucanthemum maximum). The effects of the free herbicides and the herbicides embedded in granules of degradable polymer poly-3-hydroxybutyrate [P(3HB)] blended with birch wood flour were compared. Metribuzin, regardless of the form, caused 100% mortality of the three weeds by day 21. The herbicidal activity of tribenuron-methyl was lower than that of metribuzin, but the embedded TBM was superior to the free herbicide in the length and strength of its action on the weeds. Both metribuzin forms dramatically decreased the main parameters of fluorescence: maximum quantum yield of photosystem-II [Y(II)max], maximum quantum yield of non-photochemical quenching [Y(NPQ)max], and maximum rate of non-cyclic electron transport [ETRmax] and concentrations of chlorophyll a and b. The effect of the embedded TBM on the photosynthetic activity of the weeds was lower in the first two weeks of the growth of herbicide-treated plants but lasted longer than the effect of the free TBM and increased over time. Embedding of metribuzin in the matrix of degradable blend did not decrease its herbicidal activity. © 2020 Taylor & Francis Group, LLC.

Scopus
Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS,”, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T.; Baranovsky, S.; Petrovskaya, O.; Shumilova, A.; Sukovatyi, A.

Найти похожие
5.


   
    Biological effects of the free and embedded metribuzin and tribenuron-methyl herbicides on various cultivated weed species / T. Volova, S. Baranovsky, O. Petrovskaya [et al.] // J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes. - 2020, DOI 10.1080/03601234.2020.1807835. - Cited References:42. - This work was supported by Project "Agropreparations of the new generation: a strategy of construction and realization" [Agreement No 074-02-2018-328] in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning". . - ISSN 0360-1234. - ISSN 1532-4109
РУБ Environmental Sciences + Public, Environmental & Occupational Health
Рубрики:
SYNTHASE-INHIBITING HERBICIDES
   CHLOROPHYLL FLUORESCENCE

   RELEASE

Кл.слова (ненормированные):
Metribuzin -- tribenuron-methyl -- degradable P(3HB) -- weed growth -- inhibition -- photosynthetic activity
Аннотация: The present study addresses the herbicidal activity and biological effects of the metribuzin (MET) and tribenuron-methyl (TBM) herbicides used to control various weed species (Amaranthus retroflexus, Sinapis arvensis,andLeucanthemum maximum). The effects of the free herbicides and the herbicides embedded in granules of degradable polymer poly-3-hydroxybutyrate [P(3HB)] blended with birch wood flour were compared. Metribuzin, regardless of the form, caused 100% mortality of the three weeds by day 21. The herbicidal activity of tribenuron-methyl was lower than that of metribuzin, but the embedded TBM was superior to the free herbicide in the length and strength of its action on the weeds. Both metribuzin forms dramatically decreased the main parameters of fluorescence: maximum quantum yield of photosystem-II [Y(II)(max)], maximum quantum yield of non-photochemical quenching [Y(NPQ)(max)], and maximum rate of non-cyclic electron transport [ETRmax] and concentrations of chlorophyllaandb. The effect of the embedded TBM on the photosynthetic activity of the weeds was lower in the first two weeks of the growth of herbicide-treated plants but lasted longer than the effect of the free TBM and increased over time. Embedding of metribuzin in the matrix of degradable blend did not decrease its herbicidal activity.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.
Krasnoyarsk Sci Ctr SB RAS, Fed Res Ctr, Inst Biophys SB RAS, Krasnoyarsk, Russia.

Доп.точки доступа:
Volova, Tatiana; Baranovsky, Sergey; Petrovskaya, Olga; Shumilova, Anna; Sukovatyi, Alexey; Project "Agropreparations of the new generation: a strategy of construction and realization" [074-02-2018-328]; Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning" [220]

Найти похожие
6.


   
    Characteristics of slow induction curve of chlorophyll fluorescence and CO2 exchange for the assessment of plant heat tolerance at various levels of light intensity [Text] / E. N. Zavorueva, S. A. Ushakova // Russ. J. Plant Physiol. - 2004. - Vol. 51, Is. 3. - P. 294-301, DOI 10.1023/B:RUPP.0000028674.39572.1c. - Cited References: 18 . - ISSN 1021-4437
РУБ Plant Sciences

Кл.слова (ненормированные):
Triticum aestivum -- Raphanus sativus var. minor -- fluorescence -- heat tolerance -- pigments -- CO2 exchange
Аннотация: The heat tolerance of wheat (Triticum aestivum L.) and radish (Raphanus sativus L. var. minor) cenoses exposed to elevated and damaging air temperatures (35 degreesC for 20 h, 45 degreesC for 7 h) under photoculture conditions at various levels of photosynthetically active radiation (PAR) was assessed by measuring characteristics of the slow induction curve of chlorophyll fluorescence at 682 and 734 nm and the CO2 exchange rate. Irrespective of the illumination level, the exposure of the cenoses to 35 degreesC did not induce irreversible changes in the plant photosynthetic apparatus. The lowest extent of damage to wheat and radish cenoses exposed to 45 degreesC was observed at 150 W/m(2) of PAR, whereas the highest damage of the plants was observed at an illumination level that was close to the compensation point of the cenose photosynthesis (50-70 W/m(2) of PAR at air temperature of 24 degreesC). Viability index proved to be the most sensitive. characteristic, compared to other characteristics, which were determined by measuring the slow phase of fluorescence induction at 682 and 734 nm. In the cenoses studied, the pattern of changes in the viability index in response to a stress factor was close to the changes in the photosynthetic rate.

WOS
Держатели документа:
Krasnoyarsk State Architectural & Bldg Acad, Krasnoyarsk, Russia
Russian Acad Sci, Inst Biophys, Siberian Div, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Zavorueva, E.N.; Ushakova, S.A.

Найти похожие
7.


   
    Chlorophyll fluorescence as an indicator of age-dependent changes in photosynthetic apparatus of wheat leaves [Text] / T. V. Nesterenko, V. N. Shikhov, A. A. Tikhomirov // Russ. J. Plant Physiol. - 2015. - Vol. 62, Is. 3. - P307-313, DOI 10.1134/S1021443715020144. - Cited References:30. - This work was supported by the State Assignment, topic no. 56.1.4, section VI of the Program for Basic Research of the State Academies of Sciences for 2013-2020. . - ISSN 1021-4437. - ISSN 1608-3407
РУБ Plant Sciences
Рубрики:
LEAF SENESCENCE
   ONTOGENIC APPROACH

   LIGHT DEPENDENCE

   PARAMETERS

Кл.слова (ненормированные):
Triticum sativus -- chlorophyll fluorescence parameters -- actinic light -- intensity -- leaf ontogeny
Аннотация: Wheat (Triticum sativus L.) seedlings of various ages (2- to 16-day-old plants) were used to study age-dependent changes in the chlorophyll fluorescence induction (CFI) at various light intensities during flu- orescence measurements. Plants were raised in a growth chamber using hydroponics with expanded clay, controlled environmental conditions, and 690 A mu mol/(m(2) s) photon flux density (PFD) of photosynthetically active radiation (PAR). Parameters of CFI were determined under actinic PFD of 380, 580, 820, and 1340 A mu mol/(m(2) s) PAR. The fifth leaf from the stem base, exposed to uniform lighting, was sampled for measurements. This leaf emerged at the plant age of 16 days. Based on fluorescence data, we calculated the maximal photochemical quantum yield of photosystem II (F (v)/F (m)), the effective photochemical quantum yield of PSII (Yield), parameters of photochemical (qP) and non-photochemical (qN and NPQ) quenching of chlorophyll fluorescence, the F (p)/F (t) ratio, and the "vitality index" (fluorescence decrease ratio, R (fd)). At moderate actinic PFD, applied commonly in PAM fluorometers (about 380 A mu mol/(m(2) s)), age-dependent changes in NPQ, F (p)/F (t), and R (fd) were observed. Analysis of CFI parameters in wheat leaves of different ages at PFD increasing from 380 to 820 A mu mol/(m(2) s) revealed that R (fd), NPQ, and qN are the most sensitive markers of the leaf age among all parameters tested. These suitable indicators can be used for rapid assessment of the leaf age.

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Nesterenko, T. V.; Shikhov, V. N.; Tikhomirov, A. A.; section VI of the Program for Basic Research of the State Academies of Sciences [56.1.4]

Найти похожие
8.


   
    Chlorophyll fluorescence induction and estimation of plant resistance to stress factors / T. V. Nesterenko, A. A. Tikhomirov, V. N. Shikhov // Zhurnal Obshchei Biologii. - 2007. - Vol. 68, Is. 6. - С. 444-458 . - ISSN 0044-4596
Кл.слова (ненормированные):
chlorophyll -- adaptation -- cucumber -- fluorescence -- growth, development and aging -- metabolism -- physiology -- plant leaf -- review -- Adaptation, Physiological -- Chlorophyll -- Cucumis sativus -- Fluorescence -- Plant Leaves -- Cucumis sativus
Аннотация: The usage of chlorophyll fluorescence induction (CFI) for estimating various types of plant resistance (primary, general, initial, adaptive) to stress factors is reviewed. The necessity of ontogenetic approach (considering the age-specific properties of the photosynthetic apparatus) in determining general and adaptive resistance of plants to prolonged action of stress factors by the CFI method is argued. In the plant Cucumbis sativus L., the possibility is shown of using age-specific qualitative and quantitative traits of leaf CFI (changes in the shape of chlorophyll fluorescence induction curves and in the dynamics of CFI parameters in the course of leaf ontogeny) for comparative study of differences between fully active and stressed plants. Possible criteria are suggested for estimating the effect of outer stress factors by the presence or absence of a steady-state phase in the dynamics of CFI parameters during leaf ontogeny. It is also suggested to use the duration of the steady-state phase following the termination of leaf growth (estimated by the dynamics of the slow phase of CFI as the ratio of fluorescence intensity at the peak P and the steady-state fluorescence intensity, FP/FS, or as the viability index Rfd) and the variability of CFI parameters during this period as qualitative estimates of plant resistance to prolonged action of stress factors.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Nesterenko, T.V.; Tikhomirov, A.A.; Shikhov, V.N.

Найти похожие
9.


   
    Contribution of different groups of autotrophs to the primary production of the mountain Lake Oiskoe [Text] / E. A. Ivanova [et al.] // Contemp. Probl. Ecol. - 2014. - Vol. 7, Is. 4. - P397-409, DOI 10.1134/S1995425514040040. - Cited References: 49. - This work was supported by the Federal Target Program "Scientific and Scientific-Pedagogical Personnel for an Innovative Russia," state contract no. 16.740.11.0484, and the project of the Ministry of Education and Science of the Russian Federation "Ecological and Biochemical Laws of Matter and Energy Transfer in Food Webs of Aquatic Ecosystems." . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology
Рубрики:
DCMU-FLUORESCENCE METHOD
   PHYTOPLANKTON

   CHLOROPHYLL

   PERIPHYTON

   RANGE

Кл.слова (ненормированные):
primary productivity -- phytoplankton -- phytoperiphyton -- macrophytes -- fluorescence -- chlorophyll -- Lake Oiskoe
Аннотация: Productivity characteristics of phytoplankton, phytoperiphyton, and five species of macrophytes in the mountain oligotrophic Lake Oiskoe (Ergaky Mountain Range, West Sayan) have been studied. High primary productivity has been noted for phytoperiphyton and macrophyte communities. Photosynthetic parameters of the macrophyte leaves have been compared using a PAM fluorimeter.

WOS
Держатели документа:
[Ivanova, E. A.
Anishchenko, O. V.
Glushchenko, L. A.
Gaevsky, N. A.
Kolmakov, V. I.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Ivanova, E. A.
Anishchenko, O. V.
Kolmakov, V. I.] Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Ivanova, E.A.; Anishchenko, O.V.; Glushchenko, L.A.; Gaevsky, N.A.; Kolmakov, V.I.; Federal Target Program "Scientific and Scientific-Pedagogical Personnel for an Innovative Russia" [16.740.11.0484]; Ministry of Education and Science of the Russian Federation

Найти похожие
10.


   
    Deep Physical-Chemical Purification of Gas Medium in Artificial Ecosystems / S. V. Trifonov, V. V. Velichko, N. A. Tikhomirova [et al.] // Doklad. Biochem. Biophys. - 2020. - Vol. 492, Is. 1. - P112-116, DOI 10.1134/S1607672920030059 . - ISSN 1607-6729
Кл.слова (ненормированные):
biotechnological life support system -- catalytic oxidation -- photosynthetic apparatus -- volatile organic compounds
Аннотация: Abstract: The results of experiments on application of a newly developed facility for oxidation of volatile organic compounds on a platinum catalyst are presented. The feasibility of using this method in artificial ecosystems as a whole and in mass exchange of closed biological-technical life support systems in particular is shown. The possibility of deep purification of gas emitted from the reactor of physical-chemical processing of organic wastes is demonstrated. Wheat growing experiment on using the facility for oxidation of volatile organic compounds in a sealed chamber was performed. No adverse effect of probable toxic oxidation products on wheat plants during a 4-day experiment was determined. © 2020, Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Trifonov, S. V.; Velichko, V. V.; Tikhomirova, N. A.; Shikhov, V. N.; Morozov, E. A.; Tikhomirov, A. A.

Найти похожие
11.


   
    Deep Physical-Chemical Purification of Gas Medium in Artificial Ecosystems / S. V. Trifonov, V. V. Velichko, N. A. Tikhomirova [et al.] // Dokl. Biochem. Biophys. - 2020. - Vol. 492, Is. 1. - P112-116, DOI 10.1134/S1607672920030059. - Cited References:12. - Works on manufacturing the facility for deep catalytic gas purification and its testing with the wet combustion reactor were performed with the support of the Russian Science Foundation (project no. 14-14-00599P) at the Institute of Biophysics, Siberian Branch, Russian Academy of Sciences. The experiment with wheat plants and the analysis of the pulse-modulated chlorophyll fluorescence was performed under the state assignment (no. VI.56.1.4) at the Institute of Biophysics, Siberian Branch, Russian Academy of Sciences. . - ISSN 1607-6729. - ISSN 1608-3091
РУБ Biochemistry & Molecular Biology + Biophysics

Кл.слова (ненормированные):
catalytic oxidation -- biotechnological life support system -- volatile -- organic compounds -- photosynthetic apparatus
Аннотация: The results of experiments on application of a newly developed facility for oxidation of volatile organic compounds on a platinum catalyst are presented. The feasibility of using this method in artificial ecosystems as a whole and in mass exchange of closed biological-technical life support systems in particular is shown. The possibility of deep purification of gas emitted from the reactor of physical-chemical processing of organic wastes is demonstrated. Wheat growing experiment on using the facility for oxidation of volatile organic compounds in a sealed chamber was performed. No adverse effect of probable toxic oxidation products on wheat plants during a 4-day experiment was determined.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia.
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk, Russia.

Доп.точки доступа:
Trifonov, S. V.; Velichko, V. V.; Tikhomirova, N. A.; Shikhov, V. N.; Morozov, E. A.; Tikhomirov, A. A.; Russian Science Foundation at the Institute of Biophysics, Siberian Branch, Russian Academy of SciencesRussian Science Foundation (RSF) [14-14-00599P]

Найти похожие
12.


   
    Effect of light intensity on the age dependence of nonphotochemical fluorescence quenching in wheat leaf [Text] / T. V. Nesterenko, V. N. Shikhov, A. A. Tikhomirov // Photosynthetica. - 2015. - Vol. 53, Is. 4. - P617-620, DOI 10.1007/s11099-015-0133-2. - Cited References:16. - The study was performed within the framework of subject No. 56.1.4., Section VI in accordance with State Program of RAS Fundamental Research for 2013-2020. . - ISSN 0300-3604. - ISSN 1573-9058
РУБ Plant Sciences
Рубрики:
CHLOROPHYLL FLUORESCENCE
   PHOTOSYNTHESIS

   LEAVES

   INDUCTION

   ENERGY

Кл.слова (ненормированные):
chlorophyll fluorescence induction -- leaf age -- photosystem II
Аннотация: The effects of actinic light (AL) intensity on the age dependence of nonphotochemical fluorescence quenching (q(N)) and effective quantum yield in PSII (I broken vertical bar(PSII)) were studied in continuously illuminated wheat leaves of the upper tier. Regular changes were revealed in both age dependence of q(N) at elevated AL intensities and light curves of q(N). These changes are related to alterations in strategies of redistribution and use of absorbed light energy by the photosynthetic apparatus at different stages of wheat leaf development. Unlike I broken vertical bar(PSII), q(N) as a parameter was more sensitive to the differences in the leaf age at a certain range of light intensities. At the same time, the stability of q(N) at moderate light intensities may serve as an indication of leaf maturity.

WOS,
Scopus
Держатели документа:
RAS, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Nesterenko, T. V.; Shikhov, V. N.; Tikhomirov, A. A.; RAS [56.1.4]

Найти похожие
13.


   
    Effect of the level of irradiance on growth and content of photosynthetic pigments of Canadian Elodea (Elodea Canadensis) in model system “Water-Bottom Sediments” / Y. V. Aleksandrova, T. A. Zotina, N. A. Gaevsky // J. Sib. Fed. Univ. - Biol. - 2020. - Vol. 13, Is. 2. - С. 188-196, DOI 10.17516/1997-1389-0317 . - ISSN 1997-1389
   Перевод заглавия: Влияние светового фактора на рост и содержание фотосинтетических пигментов элодеи канадской (Elodea canadensis) в модельной системе «вода-донные отложения»
Кл.слова (ненормированные):
Aquatic plant -- Bioassay -- Bottom sediment -- Light saturation -- Photosynthetic pigments -- Root length -- Shoot length
Аннотация: Bioassays based on aquatic plants are a convenient tool for studying the quality of bottom sediments. One of the stages in the development of a bioassay is the selection of optimal growth conditions for indicator plants in a model test system. Response of indicator physiological endpoints of Canadian waterweed (Elodea canadensis) to light flux density was investigated to determine optimal irradiance level in a “water - sediment” model system, proposed previously for contact bioassay of natural bulk bottom sediments. Based on the response of shoot and root growth (length and weight), and concentration and ratio of photosynthetic pigments (chl. a, chl. b, and carotenoids) of Elodea to the change of light flux density, no limitation or inhibition of growth and photosynthesis of Elodea was revealed at light flux density from 56 to 143 µmol quanta • m-2 • s-1. Hence, the level of irradiance within this range can be recommended for use in the experimental system proposed for bioassay of bulk bottom sediments using E. canadensis as an indicator. © Siberian Federal University. All rights reserved

Scopus
Держатели документа:
Institute of Biophysics FRC, Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University Krasnoyarsk, Russian Federation

Доп.точки доступа:
Aleksandrova, Y. V.; Zotina, T. A.; Gaevsky, N. A.

Найти похожие
14.


   
    Effects of mineral nutrition conditions on heat tolerance of chufa (Cyperus esculentus L.) plant communities to super optimal air temperatures in the BTLSS [Text] / E. S. Shklavtsova [et al.] // Adv. Space Res. - 2014. - Vol. 54, Is. 6. - P1135-1145, DOI 10.1016/j.asr.2014.05.031. - Cited References: 26. - The study was performed within the framework of the program of fundamental research for the Russian academies of sciences for 2013-2020, subject No. 56.1.4. . - ISSN 0273-1177. - ISSN 1879-1948
РУБ Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences
Рубрики:
LIFE-SUPPORT-SYSTEMS
   CHLOROPHYLL FLUORESCENCE

   STRESS

   WASTE

   WHEAT

   LSS

Кл.слова (ненормированные):
Bioregenerative life support system -- Cyperus esculentus L. -- Heat shock -- Mineralized human wastes -- Chlorophyll fluorescence -- Lipid peroxidation
Аннотация: The use of mineralized human wastes as a basis for nutrient solutions will increase the degree of material closure of bio-technical human life support systems. As stress tolerance of plants is determined, among other factors, by the conditions under which they have been grown before exposure to a stressor, the purpose of the study is to investigate the level of tolerance of chufa (Cyperus esculentus L.) plant communities grown in solutions based on mineralized human wastes to a damaging air temperature, 45 degrees C. Experiments were performed with 30-day-old chufa plant communities grown hydroponically, on expanded clay aggregate, under artificial light, at 690 mu mol m(-2) s(-1) PAR and at a temperature of 25 degrees C. Plants were grown in Knop's solution and solutions based on human wastes mineralized according to Yu.A. Kudenko's method, which contained nitrogen either as ammonium and urea or as nitrates. The heat shock treatment lasted 20 h at 690 and 1150 mu mol m(-2) s(-1) PAR. Chufa heat tolerance was evaluated based on parameters of CO2 gas exchange, the state of its photosynthetic apparatus (PSA), and intensity of peroxidation of leaf lipids. Chufa plants grown in the solutions based on mineralized human wastes that contained ammonium and urea had lower heat tolerance than plants grown in standard mineral solutions. Heat tolerance of the plants grown in the solutions based on mineralized human wastes that mainly contained nitrate nitrogen was insignificantly different from the heat tolerance of the plants grown in standard mineral solutions. A PAR intensity increase from 690 mu mol m(-2) s(-1) to 1150 mu mol m(-2) s(-1) enhanced heat tolerance of chufa plant communities, irrespective of the conditions of mineral nutrition under which they had been grown. (C) 2014 COSPAR. Published by Elsevier Ltd. All rights reserved.

WOS
Держатели документа:
[Shklavtsova, E. S.
Ushakova, S. A.
Shikhov, V. N.
Anishchenko, O. V.] SB RAS Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shklavtsova, E.S.; Ushakova, S.A.; Shikhov, V.N.; Anishchenko, O.V.; program of fundamental research for the Russian academies of sciences [56.1.4]

Найти похожие
15.


   
    Effects of mineral nutrition conditions on heat tolerance of chufa (Cyperus esculentus L.) plant communities to super optimal air temperatures in the BTLSS / E. S. Shklavtsova [et al.] // Adv. Space Res. - 2014. - Vol. 54, Is. 6. - P1135-1145, DOI 10.1016/j.asr.2014.05.031 . - ISSN 1879-1948
Кл.слова (ненормированные):
Bioregenerative life support system -- Chlorophyll fluorescence -- Cyperus esculentus L. -- Heat shock -- Lipid peroxidation -- Mineralized human wastes -- Atmospheric temperature -- Carbon dioxide -- Lipids -- Metabolism -- Minerals -- Nitrates -- Nitrogen -- Nutrition -- Plants (botany) -- Urea -- Wastes -- Bioregenerative life support systems -- Chlorophyll fluorescence -- Cyperus esculentus -- Heat-shock -- Human waste -- Lipid peroxidation -- Plant shutdowns
Аннотация: The use of mineralized human wastes as a basis for nutrient solutions will increase the degree of material closure of bio-technical human life support systems. As stress tolerance of plants is determined, among other factors, by the conditions under which they have been grown before exposure to a stressor, the purpose of the study is to investigate the level of tolerance of chufa (Cyperus esculentus L.) plant communities grown in solutions based on mineralized human wastes to a damaging air temperature, 45 °C. Experiments were performed with 30-day-old chufa plant communities grown hydroponically, on expanded clay aggregate, under artificial light, at 690 ?mol m-2 s-1 PAR and at a temperature of 25 °C. Plants were grown in Knop's solution and solutions based on human wastes mineralized according to Yu.A. Kudenko's method, which contained nitrogen either as ammonium and urea or as nitrates. The heat shock treatment lasted 20 h at 690 and 1150 ?mol m -2 s-1 PAR. Chufa heat tolerance was evaluated based on parameters of CO2 gas exchange, the state of its photosynthetic apparatus (PSA), and intensity of peroxidation of leaf lipids. Chufa plants grown in the solutions based on mineralized human wastes that contained ammonium and urea had lower heat tolerance than plants grown in standard mineral solutions. Heat tolerance of the plants grown in the solutions based on mineralized human wastes that mainly contained nitrate nitrogen was insignificantly different from the heat tolerance of the plants grown in standard mineral solutions. A PAR intensity increase from 690 ?mol m -2 s-1 to 1150 ?mol m-2 s-1 enhanced heat tolerance of chufa plant communities, irrespective of the conditions of mineral nutrition under which they had been grown. © 2014 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
SB RAS Institute of Biophysics, 660036 Akademgorodok, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shklavtsova, E.S.; Ushakova, S.A.; Shikhov, V.N.; Anishchenko, O.V.

Найти похожие
16.


   
    Effects of PAR intensity and NaCl concentration on growth of Salicornia europaea plants as relevant to artificial ecological systems / N. A. Tikhomirova [et al.] // Russ. J. Plant Physiol. - 2016. - Vol. 63, Is. 4. - P474-482, DOI 10.1134/S1021443716040154 . - ISSN 1021-4437
Кл.слова (ненормированные):
artificial ecosystems -- CO2 exchange -- macroelements -- MDA -- NaCl salinity -- PAR intensity -- photosynthetic pigments -- productivity -- Salicornia europaea
Аннотация: Effects of variable levels of photosynthetically active radiation (PAR) and NaCl concentrations, typical of closed ecological life support systems, on growth of Salicornia europaea L. plants, CO2 exchange, mineral composition, and the content of malondialdehyde (MDA) and photosynthetic pigments were investigated. The plants were grown for 25 days at different salinities of nutrient Knop solution (171, 342, and 513 mM NaCl) under two PAR levels (690 and 1150 ?mol/(m2 s)). At PAR of 690 ?mol/(m2 s), the plant productivity did not show significant changes at increasing salinities; at 1150 ?mol/(m2 s), the maximal productivity was observed at NaCl concentrations of 171 and 342 mM. The increase in NaCl concentration from 171 to 513 mM in the nutrient solution led to a substantial increase in the relative Na content in aboveground organs at PAR level of 1150 ?mol/(m2 s). The MDA content in aboveground organs by the end of the growth period was independent of PAR intensity. The content of photosynthetic pigments in the assimilatory tissue decreased with the increase in salinity from 342 to 513 mM NaCl at PAR level of 1150 ?mol/(m2 s) but not at the lower irradiance. The combination of 1150 ?mol/(m2 s) PAR intensity with the salinity as high as 342 mM NaCl was found to be the most effective for optimal productivity of S. europaea plants. © 2016, Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Tikhomirova, N. A.; Ushakova, S. A.; Shklavtsova, E. S.; Anishchenko, O. V.; Mikheeva, Y. A.; Tikhomirov, A. A.

Найти похожие
17.


   
    Establishing cycling processes in an experimental model of a closed ecosystem / A. Tikhomirov, S. Ushakova, N. Tikhomirova [et al.] // Acta Astronaut. - 2020. - Vol. 166: 21st International-Academy-of-Astronautics (IAA) Humans in Space (NOV 27-30, 2017, Shenzhen, PEOPLES R CHINA). - P537-544, DOI 10.1016/j.actaastro.2018.08.023. - Cited References:18. - The study was supported by the Russian Science Foundation, Russia (Project No. 14-14-00599 Pi) and carried out in the IBP SB RAS at FRCKRC SB RAS. No competing financial interests exist. . - ISSN 0094-5765. - ISSN 1879-2030
РУБ Engineering, Aerospace
Рубрики:
BIOREGENERATIVE LIFE-SUPPORT
   EXCHANGE

   WASTES

   MASS

Кл.слова (ненормированные):
Experimental model of the closed ecosystem -- Oxidation of human and plant -- wastes -- Plant productivity -- Cycling
Аннотация: The purpose of this study was to investigate mass exchange processes in the experimental model of a closed ecological system intended for an estimated portion of a human in the long-duration (several-month) experiment. The diversity of the vegetable crop community in the system was increased, human wastes were involved in mass exchange processes, and human respiration was periodically connected to the system. The system has been designed to test different prospective technologies for future closed life support systems intended for prolonged autonomous operation in space and terrestrial applications. Three methods of plant cultivation in the conveyer mode have been used: hydroponics on expanded clay aggregate, growing plants on the soil-like substrate, and plant cultivation in aquaculture. The technology of more effective oxidation of organic wastes in a physicochemical processing reactor has been developed. A human exhaled the air into the system and consumed the air from the system. O-2 concentration did not drop below 20.8% and did not rise above 22.6%. CO2 concentration varied between 800 ppm and 2500 ppm. Plants growing under this CO2 range at a preset light irradiance showed optimal photosynthetic activity. The closure coefficients for Ca, Mg, S, N, K and P were above 90%. However, compared with the inflow, only 55% Ca, about 80% Mg, and 75% Na and P were removed from the system. The technological processes developed in this study will need to be modified and improved before they can be used in a full-scale closed biotechnical life support system intended for prolonged operation.

WOS
Держатели документа:
RAS, Inst Biophys, Krasnoyarsk Sci Ctr, Fed Res Ctr,SB, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Tikhomirov, Alexander; Ushakova, Sofya; Tikhomirova, Natalia; Velichko, Vladimir; Trifonov, Sergey; Anishchenko, Olesya; Russian Science Foundation, RussiaRussian Science Foundation (RSF) [14-14-00599Pi]

Найти похожие
18.


   
    Establishing cycling processes in an experimental model of a closed ecosystem / A. Tikhomirov [et al.] // . - 2018, DOI 10.1016/j.actaastro.2018.08.023 . - ISSN 0094-5765
Кл.слова (ненормированные):
Cycling -- Experimental model of the closed ecosystem -- Oxidation of human and plant wastes -- Plant productivity -- Carbon dioxide -- Cultivation -- Ecosystems -- Life support systems (spacecraft) -- Closed ecological systems -- Cycling -- Expanded clay aggregates -- Experimental modeling -- Photosynthetic activity -- Plant productivity -- Plant wastes -- Terrestrial application -- Plant shutdowns
Аннотация: The purpose of this study was to investigate mass exchange processes in the experimental model of a closed ecological system intended for an estimated portion of a human in the long-duration (several-month) experiment. The diversity of the vegetable crop community in the system was increased, human wastes were involved in mass exchange processes, and human respiration was periodically connected to the system. The system has been designed to test different prospective technologies for future closed life support systems intended for prolonged autonomous operation in space and terrestrial applications. Three methods of plant cultivation in the conveyer mode have been used: hydroponics on expanded clay aggregate, growing plants on the soil-like substrate, and plant cultivation in aquaculture. The technology of more effective oxidation of organic wastes in a physicochemical processing reactor has been developed. A human exhaled the air into the system and consumed the air from the system. O2 concentration did not drop below 20.8% and did not rise above 22.6%. CO2 concentration varied between 800 ppm and 2500 ppm. Plants growing under this CO2 range at a preset light irradiance showed optimal photosynthetic activity. The closure coefficients for Ca, Mg, S, N, K and P were above 90%. However, compared with the inflow, only 55% Ca, about 80% Mg, and 75% Na and P were removed from the system. The technological processes developed in this study will need to be modified and improved before they can be used in a full-scale closed biotechnical life support system intended for prolonged operation. © 2018 IAA

Scopus,
Смотреть статью
Держатели документа:
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50, Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Tikhomirov, A.; Ushakova, S.; Tikhomirova, N.; Velichko, V.; Trifonov, S.; Anishchenko, O.

Найти похожие
19.


   
    Estimation of changes in the activity of photosynthetic apparatus of plant leaves based on half-time of fluorescence intensity decrease / T. V. Nesterenko, V. N. Shikhov, A. A. Tikhomirov // Photosynthetica. - 2019. - Vol. 57, Is. 1. - P132-136, DOI 10.32615/ps.2019.005. - Cited References:34 . - ISSN 0300-3604. - ISSN 1573-9058
РУБ Plant Sciences
Рубрики:
ELECTRIC-POTENTIAL DIFFERENCE
   CHLOROPHYLL FLUORESCENCE

   THYLAKOID

Кл.слова (ненормированные):
chlorophyll fluorescence induction -- leaf age -- photosystem II
Аннотация: The range of variations in parameter tau(0.5) - half-time of fluorescence intensity decrease during the slow phase of chlorophyll fluorescence induction (CFI) - has been studied during ontogeny of leaves of monocotyledonous and dicotyledonous plants in plant communities of different structures. Plants were grown hydroponically on expanded clay aggregate in growth chambers, under PPFD of 400 mu mol(photon) m(-2) s(-1), under controlled conditions. Analysis of the literature data and results of experimental observations of tau(0.5) behavior compared to other CFI parameters, nonphotochemical quenching coefficient, q(N), in particular, leads to the conclusion that parameter tau(0.5) can be effectively used for indirect estimation of variations in the activity of photosynthetic apparatus during ontogeny of plant leaves.

WOS,
Смотреть статью,
Scopus
Держатели документа:
RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, Inst Biophys SB, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Nesterenko, T. V.; Shikhov, V. N.; Tikhomirov, A. A.

Найти похожие
20.


   
    Estimation of the stability of the photosynthetic unit in the bioregenerative life support system with plant wastes included in mass exchange / A. A. Tikhomirov [et al.] // Acta Astronautica. - 2008. - Vol. 63, Is. 7-10. - P1111-1118, DOI 10.1016/j.actaastro.2007.12.025 . - ISSN 0094-5765
Кл.слова (ненормированные):
BLSS -- Mass exchange -- Plant wastes -- Agricultural products -- Air pollution -- Biological materials -- Biomass -- Environmental engineering -- Estimation -- Experiments -- Human engineering -- Incineration -- Renewable energy resources -- Space research -- Substrates -- System stability -- Bioregenerative -- Life-support systems -- Mass exchanges -- Plant biomass -- Plant productivity -- Plant wastes -- Radish plants -- Significant reduction -- Soil like substrates -- Wheat straws -- Waste incineration
Аннотация: The purpose of this study is to estimate the possible effect produced on plant productivity by inedible plant biomass added to soil-like substrate (SLS). Results of the experiments with radish plants grown on the SLS with inedible biomass of carrot and beet plants added in the amounts roughly equal to their yields harvested from the same area showed a significant reduction in productivity of radish plants. The yield of radish plants grown on the SLS with added radish tops was almost the same as the yield of the radish grown on the neutral substrate. Experiments with addition of dry wheat straw to the SLS and growing of wheat and radish plants on that substrate also showed that the productivity of the plants grown in that way was decreased. Attempts to negate the adverse effect of plant wastes proved that the most effective way was to mineralize the wastes using the technique of "wet incineration". В© 2008 Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics Russian Academy of Sciences, Siberian Branch, Akademgorodok, 660036 Krasnoyarsk, Russian Federation
Environmental Control and Life Support Section, ESA-ESTEC, Postbus 299, 2200 AG Noordwijk, Netherlands
Institute of Biology Komi SC, Ural Branch Russian Academy of Sciences, Kommunisticheskaya Street, 28, 167982 Siktivkar, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Velichko, V.V.; Zolotukhin, I.G.; Shklavtsova, E.S.; Lasseur, C.; Golovko, T.K.

Найти похожие
 1-20    21-40   41-57 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)