Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (3)
Формат представления найденных документов:
полный информационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=polymer<.>)
Общее количество найденных документов : 142
Показаны документы с 1 по 20
 1-20    21-40   41-60   61-80   81-100   101-120      
1.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Kiselev, Evgeniy G., Boyandin, Anatoly N., Zhila, Natalia O., Prudnikova, Svetlana, V, Shumilova, Anna A., Baranovskiy, Sergey, V, Shishatskaya, Ekaterina, I, Thomas, Sabu, Volova, Tatiana G.
Заглавие : Constructing sustained-release herbicide formulations based on poly-3-hydroxybutyrate and natural materials as a degradable matrix
Колич.характеристики :14 с
Коллективы : Government of the Russian Federation [074-02-2018-328, 220]
Место публикации : Pest Manag. Sci.: JOHN WILEY & SONS LTD. - ISSN 1526-498X, DOI 10.1002/ps.5702. - ISSN 1526-4998(eISSN)
Примечания : Cited References:83. - This study was financially supported by the project 'Agropreparations of the new generation: a strategy of construction and realization' (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, 'On measures designed to attract leading scientists to the Russian institutions of higher learning'.
Предметные рубрики: SOIL MICROBIAL COMMUNITY
FENOXAPROP-P-ETHYL
SLOW-RELEASE
METRIBUZIN
Аннотация: BACKGROUND The purpose of the present study was to develop ecofriendly herbicide formulations. Its main aim was to develop and investigate slow-release formulations of herbicides (metribuzin, tribenuron-methyl, and fenoxaprop-P-ethyl) of different structure, solubility, and specificity, which were loaded into a degradable matrix of poly-3-hydroxybutyrate (P(3HB)) blended with available natural materials (peat, clay, and wood flour). RESULTS Differences in the structure and physicochemical properties of the formulations were studied depending on the type of the matrix. Herbicide release and accumulation in soil were associated with the solubility of the herbicide. Fourier-transform infrared spectroscopy showed that no chemical bonds were formed between the components in the experimental formulations. Degradation of the formulations in agro-transformed soil in laboratory conditions was chiefly influenced by the shape of the specimens (granules or pellets) while the effect of the type of filler (peat, clay, or wood flour) was insignificant. The use of granules enabled more rapid accumulation of the herbicides in soil: their peak concentrations were reached after 3 weeks of incubation while the concentrations of the herbicides released from the pellets were the highest after 5-7 weeks. Loading of the herbicides into the polymer matrix composed of the slowly degraded P(3HB) and natural materials enabled both sustained function of the formulations in soil (lasting between 1.5 and = 3 months) and stable activity of the otherwise rapidly inactivated herbicides such as tribenuron-methyl and fenoxaprop-P-ethyl. CONCLUSION The experimental herbicide formulations enabled slow release of the active ingredients to soil. (c) 2019 Society of Chemical Industry
WOS
Найти похожие
2.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Volova, Tatiana G., Kiselev, Evgeniy G., Demidenko, Alexey V., Zhila, Natalia O., Nemtsev, Ivan V., Lukyanenko, Anna V.
Заглавие : Production and Properties of Microbial Polyhydroxyalkanoates Synthesized from Hydrolysates of Jerusalem Artichoke Tubers and Vegetative Biomass
Колич.характеристики :25 с
Коллективы : Project "Agropreparations of the new generation: a strategy of construction and realization" [075-15-2021-626]; State Assignment of the Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0006]
Место публикации : Polymers: MDPI, 2022. - Vol. 14, Is. 1. - Ст.132. - ISSN 2073-4360(eISSN), DOI 10.3390/polym14010132
Примечания : Cited References:93. - This study was financially supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No. 075-15-2021-626) in accordance with Resolution No. 220 of the Government of the Russian Federation of 9 April 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning" (polymer synthesis, properties), and by the State Assignment of the Ministry of Science and Higher Education of the Russian Federation No. FSRZ-2020-0006 (films production, surface properties).
Предметные рубрики: GLUCOSE-UTILIZING STRAIN
RALSTONIA-EUTROPHA
ASPERGILLUS-NIGER
ACID
Аннотация: One of the major challenges in PHA biotechnology is optimization of biotechnological processes of the entire synthesis, mainly by using new inexpensive carbon substrates. A promising substrate for PHA synthesis may be the sugars extracted from the Jerusalem artichoke. In the present study, hydrolysates of Jerusalem artichoke (JA) tubers and vegetative biomass were produced and used as carbon substrate for PHA synthesis. The hydrolysis procedure (the combination of aqueous extraction and acid hydrolysis, process temperature and duration) influenced the content of reducing substances (RS), monosaccharide contents, and the fructose/glucose ratio. All types of hydrolysates tested as substrates for cultivation of three strains-C. necator B-10646 and R. eutropha B 5786 and B 8562-were suitable for PHA synthesis, producing different biomass concentrations and polymer contents. The most productive process, conducted in 12-L fermenters, was achieved on hydrolysates of JA tubers (X = 66.9 g/L, 82% PHA) and vegetative biomass (55.1 g/L and 62% PHA) produced by aqueous extraction of sugars at 80 degrees C followed by acid hydrolysis at 60 degrees C, using the most productive strain, C. necator B-10646. The effects of JA hydrolysates on physicochemical properties of PHAs were studied for the first time. P(3HB) specimens synthesized from the JA hydrolysates, regardless of the source (tubers or vegetative biomass), hydrolysis conditions, and PHA producing strain employed, exhibited the 100-120 degrees C difference between the T-melt and T-degr, prevailing of the crystalline phase over the amorphous one (C-x between 69 and 75%), and variations in weight average molecular weight (409-480) kDa. Supplementation of the culture medium of C. necator B-10646 grown on JA hydrolysates with potassium valerate and epsilon-caprolactone resulted in the synthesis of P(3HB-co-3HV) and P(3HB-co-4HB) copolymers that had decreased degrees of crystallinity and molecular weights, which influenced the porosity and surface roughness of polymer films prepared from them. The study shows that JA hydrolysates used as carbon source enabled productive synthesis of PHAs, comparable to synthesis from pure sugars. The next step is to scale up PHA synthesis from JA hydrolysates and conduct the feasibility study. The present study contributes to the solution of the critical problem of PHA biotechnology-finding widely available and inexpensive substrates.
WOS
Найти похожие
3.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Lipaikin, Sergei Y., Yaremenko, Ivan A., Terent'ev, Alexander O., Volova, Tatiana G., Shishatskaya, Ekaterina, I
Заглавие : Development of Biodegradable Delivery Systems Containing Novel 1,2,4-Trioxolane Based on Bacterial Polyhydroxyalkanoates
Колич.характеристики :14 с
Коллективы : Government of the Russian Federation [074-02-2018-328]
Место публикации : Adv. Polym. Technol.: WILEY-HINDAWI, 2022. - Vol. 2022. - Ст.6353909. - ISSN 0730-6679, DOI 10.1155/2022/6353909. - ISSN 1098-2329(eISSN)
Примечания : Cited References:70. - \his study was financially supported by the project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning."
Предметные рубрики: IN-VITRO
BRIDGED 1,2,4,5-TETRAOXANES
ANTIMALARIAL ACTIVITY
RELEASE
Аннотация: In this work, delivery systems in the form of microparticles and films containing 1,2,4-trioxolane (ozonide, OZ) based on polyhydroxyalkanoates (PHAs) were developed. Main systems' characteristics were investigated: the particle yield, average diameter, zeta potential, surface morphology, loading capacity, and drug release profile of microparticles, as well as surface morphology and release profiles of OZ-containing films. PHA-based OZ-loaded microparticles have been found to have satisfactory size, zeta potential, and ozonide loading-release behavior. It was noted that OZ content influenced the surface morphology of obtained systems.
WOS
Найти похожие
4.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Boyandin A. N., Kazantseva E. A.
Заглавие : Constructing Slow-Release Metribuzin Formulations by Co-extrusion of the Pesticide with Poly-?-Caprolactone
Место публикации : Macromol. Sympos.: Wiley-VCH Verlag, 2021. - Vol. 395, Is. 1. - Ст.2000283. - ISSN 10221360 (ISSN), DOI 10.1002/masy.202000283
Аннотация: A simple and low-cost method of obtaining slow-release pesticide formulations is proposed by co-extrusion of a herbicide metribuzin with a low-melting biodegradable polyester poly-?-caprolactone, at a temperature above the melting points of both components. Formulations containing 10%, 20%, and 40% herbicide are prepared. Metribuzin release in water during 7 days of exposition reached 81% from the formulations with the 10% loading and 96% from the specimens with the 40% herbicide loading. Biodegradation and pesticide release from the polymer constructs are studied in the model soil for 14 weeks. Degradation rates of the specimens increased with an increase in pesticide content: between 9% for the 10%-loaded specimen and 20% for the 40%-loaded specimen over 14 weeks. The release of metribuzin from the specimens with the 10–20% and 40% loadings reached 37–38% and 55%, respectively; thus, taking into account soil degradation of the herbicide, the herbicide content in soil reached 23–25% and 33%, respectively, of the initially loaded into the polymer matrix. The used approach is promising to obtain long-term release formulations for soil application. © 2021 Wiley-VCH GmbH
Scopus
Найти похожие
5.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Boyandin A. N., Sukhanova A. A., Nikolaeva E. D., Nemtsev I. V.
Заглавие : Chemical Modification of Films from Biosynthetic Poly-3-Hydroxybutyrate Aimed to Improvement of Their Surface Properties
Место публикации : Macromol. Sympos.: Wiley-VCH Verlag, 2021. - Vol. 395, Is. 1. - Ст.2000281. - ISSN 10221360 (ISSN), DOI 10.1002/masy.202000281
Аннотация: Films from biodegradable poly-3-hydroxybutyrate are treated with chemical reagents to improve their hydrophilicity and biocompatibility. Two approaches are tested: a single treatment with alkali, acids, oxidizing or reducing agents, and a step-by step treatment of the alkali pre-activated surface of polymer films with bromine water and amino-compounds (ammonia or triethylamine). The maximal level of hydrophilicity (the lowest water contact angle and the highest polar component of the surface free energy) is registered after a single treatment with NaOH and after the step-by-step treatment. These samples also showed the best adhesion of mouse fibroblasts of NIH 3T3 line on the film surface. So, the proposed methods can be used to enhance hydropilicity and biocompatibility of biopolymer surface. © 2021 Wiley-VCH GmbH
Scopus
Найти похожие
6.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Boyandin, Anatoly Nikolayevich, Sukhanova, Anna Alekseevna, Nikolaeva, Elena Dmitrievna, Nemtsev, Ivan Vasilievich
Заглавие : Chemical Modification of Films from Biosynthetic Poly-3-Hydroxybutyrate Aimed to Improvement of Their Surface Properties
Колич.характеристики :4 с
Коллективы : Ministry of Science and Higher Education of the Russian Federation [FEFE-2020-0015]
Место публикации : Macromol. Symp.: WILEY-V C H VERLAG GMBH, 2021. - Vol. 395: 4th International Conference on Progress on Polymers and Composites (NOV 26-28, 2020, ELECTR NETWORK), Is. 1. - Ст.2000281. - ISSN 1022-1360, DOI 10.1002/masy.202000281. - ISSN 1521-3900(eISSN)
Примечания : Cited References:11. - This work was carried out by the team of the scientific laboratory "Smart Materials and Structures" within the state assignment of the Ministry of Science and Higher Education of the Russian Federation for the implementation of the project "Development of multifunctional smart materials and structures based on modified polymer composite materials capable to function in extreme conditions" (No. FEFE-2020-0015). The surface of the samples was investigated using a scanning electron microscope Hitachi TM3000 in the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center "Krasnoyarsk Science Center SB RAS".
Аннотация: Films from biodegradable poly-3-hydroxybutyrate are treated with chemical reagents to improve their hydrophilicity and biocompatibility. Two approaches are tested: a single treatment with alkali, acids, oxidizing or reducing agents, and a step-by step treatment of the alkali pre-activated surface of polymer films with bromine water and amino-compounds (ammonia or triethylamine). The maximal level of hydrophilicity (the lowest water contact angle and the highest polar component of the surface free energy) is registered after a single treatment with NaOH and after the step-by-step treatment. These samples also showed the best adhesion of mouse fibroblasts of NIH 3T3 line on the film surface. So, the proposed methods can be used to enhance hydropilicity and biocompatibility of biopolymer surface.
WOS
Найти похожие
7.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Boyandin, Anatoly Nikolayevich, Kazantseva, Eugenia Andreevna
Заглавие : Constructing Slow-Release Metribuzin Formulations by Co-extrusion of the Pesticide with Poly-epsilon-Caprolactone
Колич.характеристики :3 с
Коллективы : Government of the Russian Federation [220, 074-02-2018-328]
Место публикации : Macromol. Symp.: WILEY-V C H VERLAG GMBH, 2021. - Vol. 395: 4th International Conference on Progress on Polymers and Composites (NOV 26-28, 2020, ELECTR NETWORK), Is. 1. - Ст.2000283. - ISSN 1022-1360, DOI 10.1002/masy.202000283. - ISSN 1521-3900(eISSN)
Примечания : Cited References:6. - This study was financially supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning".
Аннотация: A simple and low-cost method of obtaining slow-release pesticide formulations is proposed by co-extrusion of a herbicide metribuzin with a low-melting biodegradable polyester poly-epsilon-caprolactone, at a temperature above the melting points of both components. Formulations containing 10%, 20%, and 40% herbicide are prepared. Metribuzin release in water during 7 days of exposition reached 81% from the formulations with the 10% loading and 96% from the specimens with the 40% herbicide loading. Biodegradation and pesticide release from the polymer constructs are studied in the model soil for 14 weeks. Degradation rates of the specimens increased with an increase in pesticide content: between 9% for the 10%-loaded specimen and 20% for the 40%-loaded specimen over 14 weeks. The release of metribuzin from the specimens with the 10-20% and 40% loadings reached 37-38% and 55%, respectively; thus, taking into account soil degradation of the herbicide, the herbicide content in soil reached 23-25% and 33%, respectively, of the initially loaded into the polymer matrix. The used approach is promising to obtain long-term release formulations for soil application.
WOS
Найти похожие
8.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Shishatskaya E., Nemtsev I., Lukyanenko A., Vasiliev A., Kiselev E., Sukovatyi A., Volova T.
Заглавие : Polymer Films of Poly-3-hydroxybutyrate Synthesized by Cupriavidus necator from Different Carbon Sources
Место публикации : J. Polym. Environ.: Springer, 2021. - Vol. 29, Is. 3. - С. 837-850. - ISSN 15662543 (ISSN), DOI 10.1007/s10924-020-01924-3
Аннотация: Films were prepared from 2% solutions of biodegradable poly-3-hydroxybutyrate [P(3HB)] and investigated. The polymer was synthesized by the Cupriavidus necator B-10646 bacterium cultivated using various carbon sources (glucose and glycerol of different degrees of purity, containing 0.3 to 17.93% impurities). Glycerol as the substrate influenced molecular-weight properties and crystallinity of the polymer without affecting its temperature characteristics. The P(3HB) specimens synthesized from glycerol had reduced Mw (300–400 kDa) and degree of crystallinity (50–55%) compared to the specimens synthesized from glucose (860 kDa and 76%, respectively). The low-crystallinity P(3HB) specimens, regardless of the degree of purity of glycerol, produced a beneficial effect on the properties of polymer films, which had a better developed folded surface and increased hydrophilicity. The values of the highest roughness (Ra) of the films synthesized from glycerol were 1.8 to 4.0 times lower and the water angles 1.4–1.6 times smaller compared to the films synthesized from glucose (71.75 nm and 87.4°, respectively). Those films performed better as cell scaffolds: the number of viable NIH fibroblasts was 1.7–1.9 times higher than on polystyrene (control) or films of P(3HB) synthesized from glucose. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
Scopus
Найти похожие
9.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Boyandin, Anatoly Nikolayevich, Sukhanova, Anna Alekseevna, Orlova, Viktoriya Viktorovna, Volchek, Alexander Ivanovich
Заглавие : A novel method of fabricating polymer tubes using the casting solution technique
Колич.характеристики :4 с
Коллективы : scientific laboratory "Intelligent Materials and Structures"within the state assignment of the Ministry of Science and Higher Education of the Russian Federation [FEFE-2020-0015]
Место публикации : Mater. Lett.: ELSEVIER, 2021. - Vol. 282. - Ст.128833. - ISSN 0167-577X, DOI 10.1016/j.matlet.2020.128833. - ISSN 1873-4979(eISSN)
Примечания : Cited References:8. - This work was carried out by the team of the scientific laboratory "Intelligent Materials and Structures"within the state assignment of the Ministry of Science and Higher Education of the Russian Federation for the implementation of the project "Development of multifunctional smart materials and structures based on modified polymer composite materials capable to function in extreme conditions" (Project No. FEFE-2020-0015).
Аннотация: A procedure has been developed to fabricate polymer tubes using solution casting inside template tubes. Polyester solution placed inside the vertically fixed template evaporated forming a hollow tube on the inner walls of the template. Silicone tubes used as the templates were permeable to solvent vapors and had relatively low adhesion to materials of the fabricated tubes, enabling their effortless removal. Parameters of the polymer tubes were determined by a type of the polymer, its concentration in the solution, and the inner diameter of the template. In the first method, a clamp was placed on the lower end of the template tube. A thickness of the new tube walls gradually increased from the open to the clamped end of the template tube. In another method viscous polymer solution without clamping was used; in this case, a polymeric bulkhead was formed in the middle of the tube. Two microbial polyesters, poly-3-hydroxybutyrate and poly-3-hydroxybutyrate-co-3-hydroxyvalerate, and also synthetic poly-L-lactide were used as model polymers. (C) 2020 Elsevier B.V. All rights reserved.
WOS
Найти похожие
10.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Boyandin A. N., Sukhanova A. A., Orlova V. V., Volchek A. I.
Заглавие : A novel method of fabricating polymer tubes using the casting solution technique
Место публикации : Mater Lett: Elsevier B.V., 2021. - Vol. 282. - Ст.128833. - ISSN 0167577X (ISSN), DOI 10.1016/j.matlet.2020.128833
Аннотация: A procedure has been developed to fabricate polymer tubes using solution casting inside template tubes. Polyester solution placed inside the vertically fixed template evaporated forming a hollow tube on the inner walls of the template. Silicone tubes used as the templates were permeable to solvent vapors and had relatively low adhesion to materials of the fabricated tubes, enabling their effortless removal. Parameters of the polymer tubes were determined by a type of the polymer, its concentration in the solution, and the inner diameter of the template. In the first method, a clamp was placed on the lower end of the template tube. A thickness of the new tube walls gradually increased from the open to the clamped end of the template tube. In another method viscous polymer solution without clamping was used; in this case, a polymeric bulkhead was formed in the middle of the tube. Two microbial polyesters, poly-3-hydroxybutyrate and poly-3-hydroxybutyrate-co-3-hydroxyvalerate, and also synthetic poly-L-lactide were used as model polymers. © 2020 Elsevier B.V.
Scopus
Найти похожие
11.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Prudnikova S. V., Evgrafova S. Y., Volova T. G.
Заглавие : Metabolic activity of cryogenic soils in the subarctic zone of Siberia towards “green” bioplastics
Место публикации : Chemosphere: Elsevier Ltd, 2021. - Vol. 263. - Ст.128180. - ISSN 00456535 (ISSN), DOI 10.1016/j.chemosphere.2020.128180
Аннотация: The present study investigates, for the first time, the structure of the microbial community of cryogenic soils in the subarctic region of Siberia and the ability of the soil microbial community to metabolize degradable microbial bioplastic – poly-3-hydroxybutyrate [P(3HB)]. When the soil thawed, with the soil temperature between 5-7 and 9–11 °C, the total biomass of microorganisms at a 10-20-cm depth was 226–234 mg g?1 soil and CO2 production was 20–46 mg g?1 day?1. The total abundance of microscopic fungi varied between (7.4 ± 2.3) ? 103 and (18.3 ± 2.2) ? 103 CFU/g soil depending on temperature; the abundance of bacteria was several orders of magnitude greater: (1.6 ± 0.1) ? 106 CFU g?1 soil. The microbial community in the biofilm formed on the surface of P(3HB) films differed from the background soil in concentrations and composition of microorganisms. The activity of microorganisms caused changes in the surface microstructure of polymer films, a decrease in molecular weight, and an increase in the degree of crystallinity of P(3HB), indicating polymer biodegradation due to metabolic activity of microorganisms. The clear-zone technique – plating of isolates on the mineral agar with polymer as sole carbon source – was used to identify P(3HB)-degrading microorganisms inhabiting cryogenic soil in Evenkia. Analysis of nucleotide sequences of rRNA genes was performed to identify the following P(3HB)-degrading species: Bacillus pumilus, Paraburkholderia sp., Pseudomonas sp., Rhodococcus sp., Stenotrophomonas rhizophila, Streptomyces prunicolor, and Variovorax paradoxus bacteria and the Penicillium thomii, P. arenicola, P. lanosum, Aspergillus fumigatus, and A. niger fungi. © 2020 Elsevier Ltd
Scopus
Найти похожие
12.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Jose, Cintil, Chan, Chin Han, Winie, Tan, Joseph, Blessy, Tharayil, Abhimanyu, Maria, Hanna J., Volova, Tatiana, La Mantia, Francesco Paolo, Rouxel, Didier, Morreale, Marco, Laroze, David, Mathew, Lovely, Thomas, Sabu
Заглавие : Thermomechanical Analysis of Isora Nanofibril Incorporated Polyethylene Nanocomposites
Колич.характеристики :15 с
Коллективы : project "Agro preparations of the new generation: a strategy of construction and realization" [074-02-2018-328]; Government of the Russian Federation [220]
Место публикации : Polymers: MDPI, 2021. - Vol. 13, Is. 2. - Ст.299. - ISSN 2073-4360(eISSN), DOI 10.3390/polym13020299
Примечания : Cited References:46. - This study (polymer synthesis and investigation) was financially supported by the project "Agro preparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation on 9 April 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning".
Аннотация: The research on cellulose fiber-reinforced nanocomposites has increased by an unprecedented magnitude over the past few years due to its wide application range and low production cost. However, the incompatibility between cellulose and most thermoplastics has raised significant challenges in composite fabrication. This paper addresses the behavior of plasma-modified polyethylene (PE) reinforced with cellulose nanofibers extracted from isora plants (i.e., isora nanofibrils (INFs)). The crystallization kinetics of PE-INF composites were explained using the Avrami model. The effect of cellulose nanofillers on tuning the physiochemical properties of the nanocomposite was also explored in this work. The increase in mechanical properties was due to the uniform dispersion of fillers in the PE. The investigation on viscoelastic properties confirmed good filler-matrix interactions, facilitating the stress transfer.
WOS
Найти похожие
13.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Jose C., Chan C. H., Winie T., Joseph B., Tharayil A., Maria H. J., Volova T., Mantia F. P.L., Rouxel D., Morreale M., Laroze D., Mathew L., Thomas S.
Заглавие : Thermomechanical analysis of isora nanofibril incorporated polyethylene nanocomposites
Место публикации : Polym.: MDPI AG, 2021. - Vol. 13, Is. 2. - Ст.299. - С. 1-15. - ISSN 20734360 (ISSN), DOI 10.3390/polym13020299
Аннотация: The research on cellulose fiber-reinforced nanocomposites has increased by an unprecedented magnitude over the past few years due to its wide application range and low production cost. However, the incompatibility between cellulose and most thermoplastics has raised significant challenges in composite fabrication. This paper addresses the behavior of plasma-modified polyethylene (PE) reinforced with cellulose nanofibers extracted from isora plants (i.e., isora nanofibrils (INFs)). The crystallization kinetics of PE–INF composites were explained using the Avrami model. The effect of cellulose nanofillers on tuning the physiochemical properties of the nanocomposite was also explored in this work. The increase in mechanical properties was due to the uniform dispersion of fillers in the PE. The investigation on viscoelastic properties confirmed good filler–matrix interactions, facilitating the stress transfer. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Scopus
Найти похожие
14.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Prudnikova, Svetlana, V, Evgrafova, Svetlana Yu, Volova, Tatiana G.
Заглавие : Metabolic activity of cryogenic soils in the subarctic zone of Siberia towards "green" bioplastics
Колич.характеристики :12 с
Коллективы : Project "Agropreparations of the new generation: a strategy of construction and realization" [074-02-2018-328]; Government of the Russian Federation [220]; Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0006]
Место публикации : Chemosphere: PERGAMON-ELSEVIER SCIENCE LTD, 2021. - Vol. 263. - Ст.128180. - ISSN 0045-6535, DOI 10.1016/j.chemosphere.2020.128180. - ISSN 1879-1298(eISSN)
Примечания : Cited References:101. - This study (polymer synthesis and investigation) was financially supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning", and by the State assignment of the Ministry of Science and Higher Education of the Russian Federation No. FSRZ-2020-0006 (investigation of polymer degradation in soils of Evenkia).
Аннотация: The present study investigates, for the first time, the structure of the microbial community of cryogenic soils in the subarctic region of Siberia and the ability of the soil microbial community to metabolize degradable microbial bioplastic - poly-3-hydroxybutyrate [P(3HB)]. When the soil thawed, with the soil temperature between 5-7 and 9-11 degrees C, the total biomass of microorganisms at a 10-20-cm depth was 226-234 mg g(-1) soil and CO2 production was 20-46 mg g(-1)W day(-1). The total abundance of microscopic fungi varied between (7.4 +/- 2.3) x 10(3) and (18.3 +/- 2.2) x 10(3) CFU/g soil depending on temperature; the abundance of bacteria was several orders of magnitude greater: (1.6 +/- 0.1) x 10(6) CFU g(-1) soil. The microbial community in the biofilm formed on the surface of P(3HB) films differed from the background soil in concentrations and composition of microorganisms. The activity of microorganisms caused changes in the surface microstructure of polymer films, a decrease in molecular weight, and an increase in the degree of crystallinity of P(3HB), indicating polymer biodegradation due to metabolic activity of microorganisms. The clear-zone technique e plating of isolates on the mineral agar with polymer as sole carbon source e was used to identify P(3HB)-degrading microorganisms inhabiting cryogenic soil in Evenkia. Analysis of nucleotide sequences of rRNA genes was performed to identify the following P(3HB)degrading species: Bacillus pumilus, Paraburkholderia sp., Pseudomonas sp., Rhodococcus sp., Stenotrophomonas rhizophila, Streptomyces prunicolor, and Variovorax paradoxus bacteria and the Penicillium thomii, P. arenicola, P. lanosum, Aspergillus fumigatus, and A. niger fungi. (C) 2020 Elsevier Ltd. All rights reserved.
WOS
Найти похожие
15.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhila, Natalia O., Sapozhnikova, Kristina Yu, Kiselev, Evgeniy G., Vasiliev, Alexander D., Nemtsev, Ivan, V, Shishatskaya, Ekaterina, I, Volova, Tatiana G.
Заглавие : Properties of Degradable Polyhydroxyalkanoates (PHAs) Synthesized by a New Strain, Cupriavidus necator IBP/SFU-1, from Various Carbon Sources
Колич.характеристики :19 с
Коллективы : Russian FederationRussian Federation [075-15-2021-626, 220]; State Assignment of the Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0006]
Место публикации : Polymers: MDPI, 2021. - Vol. 13, Is. 18. - Ст.3142. - ISSN 2073-4360(eISSN), DOI 10.3390/polym13183142
Примечания : Cited References:78. - This work was financially supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 075-15-2021-626) in accordance with Resolution No 220 of the Government of the Russian Federation of 9 April 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning" (strain isolation, polymer synthesis and investigation), and by the State Assignment of the Ministry of Science and Higher Education of the Russian Federation No. FSRZ-2020-0006 (study of film properties).
Предметные рубрики: RALSTONIA-EUTROPHA
POLY(3-HYDROXYBUTYRATE) PRODUCTION
PLANT OIL
ACID
Аннотация: The bacterial strain isolated from soil was identified as Cupriavidus necator IBP/SFU-1 and investigated as a PHA producer. The strain was found to be able to grow and synthesize PHAs under autotrophic conditions and showed a broad organotrophic potential towards different carbon sources: sugars, glycerol, fatty acids, and plant oils. The highest cell concentrations (7-8 g/L) and PHA contents were produced from oleic acid (78%), fructose, glucose, and palm oil (over 80%). The type of the carbon source influenced the PHA chemical composition and properties: when grown on oleic acid, the strain synthesized the P(3HB-co-3HV) copolymer; on plant oils, the P(3HB-co-3HV-co-3HHx) terpolymer, and on the other substrates, the P(3HB) homopolymer. The type of the carbon source influenced molecular-weight properties of PHAs: P(3HB) synthesized under autotrophic growth conditions, from CO2, had the highest number-average (290 +/- 15 kDa) and weight-average (850 +/- 25 kDa) molecular weights and the lowest polydispersity (2.9 +/- 0.2); polymers synthesized from organic carbon sources showed increased polydispersity and reduced molecular weight. The carbon source was not found to affect the degree of crystallinity and thermal properties of the PHAs. The type of the carbon source determined not only PHA composition and molecular weight but also surface microstructure and porosity of the polymer films. The new strain can be recommended as a promising P(3HB) producer from palm oil, oleic acid, and sugars (fructose and glucose) and as a producer of P(3HB-co-3HV) from oleic acid and P(3HB-co-3HV-co-3HHx) from palm oil.
WOS
Найти похожие
16.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Zhila N. O., Sapozhnikova K. Yu., Kiselev E. G., Vasiliev A. D., Nemtsev I. V., Shishatskaya E. I., Volova T. G.
Заглавие : Properties of degradable polyhydroxyalkanoates (Phas) synthesized by a new strain, cupriavidus necator ibp/sfu-1, from various carbon sources
Место публикации : Polym.: MDPI, 2021. - Vol. 13, Is. 18. - Ст.3142. - ISSN 20734360 (ISSN), DOI 10.3390/polym13183142
Аннотация: The bacterial strain isolated from soil was identified as Cupriavidus necator IBP/SFU-1 and investigated as a PHA producer. The strain was found to be able to grow and synthesize PHAs under autotrophic conditions and showed a broad organotrophic potential towards different carbon sources: sugars, glycerol, fatty acids, and plant oils. The highest cell concentrations (7–8 g/L) and PHA contents were produced from oleic acid (78%), fructose, glucose, and palm oil (over 80%). The type of the carbon source influenced the PHA chemical composition and properties: when grown on oleic acid, the strain synthesized the P(3HB-co-3HV) copolymer; on plant oils, the P(3HB-co-3HV-co-3HHx) terpolymer, and on the other substrates, the P(3HB) homopolymer. The type of the carbon source influenced molecular-weight properties of PHAs: P(3HB) synthesized under autotrophic growth conditions, from CO2, had the highest number-average (290 ± 15 kDa) and weight-average (850 ± 25 kDa) molecular weights and the lowest polydispersity (2.9 ± 0.2); polymers synthesized from organic carbon sources showed increased polydispersity and reduced molecular weight. The carbon source was not found to affect the degree of crystallinity and thermal properties of the PHAs. The type of the carbon source determined not only PHA composition and molecular weight but also surface microstructure and porosity of the polymer films. The new strain can be recommended as a promising P(3HB) producer from palm oil, oleic acid, and sugars (fructose and glucose) and as a producer of P(3HB-co-3HV) from oleic acid and P(3HB-co-3HV-co-3HHx) from palm oil. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Scopus
Найти похожие
17.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Vijayamma R., Maria H. J., Thomas S., Shishatskaya E. I., Kiselev E. G., Nemtsev I. V., Sukhanova A. A., Volova T. G.
Заглавие : A study of the properties and efficacy of microparticles based on P(3HB) and P(3HB/3HV) loaded with herbicides
Место публикации : J. Appl. Polym. Sci.: John Wiley and Sons Inc, 2021. - Article in press. - ISSN 00218995 (ISSN), DOI 10.1002/app.51756
Аннотация: The wide use of pesticides in agriculture has caused uncontrolled distribution of these chemicals in the environment, calling for the development and investigation of new environmentally friendly formulations, which would reduce human impact on nature. In the present study, the metribuzin (MET), tribenuron-methyl (TBM), and fenoxaprop-P-ethyl (FPE) herbicides were encapsulated in microparticles of degradable microbial polymers – polyhydroxyalkanoates (PHAs) – of two types – poly-3-hydroxybutyrate [P(3HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate [P(3HB/3HV)]. The use of P(3HB) resulted in higher yields of microparticles (63% to 79%) and larger sizes of the particles, whose average diameter was 0.60 ± 0.06–0.75 ± 0.11 ?m, while the average diameter of copolymer particles varied between 0.43 ± 0.12 and 0.55 ± 0.05 ?m. Encapsulation efficiency was rather determined by the type of herbicide and its solubility, varying from 24.7% to 48.2%. In vitro herbicide release from microparticles to water was affected by herbicide solubility and PHA chemical composition. The readily soluble MET showed the highest release rate, and over 30 days, 64% and 78% of the encapsulated amounts were released from P(3HB) and P(3HB/3HV) microparticles, respectively. High herbicidal activity of microparticles loaded with metribuzin and tribenuron-methyl was demonstrated in the laboratory stands of the Elsholtzia ciliata weed plant. © 2021 Wiley Periodicals LLC.
Scopus
Найти похожие
18.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Volova, Tatiana G., Kurachenko, Natalya L., Bopp, Valentina L., Thomas, Sabu, Demidenko, Aleksey V., Kiselev, Evgeniy G., Baranovsky, Sergey V., Sukovatyi, Aleksey G., Zhila, Natalia O., Shishatskaya, Ekaterina I.
Заглавие : Assessment of the efficacy of slow-release formulations of the tribenuron-methyl herbicide in field-grown spring wheat
Колич.характеристики :16 с
Коллективы : Ministry of Education and Science of the Russian FederationMinistry of Education and Science, Russian Federation [074-02-2018-328]
Место публикации : Environ. Sci. Pollut. Res.: SPRINGER HEIDELBERG, 2021. - Article in press. - ISSN 0944-1344, DOI 10.1007/s11356-021-17195-x. - ISSN 1614-7499(eISSN)
Примечания : Cited References:72. - The work on production and investigation of polymer films was carried out as part of the State Assignment of the Ministry of Education and Science of the Russian Federation [Grant No. 074-02-2018-328].
Предметные рубрики: BIODEGRADABLE POLY-3-HYDROXYBUTYRATE
WILD MUSTARD
Аннотация: The efficacy of slow-release formulations of tribenuron-methyl (TBM) embedded in the matrix of degradable poly(3-hydroxybutyrate) blended with birch wood flour [polymer/wood flour/herbicide 50/30/20 wt.%] was compared with the efficacy of TBM as the active ingredient of the Mortira commercial formulation, which was applied as post-emergence spray to treat spring wheat cv. Novosibirskaya 15. The study was conducted in Central Siberia (in the environs of the city of Krasnoyarsk, Russia) from May to August 2020. The biological efficacy of the embedded TBM was 92.3%, which was considerably higher than the biological efficacy of the Mortira formulation used as the post-emergence spray (15.4%). The embedding of TBM into degradable blended matrix enabled long-duration functioning of this unstable herbicide in soil. The sensitivity of weed plants to TBM differed depending on the species. TBM was more effective against A. retroflexus and A. blitoides, which were killed at an earlier stage, than against C. album and G. aparine, whose percentage increased in the earlier stage and which were controlled by the herbicide less effectively and at later stages. On the plot treated with the embedded herbicide, the parameters of the wheat yield structure were the best, and the total yield was the highest: 3360 +/- 40 kg/ha versus 3250 +/- 50 kg/ha in the group of plants sprayed with the Mortira formulation. The grain produced in all groups was of high quality and was classified as Grade 1 food grain. The highest quality parameters (grain hectoliter mass, gluten, and protein contents) were obtained in the group of plants treated with the embedded herbicide. The study of the embedded TBM confirmed the high efficacy of the experimental formulation.
WOS
Найти похожие
19.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Vijayamma, Raji, Maria, Hanna J., Thomas, Sabu, Shishatskaya, Ekaterina I., Kiselev, Evgeniy G., Nemtsev, Ivan V., Sukhanova, Anna A., Volova, Tatiana G.
Заглавие : A study of the properties and efficacy of microparticles based on P(3HB) and P(3HB/3HV) loaded with herbicides
Колич.характеристики :13 с
Коллективы : Project "Agropreparations of the new generation: a strategy of construction and realization" [074-02-2018-328]; Government of the Russian Federation [220]
Место публикации : J. Appl. Polym. Sci.: WILEY, 2021. - Ст.e51756. - Article in press. - ISSN 0021-8995, DOI 10.1002/app.51756. - ISSN 1097-4628(eISSN)
Примечания : Cited References:57. - This work was supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning". Instruments of Krasnoyarsk Regional Center of Research Equipment of Federal Research Center Krasnoyarsk Science Center SB RAS were used.
Предметные рубрики: FENOXAPROP-P-ETHYL
CONTROLLED-RELEASE
BIODEGRADABLE
Аннотация: The wide use of pesticides in agriculture has caused uncontrolled distribution of these chemicals in the environment, calling for the development and investigation of new environmentally friendly formulations, which would reduce human impact on nature. In the present study, the metribuzin (MET), tribenuron-methyl (TBM), and fenoxaprop-P-ethyl (FPE) herbicides were encapsulated in microparticles of degradable microbial polymers - polyhydroxyalkanoates (PHAs) - of two types - poly-3-hydroxybutyrate [P(3HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate [P(3HB/3HV)]. The use of P(3HB) resulted in higher yields of microparticles (63% to 79%) and larger sizes of the particles, whose average diameter was 0.60 +/- 0.06-0.75 +/- 0.11 mu m, while the average diameter of copolymer particles varied between 0.43 +/- 0.12 and 0.55 +/- 0.05 mu m. Encapsulation efficiency was rather determined by the type of herbicide and its solubility, varying from 24.7% to 48.2%. In vitro herbicide release from microparticles to water was affected by herbicide solubility and PHA chemical composition. The readily soluble MET showed the highest release rate, and over 30 days, 64% and 78% of the encapsulated amounts were released from P(3HB) and P(3HB/3HV) microparticles, respectively. High herbicidal activity of microparticles loaded with metribuzin and tribenuron-methyl was demonstrated in the laboratory stands of the Elsholtzia ciliata weed plant.
WOS
Найти похожие
20.

Вид документа : Статья из журнала
Шифр издания :
Автор(ы) : Volova T., Kiselev E., Nemtsev I., Lukyanenko A., Sukovatyi A., Kuzmin A., Ryltseva G., Shishatskaya E.
Заглавие : Properties of degradable polyhydroxyalkanoates with different monomer compositions
Колич.характеристики :17 с
Коллективы : RFBRRussian Foundation for Basic Research (RFBR) [19-43-240012]; Ministry of Education and Science of the Russian FederationMinistry of Education and Science, Russian Federation [FSRZ-2020-0006]
Место публикации : Int. J. Biol. Macromol.: ELSEVIER, 2021. - Vol. 182. - С. 98-114. - ISSN 0141-8130, DOI 10.1016/j.ijbiomac.2021.04.008. - ISSN 1879-0003(eISSN)
Примечания : Cited References:106. - The part of the reported study on polymer synthesis and examinationwas funded by RFBR and KKRF [Grant No. 19-43-240012 "Biological and physical principles of production of new generation biomaterials"]. The work on production and investigation of polymer films was carried out as part of the State Assignment of the Ministry of Education and Science of the Russian Federation [Grant No. FSRZ-2020-0006].
Предметные рубрики: PALM KERNEL OIL
RALSTONIA-EUTROPHA
BIODEGRADABLE POLYMERS
Аннотация: Purpose: To synthesize and investigate polyhydroxyalkanoates (PHAs) with different monomer composition and percentages and polymer films prepared from them. Results: Various PHAs: homopolymer poly-3-hydroxybutyrate P(3HB) and 2-, 3-, and 4-component copolymers comprising various combinations of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB), and 3-hydroxyhexanoate (3HHx) monomers were synthesized under specialized conditions. Relationships were found between the monomer composition of PHAs and their molecular-weight and thermal properties and degree of crystallinity. All copolymers had decreased weight average molecular weights, Mw (to 390-600 kDa), and increased values of polydispersity (3.2-4.6) compared to the P(3HB). PHA copolymers showed different thermal behavior: an insignificant decrease in Tmelt and the presence of the second peak in the melting region and changes in parameters of crystallization and glass transition. At the same time, they retained thermostability, and the difference between Tmelt and Tdegr was at least 100-120 degrees C. Incorporation of 4HB, 3HV, and 3HHx monomer units into the 3-hydroxybutyrate chain caused changes in the amorphous to crystalline ratio and decreased the degree of crystallinity (Cx) to 20-40%. According to the degree to which the monomers reduced crystallinity, they were ranked as follows: 4HB - 3HHx - 3HV. A unique set of films was produced; their surface properties and physical/mechanical properties were studied as dependent on PHA composition; monomers other than 3hydroxybutyrate were found to enhance hydrophilicity, surface development, and elasticity of polymer films. Conclusion: An innovative set of PHA copolymers was synthesized and solution-cast films were prepared from them; the copolymers and films were investigated as dependent on polymer chemical composition. Results obtained in the present study contribute to the solution of a critical issue of producing degradable polymer materials. (C) 2021 Elsevier B.V. All rights reserved.
WOS
Найти похожие
 1-20    21-40   41-60   61-80   81-100   101-120      
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)