Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (6)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=reaction<.>)
Общее количество найденных документов : 131
Показаны документы с 1 по 20
 1-20    21-40   41-60   61-80   81-100   101-120      
1.


   
    H2O-Bridged Proton-Transfer Channel in Emitter Species Formation in Obelin Bioluminescence / S. -F. Chen, E. S. Vysotski, Y. -J. Liu // J Phys Chem B. - 2021, DOI 10.1021/acs.jpcb.1c03985 . - Article in press. - ISSN 1520-6106
Кл.слова (ненормированные):
Amino acids -- Excited states -- Hydrogen bonds -- Molecular dynamics -- Molecular modeling -- Molecules -- Phosphorescence -- Proton transfer -- Quantum theory -- Fast protons -- Marine organisms -- Photoproteins -- Primary products -- Proton transfer process -- Quantum mechanics/molecular mechanics -- Reaction substrates -- Singlet excited state -- Theoretical calculations -- Transfer channel -- Bioluminescence
Аннотация: Bioluminescence of a number of marine organisms is conditioned by Ca2+-regulated photoprotein (CaRP) with coelenterazine as the reaction substrate. The reaction product, coelenteramide, at the first singlet excited state (S1) is the emitter of CaRP. The S1-state coelenteramide is produced via the decomposition of coelenterazine dioxetanone. Experiments suggested that the neutral S1-coelenteramide is the primary emitter species. This supposition contradicts with theoretical calculations showing that the anionic S1-coelenteramide is a primary product of the decomposition of coelenterazine dioxetanone. In this study, applying molecular dynamic (MD) simulations and the hybrid quantum mechanics/molecular mechanics (QM/MM) method, we investigated a proton-transfer (PT) process taking place in CaRP obelin from Obelia longissima for emitter formation. Our calculations demonstrate a concerted PT process with a water molecule as a bridge between anionic S1-coelenteramide and the nearest histidine residue. The low activation barrier as well as the strong hydrogen-bond network between the proton donor and the proton acceptor suggests a fast PT process comparable with that of the lifetime of excited anionic S1-coelenteramide. The existence of the PT process eliminates the discrepancy between experimental and theoretical studies. The fast PT process at emitter formation can also take place in other CaRPs. © 2021 American Chemical Society.

Scopus
Держатели документа:
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center, Krasnoyarsk Science Center SB RAS, Krasnoyarsk, 660036, Russian Federation
Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China

Доп.точки доступа:
Chen, S. -F.; Vysotski, E. S.; Liu, Y. -J.

Найти похожие
2.


   
    H2O-Bridged Proton-Transfer Channel in Emitter Species Formation in Obelin Bioluminescence / S. F. Chen, E. S. Vysotski, Y. J. Liu // J. Phys. Chem. B. - 2021. - Vol. 125, Is. 37. - P10452-10458, DOI 10.1021/acs.jpcb.1c03985. - Cited References:50. - This work was supported by the Program of Shanghai Institute of Technology (no. YJ2016-42), the National Natural Science Foundation of China (21973005 and 21911530094), and the Russian Foundation for Basic Research (20-04-00085 and 19-14-53004). . - ISSN 1520-6106. - ISSN 1520-5207
РУБ Chemistry, Physical
Рубрики:
CHEMILUMINESCENT DECOMPOSITION
   FLUORESCENCE-SPECTRA

   MECHANISM

   QM/MM

Аннотация: Bioluminescence of a number of marine organisms is conditioned by Ca2+-regulated photoprotein (CaRP) with coelenterazine as the reaction substrate. The reaction product, coelenteramide, at the first singlet excited state (S-1) is the emitter of CaRP. The S-1-state coelenteramide is produced via the decomposition of coelenterazine dioxetanone. Experiments suggested that the neutral S-1-coelenteramide is the primary emitter species. This supposition contradicts with theoretical calculations showing that the anionic S-1-coelenteramide is a primary product of the decomposition of coelenterazine dioxetanone. In this study, applying molecular dynamic (MD) simulations and the hybrid quantum mechanics/molecular mechanics (QM/MM) method, we investigated a proton-transfer (PT) process taking place in CaRP obelin from Obelia longissima for emitter formation. Our calculations demonstrate a concerted PT process with a water molecule as a bridge between anionic S-1-coelenteramide and the nearest histidine residue. The low activation barrier as well as the strong hydrogen-bond network between the proton donor and the proton acceptor suggests a fast PT process comparable with that of the lifetime of excited anionic S-1-coelenteramide. The existence of the PT process eliminates the discrepancy between experimental and theoretical studies. The fast PT process at emitter formation can also take place in other CaRPs.

WOS
Держатели документа:
Shanghai Inst Technol, Sch Chem & Environm Engn, Shanghai 201418, Peoples R China.
Fed Res Ctr Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Photo Biol Lab, Krasnoyarsk 660036, Russia.
Beijing Normal Univ Zhuhai, Ctr Adv Mat Res, Adv Inst Nat Sci, Zhuhai 519087, Peoples R China.
Beijing Normal Univ, Coll Chem, Key Lab Theoret & Computat Photochem, Minist Educ, Beijing 100875, Peoples R China.

Доп.точки доступа:
Chen, Shu-Feng; Vysotski, Eugene S.; Liu, Ya-Jun; Vysotski, Eugene; Program of Shanghai Institute of Technology [YJ2016-42]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21973005, 21911530094]; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [20-04-00085, 19-14-53004]

Найти похожие
3.


   
    Influence of NaCl on Productivity and Fluorescence Parameters of Nasturtium officinale R. Br. and Its Relevance to Artificial Closed Ecosystems / A. M. Pavlova, N. A. Gaevskii, O. V. Anishchenko [et al.] // Russ. J. Plant Physiol. - 2021. - Vol. 68, Is. 6. - P1173-1185, DOI 10.1134/S1021443721050137. - Cited References:27. - This work was supported by the fundamental research program of the Russian Academy of Sciences for 2013-2020, project no. 56.1.4 Sustainability of Higher Plant Cenoses Grown on Nutrient Media with Mineralized Organic Waste in Closed Human-Inhabited Ecological Systems. . - ISSN 1021-4437. - ISSN 1608-3407
РУБ Plant Sciences
Рубрики:
CHLOROPHYLL FLUORESCENCE
   SALT STRESS

   TOLERANCE

   PHOTOSYNTHESIS

Кл.слова (ненормированные):
Nasturtium officinale -- glycophyte -- salt tolerance -- photosynthetic -- apparatus -- closed ecosystems
Аннотация: Productivity values, sodium accumulation in aboveground biomass, and photosynthetic indices of watercress (Nasturtium officinale) leaves were investigated under conditions resembling artificial closed ecological systems (CES). The seedlings were grown on nutrient media with various NaCl concentrations (0.7, 1.4, and 1.8 g/L) for 7, 14, and 19 days after transferring them to saline solutions. The productivity of plants on the seventh day of their growth on saline media did not differ from that of control plants. The decrease in plant productivity was noted in all the treatments starting from the 14th day after transferring the plants to saline solutions. When NaCl concentration in the nutrient solution was raised from 0.7 to 1.8 g/L, a significant increase in relative Na+ content in plant tissues was observed, regardless of the duration of NaCl treatment. A substantial decrease in chlorophyll (a + b) to carotenoid content ratio was noted on the seventh and 14th days in plants grown at 1.8 g/L NaCl. In plants treated for 7 days with 0.7 and 1.4 g/L NaCl, the content of chlorophylls a and b and carotenoids was found to increase, which indicates the tolerance of N. officinale to CES conditions. The relative content of chlorophylls a and b in the light-harvesting chlorophyll (a + b) complex was independent of the extent of salinity. The maximum quantum yield of photosystem II reaction in N. officinale plants had typically high values (Y(II)(max) of 0.755 +/- 0.007). Using the Imaging Maxi version of the pulse amplitude-modulated (PAM) fluorometer, it was found that light curves for the effective quantum yield of photochemical and nonphotochemical fluorescence quenching (Y(II) and Y(NPQ), respectively) differed appreciably between the salt-treated and untreated plants in the case of long-term cultivation (19 days) at 0.7 and 1.4 g/L NaCl. The treatment with 1.8 g/L NaCl for the period from 14 to 19 days had no effect on light curves of Y(II) and Y(NPQ). It is argued that N. officinale can be used as a source of NaCl for humans under CES conditions.

WOS
Держатели документа:
Siberian Fed Univ, Krasnoyarsk, Russia.
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia.
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk, Russia.

Доп.точки доступа:
Pavlova, A. M.; Gaevskii, N. A.; Anishchenko, O. V.; Tikhomirova, N. A.; Tikhomirov, A. A.; fundamental research program of the Russian Academy of SciencesRussian Academy of Sciences [56.1.4]

Найти похожие
4.


   
    Mechanisms of Viscous Media Effects on Elementary Steps of Bacterial Bioluminescent Reaction / A. E. Lisitsa, L. A. Sukovatyi, S. I. Bartsev [et al.] // Int. J. Mol. Sci. - 2021. - Vol. 22, Is. 16. - Ст. 8827, DOI 10.3390/ijms22168827. - Cited References:59. - The research was funded by the Ministry of Science and Higher Education of the Russian Federation (projects No. FSRZ-2020-0006); by RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science (project No. 20-44-243002); by RFBR according to the research project No. 20-34-90118. . - ISSN 1422-0067
РУБ Biochemistry & Molecular Biology + Chemistry, Multidisciplinary
Рубрики:
FLAVIN INTERMEDIATE
   REDUCED FLAVIN

   RATE CONSTANTS

   LUCIFERASE

Кл.слова (ненормированные):
bacterial luciferase -- non-steady-state reaction kinetics -- viscosity -- diffusion limitation
Аннотация: Enzymes activity in a cell is determined by many factors, among which viscosity of the microenvironment plays a significant role. Various cosolvents can imitate intracellular conditions in vitro, allowing to reduce a combination of different regulatory effects. The aim of the study was to analyze the media viscosity effects on the rate constants of the separate stages of the bacterial bioluminescent reaction. Non-steady-state reaction kinetics in glycerol and sucrose solutions was measured by stopped-flow technique and analyzed with a mathematical model developed in accordance with the sequence of reaction stages. Molecular dynamics methods were applied to reveal the effects of cosolvents on luciferase structure. We observed both in glycerol and in sucrose media that the stages of luciferase binding with flavin and aldehyde, in contrast to oxygen, are diffusion-limited. Moreover, unlike glycerol, sucrose solutions enhanced the rate of an electronically excited intermediate formation. The MD simulations showed that, in comparison with sucrose, glycerol molecules could penetrate the active-site gorge, but sucrose solutions caused a conformational change of functionally important alpha Glu175 of luciferase. Therefore, both cosolvents induce diffusion limitation of substrates binding. However, in sucrose media, increasing enzyme catalytic constant neutralizes viscosity effects. The activating effect of sucrose can be attributed to its exclusion from the catalytic gorge of luciferase and promotion of the formation of the active site structure favorable for the catalysis.

WOS
Держатели документа:
Siberian Fed Univ, Biophys Dept, Svobodny 79, Krasnoyarsk 660041, Russia.
Inst Biophys SB RAS, Akad Gorodok 50-50, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Lisitsa, Albert E.; Sukovatyi, Lev A.; Bartsev, Sergey, I; Deeva, Anna A.; Kratasyuk, Valentina A.; Nemtseva, Elena, V; Nemtseva, Elena; Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0006]; RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science [20-44-243002]; RFBRRussian Foundation for Basic Research (RFBR) [20-34-90118]

Найти похожие
5.


   
    Detecting bioluminescence conditions in fruit bodies of two species of Armillaria basidiomycetes / A. P. Puzyr, A. E. Burov, V. S. Bondar // IOP Conference Series: Earth and Environmental Science : IOP Publishing Ltd, 2021. - Vol. 677: 4th International Scientific Conference on Agribusiness, Environmental Engineering and Biotechnologies, AGRITECH-IV 2020 (18 November 2020 through 20 November 2020, ) Conference code: 167873, Is. 5. - Ст. 052081, DOI 10.1088/1755-1315/677/5/052081
Кл.слова (ненормированные):
Bioluminescence -- Biotechnology -- Fungi -- Phosphorescence -- Armillaria -- Armillaria species -- Fruit body -- Possible mechanisms -- Fruits
Аннотация: Mycelia of various Armillaria fungi are bioluminescent while the fruit bodies do not emit light. The presence in fruit bodies of Armillaria species of enzymes involved in the fungal bioluminescence was investigated by treating them with an exogenous analogue of the substrate for the light-emitting reaction. For this, hot extracts from nonluminous fungus Pholiota squarrosa were used. Upon spraying the pristine and transversely cut fruit bodies with the extracts, light emitting regions of different intensity were revealed. This suggests that the fruit bodies of the studied species are nonluminous due to lack of the substrate for light luminescent reaction. The prolonged incubation of the fruit bodies in water elevated the bioluminescence level. A possible mechanism which can explain this phenomenon is discussed. © 2021 Institute of Physics Publishing. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, Federal Research Center, Krasnoyarsk Science Center SB RAS, Krasnoyarsk, 660036, Russian Federation
Federal Research Center for Information and Computational Technologies, Krasnoyarsk, 660049, Russian Federation

Доп.точки доступа:
Puzyr, A. P.; Burov, A. E.; Bondar, V. S.

Найти похожие
6.


   
    Mechanisms of viscous media effects on elementary steps of bacterial bioluminescent reaction / A. E. Lisitsa, L. A. Sukovatyi, S. I. Bartsev [et al.] // Int. J. Mol. Sci. - 2021. - Vol. 22, Is. 16. - Ст. 8827, DOI 10.3390/ijms22168827 . - ISSN 1661-6596
Кл.слова (ненормированные):
Bacterial luciferase -- Diffusion limitation -- Non-steady-state reaction kinetics -- Viscosity
Аннотация: Enzymes activity in a cell is determined by many factors, among which viscosity of the microenvironment plays a significant role. Various cosolvents can imitate intracellular conditions in vitro, allowing to reduce a combination of different regulatory effects. The aim of the study was to analyze the media viscosity effects on the rate constants of the separate stages of the bacterial biolumi-nescent reaction. Non-steady-state reaction kinetics in glycerol and sucrose solutions was measured by stopped-flow technique and analyzed with a mathematical model developed in accordance with the sequence of reaction stages. Molecular dynamics methods were applied to reveal the effects of cosolvents on luciferase structure. We observed both in glycerol and in sucrose media that the stages of luciferase binding with flavin and aldehyde, in contrast to oxygen, are diffusion-limited. More-over, unlike glycerol, sucrose solutions enhanced the rate of an electronically excited intermediate formation. The MD simulations showed that, in comparison with sucrose, glycerol molecules could penetrate the active-site gorge, but sucrose solutions caused a conformational change of functionally important ?Glu175 of luciferase. Therefore, both cosolvents induce diffusion limitation of substrates binding. However, in sucrose media, increasing enzyme catalytic constant neutralizes viscosity effects. The activating effect of sucrose can be attributed to its exclusion from the catalytic gorge of luciferase and promotion of the formation of the active site structure favorable for the catalysis. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Biophysics Department, Siberian Federal University, Svobodny 79, Krasnoyarsk, 660041, Russian Federation
The Institute of Biophysics SB RAS, Akademgorodok 50/50, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Lisitsa, A. E.; Sukovatyi, L. A.; Bartsev, S. I.; Deeva, A. A.; Kratasyuk, V. A.; Nemtseva, E. V.

Найти похожие
7.


   
    Reusable System for Phenol Detection in an Aqueous Medium Based on Nanodiamonds and Extracellular Oxidase from Basidiomycete Neonothopanus nambi / N. O. Ronzhin, O. A. Mogilnaya, E. D. Posokhina, V. S. Bondar // Dokl. Biochem. Biophys. - 2021. - Vol. 499, Is. 1. - P220-224, DOI 10.1134/S1607672921040141. - Cited References:15 . - ISSN 1607-6729. - ISSN 1608-3091
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
PEROXIDASES
   EXPRESSION

Кл.слова (ненормированные):
nanodiamond -- extracellular oxidase -- basidiomycete Neonothopanus nambi -- indication system -- phenol
Аннотация: A reusable system for phenol determination in an aqueous medium was obtained by adsorption of extracellular oxidase from fungus Neonothopanus nambi onto modified nanodiamonds (MND) synthesized by detonation. It was found that the enzyme strongly binds to MND and exhibits catalytic activity in the reaction of co-oxidation of phenol with 4-aminoantipyrine without the addition of hydrogen peroxide. In the presence of the MND-oxidase complex, a significantly (by an order of magnitude) higher yield of the reaction product is recorded as compared to the yield in the presence of a free enzyme; the mechanism of the revealed effect is discussed. Model experiments have demonstrated the multiple use of the MND-oxidase complex for testing phenol in aqueous samples. The immobilized enzyme exhibits functional activity during long-term (2 months) storage of the MND-oxidase complex at 4 degrees C. The data obtained create the prerequisites for using the created system in environmental monitoring of water pollution with phenol.

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Inst Biophys,Fed Res Ctr, Krasnoyarsk, Russia.

Доп.точки доступа:
Ronzhin, N. O.; Mogilnaya, O. A.; Posokhina, E. D.; Bondar, V. S.

Найти похожие
8.


   
    Crystal structure of semisynthetic obelin-v / M. D. Larionova, L. J. Wu, E. V. Eremeeva [et al.] // Protein Sci. - 2021, DOI 10.1002/pro.4244. - Cited References:69. - National Natural Science Foundation of China, Grant/Award Number: 32011530076; Russian Foundation for Basic Research, Grant/Award Numbers: 20-04-00085, 20-44-240006, 20-54-53011 . - Article in press. - ISSN 0961-8368. - ISSN 1469-896X
РУБ Biochemistry & Molecular Biology
Рубрики:
CA2+-REGULATED PHOTOPROTEIN OBELIN
   PHOTOLUMINESCENCE QUANTUM YIELD

Кл.слова (ненормированные):
analog -- bioluminescence -- coelenterazine -- coelenterazine-v -- obelin -- photoprotein -- protein structure
Аннотация: Coelenterazine-v (CTZ-v), a synthetic derivative with an additional benzyl ring, yields a bright bioluminescence of Renilla luciferase and its "yellow" mutant with a significant shift in the emission spectrum toward longer wavelengths, which makes it the substrate of choice for deep tissue imaging. Although Ca2+-regulated photoproteins activated with CTZ-v also display red-shifted light emission, in contrast to Renilla luciferase their bioluminescence activities are very low, which makes photoproteins activated by CTZ-v unusable for calcium imaging. Here, we report the crystal structure of Ca2+-regulated photoprotein obelin with 2-hydroperoxycoelenterazine-v (obelin-v) at 1.80 angstrom resolution. The structures of obelin-v and obelin bound with native CTZ revealed almost no difference; only the minor rearrangement in hydrogen-bond pattern and slightly increased distances between key active site residues and some atoms of 2-hydroperoxycoelenterazine-v were found. The fluorescence quantum yield (phi(FL)) of obelin bound with coelenteramide-v (0.24) turned out to be even higher than that of obelin with native coelenteramide (0.19). Since both obelins are in effect the enzyme-substrate complexes containing the 2-hydroperoxy adduct of CTZ-v or CTZ, we reasonably assume the chemical reaction mechanisms and the yields of the reaction products (phi(R)) to be similar for both obelins. Based on these findings we suggest that low bioluminescence activity of obelin-v is caused by the low efficiency of generating an electronic excited state (phi(S)). In turn, the low phi(S) value as compared to that of native CTZ might be the result of small changes in the substrate microenvironment in the obelin-v active site.

WOS
Держатели документа:
SB RAS, Fed Res Ctr Krasnoyarsk Sci Ctr SB RAS, Photobiol Lab, Inst Biophys, Krasnoyarsk, Russia.
ShanghaiTech Univ, iHuman Inst, Ren Bldg,393 Middle Huaxia Rd, Shanghai 201210, Peoples R China.
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk, Russia.
ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China.

Доп.точки доступа:
Larionova, Marina D.; Wu, Lijie; Eremeeva, Elena, V; Natashin, Pavel, V; Gulnov, Dmitry, V; Nemtseva, Elena, V; Liu, Dongsheng; Liu, Zhi-Jie; Vysotski, Eugene S.; Eremeeva, Elena; Nemtseva, Elena; Vysotski, Eugene; Gulnov, Dmitry; Natashin, Pavel; Larionova, Marina; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [32011530076]; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [20-04-00085, 20-44-240006, 20-54-53011]

Найти похожие
9.


   
    Single-cell genomics-based analysis reveals a vital ecological role of thiocapsa sp. LSW in the meromictic Lake Shunet, Siberia / Y.-T. Wu, P.-W. Chiang, K. Tandon [et al.] // Microb. Genomics. - 2021. - Vol. 7, Is. 12. - Ст. 000712, DOI 10.1099/mgen.0.000712 . - ISSN 2057-5858
Кл.слова (ненормированные):
Flow cytometry -- Lake Shunet -- Purple sulfur bacteria -- Single-cell genomics -- genomic DNA -- RNA 16S -- Article -- bioinformatics -- carbon metabolism -- Enterobacter -- fluorescence activated cell sorting -- gene amplification -- gene ontology -- high throughput sequencing -- metagenomics -- microbial community -- microbial diversity -- molecular genetics -- nitrogen metabolism -- nonhuman -- nucleotide sequence -- phylogenetic tree -- phylogeny -- polymerase chain reaction -- Sanger sequencing -- Thiocapsa
Аннотация: Meromictic lakes usually harbour certain prevailing anoxygenic phototrophic bacteria in their anoxic zone, such as the purple sulfur bacterium (PSB) Thiocapsa sp. LSW (hereafter LSW) in Lake Shunet, Siberia. PSBs have been suggested to play a vital role in carbon, nitrogen and sulfur cycling at the oxic–anoxic interface of stratified lakes; however, the ecological significance of PSBs in the lake remains poorly understood. In this study, we explored the potential ecological role of LSW using a deep-sequencing analysis of single-cell genomics associated with flow cytometry. An approximately 2.7 Mb draft genome was obtained based on the co-assembly of five single-cell genomes. LSW might grow photolithoautotrophically and could play putative roles not only as a carbon fixer and diazotroph, but also as a sulfate reducer/oxidizer in the lake. This study provides insights into the potential ecological role of Thiocapsa sp. in meromictic lakes. © 2021 The Authors.

Scopus
Держатели документа:
Department of Forestry, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
Institute of Biophysics, Siberian Division of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Wu, Y. -T.; Chiang, P. -W.; Tandon, K.; Rogozin, D. Y.; Degermendzhy, A. G.; Tang, S. -L.

Найти похожие
10.


   
    Coelenterazine-dependent luciferases as a powerful analytical tool for research and biomedical applications / V. V. Krasitskaya, E. E. Bashmakova, L. A. Frank // Int. J. Mol. Sci. - 2020. - Vol. 21, Is. 20. - Ст. 7465. - P1-31, DOI 10.3390/ijms21207465 . - ISSN 1661-6596
Кл.слова (ненормированные):
Analytical systems -- Bioluminescence -- Ca2+-regulated photoprotein -- Coelenterazine -- Luciferase
Аннотация: The functioning of bioluminescent systems in most of the known marine organisms is based on the oxidation reaction of the same substrate—coelenterazine (CTZ), catalyzed by luciferase. Despite the diversity in structures and the functioning mechanisms, these enzymes can be united into a common group called CTZ-dependent luciferases. Among these, there are two sharply different types of the system organization—Ca2+-regulated photoproteins and luciferases themselves that function in accordance with the classical enzyme–substrate kinetics. Along with deep and comprehensive fundamental research on these systems, approaches and methods of their practical use as highly sensitive reporters in analytics have been developed. The research aiming at the creation of artificial luciferases and synthetic CTZ analogues with new unique properties has led to the development of new experimental analytical methods based on them. The commercial availability of many ready-to-use assay systems based on CTZ-dependent luciferases is also important when choosing them by first-time-users. The development of analytical methods based on these bioluminescent systems is currently booming. The bioluminescent systems under consideration were successfully applied in various biological research areas, which confirms them to be a powerful analytical tool. In this review, we consider the main directions, results, and achievements in research involving these luciferases. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, 660036, Russian Federation
School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Krasitskaya, V. V.; Bashmakova, E. E.; Frank, L. A.

Найти похожие
11.


   
    The smallest isoform of Metridia longa luciferase as a fusion partner for hybrid proteins / M. D. Larionova, S. V. Markova, N. V. Tikunova, E. S. Vysotski // Int. J. Mol. Sci. - 2020. - Vol. 21, Is. 14. - Ст. 4971. - P1-16, DOI 10.3390/ijms21144971 . - ISSN 1661-6596
Кл.слова (ненормированные):
Bioluminescence -- Coelenterazine -- Copepod luciferase -- Immunoassay -- Single-chain antibody -- Tick-borne encephalitis virus -- fusion protein -- glycoprotein -- histidine -- messenger RNA -- Metridia longa luciferase -- recombinant protein -- single chain fragment variable antibody -- unclassified drug -- amino terminal sequence -- antibody affinity -- antigen binding -- Article -- binding assay -- binding site -- bioluminescence -- bioluminescence resonance energy transfer -- cross reaction -- dissociation constant -- enzyme activity -- Escherichia coli -- gene -- genetic engineering -- genetic transfection -- immunoassay -- limit of detection -- mluc7 gene -- molecular cloning -- nonhuman -- nucleotide sequence -- protein expression -- protein purification -- protein unfolding -- spectral sensitivity -- tick borne encephalitis -- Tick borne encephalitis virus
Аннотация: Bioluminescent proteins are widely used as reporter molecules in various in vitro and in vivo assays. The smallest isoform of Metridia luciferase (MLuc7) is a highly active, naturally secreted enzyme which, along with other luciferase isoforms, is responsible for the bright bioluminescence of marine copepod Metridia longa. In this study, we report the construction of two variants of a hybrid protein consisting of MLuc7 and 14D5a single-chain antibody to the surface glycoprotein E of tick-borne encephalitis virus as a model fusion partner. We demonstrate that, whereas fusion of a single-chain antibody to either N-or C-terminus of MLuc7 does not affect its bioluminescence properties, the binding site on the single-chain antibody influences its binding capacity. The affinity of 14D5a-MLuc7 hybrid protein (KD = 36.2 nM) where the C-terminus of the single-chain antibody was fused to the N-terminus of MLuc7, appeared to be 2.5-fold higher than that of the reverse, MLuc7-14D5a (KD = 87.6 nM). The detection limit of 14D5a-MLuc7 hybrid protein was estimated to be 45 pg of the recombinant glycoprotein E. Although the smallest isoform of M. longa luciferase was tested as a fusion partner only with a single-chain antibody, it is reasonable to suppose that MLuc7 can also be successfully used as a partner for genetic fusion with other proteins. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, 660036, Russian Federation
School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation

Доп.точки доступа:
Larionova, M. D.; Markova, S. V.; Tikunova, N. V.; Vysotski, E. S.

Найти похожие
12.


   
    Instability Stabilized: Mechanisms of Evolutionary Stasis and Genetic Diversity Accumulation in Fishes and Lampreys from Environments with Unstable Abiotic Factors / A. A. Makhrov, V. S. Artamonova // Contemp. Probl. Ecol. - 2020. - Vol. 13, Is. 4. - P370-381, DOI 10.1134/S1995425520040083. - Cited References:141. - We are grateful to Yu.P. Altukhov, I.N. Bolotov, E.A. Borovikova, I.V. Vikhrev, Yu.Yu. Dgebuadze, E.Yu. Krysanov, K.V. Kuzishchin, B.M. Mednikov, M.V. Mina, V.M. Spitsyn, and V.S. Fridman for helpful discussions of the problems considered in the review. The work was supported by the Russian Science Foundation (project no. 16-14-10001). . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology
Рубрики:
SEBASTES-MENTELLA EVIDENCE
   MTDNA CONTROL REGION

   POPULATION-STRUCTURE

Кл.слова (ненормированные):
ecology -- evolution -- phenotypic plasticity -- heterozygosity -- heteroplasmy -- mobilization reserve -- Arctic -- mountains
Аннотация: As studies have shown, individuals from well morphologically distinct groups often represent the same species and may even belong to one population in fishes and lampreys from environments with unstable abiotic factors (Arctic, mountain, and desert regions). Phenotypic plasticity ensures broad variation ranges of morphological traits in unstable conditions, which require rapid transitions from one morphogenetic variant to another. The choice of a morphogenetic pathway can be influenced by the level of individual heterozygosity, changes in the copy numbers of certain DNA sequences, heteroplasmy, and the presence of several allelic variants in the genes that strongly affect the phenotype. A cyclic character is often observed for evolutionary processes driven by these mechanisms, and speciation usually does not take place in unstable environmental conditions. However, mobilization reserve accumulate in a species with a broad reaction norm, and particular morphogenetic pathways may be genetically fixed when its population finds its way into stable environmental conditions, facilitating fast allopatric speciation.

WOS
Держатели документа:
Russian Acad Sci, Severtsov Inst Ecol & Evolut, Moscow 119071, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Fed Res Ctr, Inst Biophys,Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Makhrov, A. A.; Artamonova, V. S.; Russian Science FoundationRussian Science Foundation (RSF) [16-14-10001]

Найти похожие
13.


   
    Antimicrobial and antiradical activity of individual fractions of essential oil from seeds of heracleum dissectum ledeb. Of Siberian Region / A. A. Efremov, I. D. Zykova, N. S. Korosteleva // Khimiya Rastitel'nogo Syr'ya. - 2020. - Is. 2. - С. 79-85, DOI 10.14258/JCPRM.2020027029 . - ISSN 1029-5151
   Перевод заглавия: АНТИМИКРОБНАЯ И АНТИРАДИКАЛЬНАЯ АКТИВНОСТЬ ОТДЕЛЬНЫХ ФРАКЦИЙ ЭФИРНОГО МАСЛА ПЛОДОВ HERACLEUM DISSECTUM LEDEB. СИБИРСКОГО РЕГИОНА
Кл.слова (ненормированные):
2 -- 2-diphenyl-1-picrylhydrazyl -- Antimicrobial activity -- Antiradical activity -- Beans -- Essential oil -- Heracleum dissectum Ledeb
Аннотация: By the method of exhaustive hydroponically obtained essential oil from beans of Heracleum dissectum Ledeb., growing in the Krasnoyarsk region. Separate fractions of oil were obtained: the first after 45 minutes from the beginning of distillation, the second – after 2 hours, the third-after 5 hours, the fourth fraction was collected after the end of hydro-distillation. The component composition of both whole essential oil and its separate fractions was studied. The main components are octyl acetate (60.0%), octyl-2-methylpropanoate (10.2%), n-hexyl-2-methylbutanoate (9.0%). The main amount of octyl acetate (64.7%) is concentrated in the first fraction of the oil. The antimicrobial activity of various fractions of essential oil of borscht dissected against strains of opportunistic microorganisms: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus 209p, MRSA, Proteus vulgaris. It was found that, depending on the duration of isolation, the antimicrobial activity of essential oil fractions in relation to Staphylococcus aureus 209p, MRSA and Pseudomonas aeruginosa decreases, and in relation to Escherichia coli, Klebsiella pneumoniae and Proteus vulgaris increases. The most pronounced inhibitory effect of the third and fourth fractions of essential oil against Klebsiella pneumonia. The antiradical activity of all studied samples of borscht essential oil dissected in reaction with stable free 2,2-diphenyl-1-picrylhydrazyl radical was established. The first fraction showed minimal antiradical activity (15.1%), the fourth – maximum (49.2%). © 2020 Altai State University. All rights reserved.

Scopus
Держатели документа:
Siberian Federal University, pr. Svobodnyy, 79, Krasnoyarsk, 660049, Russian Federation
Special Design and Technology Bureau “Science”, Federal Research Center of the KSC SB RAS, Akademgorodok, 50/45, Krasnoyarsk, 660036, Russian Federation
Institute of Biophysics, Federal Research Center, KSC SB RAS, Akademgorodok, 50/50, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Efremov, A. A.; Zykova, I. D.; Korosteleva, N. S.

Найти похожие
14.


   
    The Effect of Osmolytes on the Bioluminescent Reaction of Bacteria: Structural and Dynamic Properties / L. A. Sukovatyi, A. E. Lisitsa, V. A. Kratasyuk, E. V. Nemtseva // Biophysics. - 2020. - Vol. 65, Is. 6. - P966-971, DOI 10.1134/S0006350920060202 . - ISSN 0006-3509
Кл.слова (ненормированные):
bacterial luciferase -- bioluminescence -- luminous bacteria -- molecular dynamic -- osmolyte -- protein structure and dynamics
Аннотация: The effects of viscous media with glycerol and sucrose (10–40%) on the kinetics of the bacterial bioluminescent reaction have been investigated by stopped-flow technique. Increment of quantum yield in media with 10% of both osmolytes was shown. Higher concentrations of glycerol, up to 30–40%, were found to reduce the efficiency of the reaction, while this effect was not observed in the media with sucrose. The molecular dynamics simulation was used to study the structure of bacterial luciferase surrounded by either water molecules solely or by mixture of water with various numbers of glycerol/sucrose molecules. It was found that both cosolvents at studied concentrations did not cause a significant change in conformation of bacterial luciferase. The calculated root-mean-square fluctuation for C?-atoms of bacterial luciferase ?-subunit indicated that the higher flexibility of the enzyme mobile loop could be responsible for increment of quantum yield in the presence of 10% of both osmolytes. The active site of bacterial luciferase was found to be accessible for glycerol molecules while sucrose did not enter catalytic gorge. Moreover, at 30 and 40% concentration the glycerol molecules were found to locate in the active site of bacterial luciferase throughout the whole simulation time. © 2020, Pleiades Publishing, Inc.

Scopus
Держатели документа:
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Sukovatyi, L. A.; Lisitsa, A. E.; Kratasyuk, V. A.; Nemtseva, E. V.

Найти похожие
15.


   
    Viscous Media Slow Down the Decay of the Key Intermediate in Bacterial Bioluminescent Reaction / A. E. Lisitsa, L. A. Sukovatyi, V. A. Kratasyuk, E. V. Nemtseva // Dokl. Biochem. Biophys. - 2020. - Vol. 492, Is. 1. - P162-165, DOI 10.1134/S1607672920020106. - Cited References:15. - This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project nos. 6.7734.2017 and 01201351504). . - ISSN 1607-6729. - ISSN 1608-3091
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
LUCIFERASE
Кл.слова (ненормированные):
bacterial luciferase -- bioluminescence -- viscous microenvironment -- stopped-flow technique -- molecular dynamics method -- enzyme reaction -- intermediate -- diffusional restriction
Аннотация: The effects of medium viscosity on the decay rate of the 4a-hydroperoxyflavin intermediate of the bioluminescent reaction was investigated. It was found that at low concentrations of glycerol or sucrose (viscosity 1.1-1.3 cP) the decay rate rises, whereas a further increase in viscosity to 6.2 cP leads to a decrease in the decay rate following a power function with an exponent of 0.82-0.84. Using molecular dynamics methods, it was shown that the presence of glycerol and sucrose molecules causes a change in the mobility of the amino acid residues in the active center of luciferase, particularly those responsible for binding of flavin. The results obtained are indicative of two opposite effects of viscous media with glycerol and sucrose: (1) destabilization of 4a-hydroperoxyflavin due to a change in the structural and dynamic properties of the protein and (2) stabilization of this intermediate by the decrease in the diffusion rate of its decay products.

WOS
Держатели документа:
Siberian Fed Univ, Krasnoyarsk, Russia.
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia.

Доп.точки доступа:
Lisitsa, A. E.; Sukovatyi, L. A.; Kratasyuk, V. A.; Nemtseva, E. V.; Ministry of Science and Higher Education of the Russian Federation [6.7734.2017, 01201351504]

Найти похожие
16.


   
    Viscous Media Slow Down the Decay of the Key Intermediate in Bacterial Bioluminescent Reaction / A. E. Lisitsa, L. A. Sukovatyi, V. A. Kratasyuk, E. V. Nemtseva // Doklad. Biochem. Biophys. - 2020. - Vol. 492, Is. 1. - P162-165, DOI 10.1134/S1607672920020106 . - ISSN 1607-6729
Кл.слова (ненормированные):
bacterial luciferase -- bioluminescence -- diffusional restriction -- enzyme reaction intermediate -- molecular dynamics method -- stopped-flow technique -- viscous microenvironment
Аннотация: Abstract: The effects of medium viscosity on the decay rate of the 4a-hydroperoxyflavin intermediate of the bioluminescent reaction was investigated. It was found that at low concentrations of glycerol or sucrose (viscosity 1.1–1.3 cP) the decay rate rises, whereas a further increase in viscosity to 6.2 cP leads to a decrease in the decay rate following a power function with an exponent of 0.82–0.84. Using molecular dynamics methods, it was shown that the presence of glycerol and sucrose molecules causes a change in the mobility of the amino acid residues in the active center of luciferase, particularly those responsible for binding of flavin. The results obtained are indicative of two opposite effects of viscous media with glycerol and sucrose: (1) destabilization of 4a-hydroperoxyflavin due to a change in the structural and dynamic properties of the protein and (2) stabilization of this intermediate by the decrease in the diffusion rate of its decay products. © 2020, Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, AkademgorodokKrasnoyarsk, Russian Federation

Доп.точки доступа:
Lisitsa, A. E.; Sukovatyi, L. A.; Kratasyuk, V. A.; Nemtseva, E. V.

Найти похожие
17.


   
    Coelenterazine-Dependent Luciferases as a Powerful Analytical Tool for Research and Biomedical Applications / V. V. Krasitskaya, E. E. Bashmakova, L. A. Frank // Int. J. Mol. Sci. - 2020. - Vol. 21, Is. 20. - Ст. 7465, DOI 10.3390/ijms21207465. - Cited References:251. - The work was supported by the Russian State funded budget project of IBP SB RAS No. AAAA-A19-119031890015-0. . - ISSN 1422-0067
РУБ Biochemistry & Molecular Biology + Chemistry, Multidisciplinary
Рубрики:
PROTEIN-PROTEIN INTERACTIONS
   CA2+-REGULATED PHOTOPROTEIN OBELIN

Кл.слова (ненормированные):
bioluminescence -- coelenterazine -- luciferase -- Ca2+-regulated -- photoprotein -- analytical systems
Аннотация: The functioning of bioluminescent systems in most of the known marine organisms is based on the oxidation reaction of the same substrate-coelenterazine (CTZ), catalyzed by luciferase. Despite the diversity in structures and the functioning mechanisms, these enzymes can be united into a common group called CTZ-dependent luciferases. Among these, there are two sharply different types of the system organization-Ca2+-regulated photoproteins and luciferases themselves that function in accordance with the classical enzyme-substrate kinetics. Along with deep and comprehensive fundamental research on these systems, approaches and methods of their practical use as highly sensitive reporters in analytics have been developed. The research aiming at the creation of artificial luciferases and synthetic CTZ analogues with new unique properties has led to the development of new experimental analytical methods based on them. The commercial availability of many ready-to-use assay systems based on CTZ-dependent luciferases is also important when choosing them by first-time-users. The development of analytical methods based on these bioluminescent systems is currently booming. The bioluminescent systems under consideration were successfully applied in various biological research areas, which confirms them to be a powerful analytical tool. In this review, we consider the main directions, results, and achievements in research involving these luciferases.

WOS
Держатели документа:
Fed Res Ctr Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Sch Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Krasitskaya, Vasilisa V.; Bashmakova, Eugenia E.; Frank, Ludmila A.; Russian State funded budget project of IBP SB RAS [AAAA-A19-119031890015-0]

Найти похожие
18.


   
    Coelenterazine-Dependent Luciferases as a Powerful Analytical Tool for Research and Biomedical Applications / V. V. Krasitskaya, E. E. Bashmakova, L. A. Frank // Int. J. Mol. Sci. - 2020. - Vol. 21, Is. 20. - Ст. 7465, DOI 10.3390/ijms21207465. - Cited References:251. - The work was supported by the Russian State funded budget project of IBP SB RAS No. AAAA-A19-119031890015-0. . - ISSN 1422-0067
РУБ Biochemistry & Molecular Biology + Chemistry, Multidisciplinary
Рубрики:
PROTEIN-PROTEIN INTERACTIONS
   CA2+-REGULATED PHOTOPROTEIN OBELIN

Кл.слова (ненормированные):
bioluminescence -- coelenterazine -- luciferase -- Ca2+-regulated -- photoprotein -- analytical systems
Аннотация: The functioning of bioluminescent systems in most of the known marine organisms is based on the oxidation reaction of the same substrate-coelenterazine (CTZ), catalyzed by luciferase. Despite the diversity in structures and the functioning mechanisms, these enzymes can be united into a common group called CTZ-dependent luciferases. Among these, there are two sharply different types of the system organization-Ca2+-regulated photoproteins and luciferases themselves that function in accordance with the classical enzyme-substrate kinetics. Along with deep and comprehensive fundamental research on these systems, approaches and methods of their practical use as highly sensitive reporters in analytics have been developed. The research aiming at the creation of artificial luciferases and synthetic CTZ analogues with new unique properties has led to the development of new experimental analytical methods based on them. The commercial availability of many ready-to-use assay systems based on CTZ-dependent luciferases is also important when choosing them by first-time-users. The development of analytical methods based on these bioluminescent systems is currently booming. The bioluminescent systems under consideration were successfully applied in various biological research areas, which confirms them to be a powerful analytical tool. In this review, we consider the main directions, results, and achievements in research involving these luciferases.

WOS
Держатели документа:
Fed Res Ctr Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Sch Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Krasitskaya, Vasilisa V.; Bashmakova, Eugenia E.; Frank, Ludmila A.; Russian State funded budget project of IBP SB RAS [AAAA-A19-119031890015-0]

Найти похожие
19.


   
    Enzymatic responses to low-intensity radiation of tritium / T. V. Rozhko, E. V. Nemtseva, M. V. Gardt [et al.] // Int. J. Mol. Sci. - 2020. - Vol. 21, Is. 22. - Ст. 8464. - P1-15, DOI 10.3390/ijms21228464 . - ISSN 1661-6596
Кл.слова (ненормированные):
Bacterial luciferase -- Enzymes -- Fluorescent protein -- Hormesis -- Low-dose radiation -- Oxidoreductase -- Tritium
Аннотация: The present study considers a possible role of enzymatic reactions in the adaptive response of cells to the beta-emitting radionuclide tritium under conditions of low-dose exposures. Effects of tritiated water (HTO) on the reactions of bacterial luciferase and NAD(P)H:FMN-oxidoreductase, as well as a coupled system of these two reactions, were studied at radioactivity concentrations ? 200 MBq/L. Additionally, one of the simplest enzymatic reactions, photobiochemical proton transfer in Coelenteramide-containing Fluorescent Protein (CLM-FP), was also investigated. We found that HTO increased the activity of NAD(P)H:FMN-oxidoreductase at the initial stage of its reaction (by up to 230%); however, a rise of luciferase activity was moderate (<20%). The CLM-FP samples did not show any increase in the rate of the photobiochemical proton transfer under the exposure to HTO. The responses of the enzyme systems were compared to the ‘hormetic’ response of luminous marine bacterial cells studied earlier. We conclude that (1) the oxidoreductase reaction contributes significantly to the activation of the coupled enzyme system and bacterial cells by tritium, and (2) an increase in the organization level of biological systems promotes the hormesis phenomenon. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Department of Medical and Biological Physics, Krasnoyarsk State Medical Academy, Krasnoyarsk, 660022, Russian Federation
Biophysics Department, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Department of Chemistry, Moscow State University, Moscow, 119991, Russian Federation

Доп.точки доступа:
Rozhko, T. V.; Nemtseva, E. V.; Gardt, M. V.; Raikov, A. V.; Lisitsa, A. E.; Badun, G. A.; Kudryasheva, N. S.

Найти похожие
20.


   
    The interaction of C-terminal Tyr208 and Tyr13 of the first α-helix ensures a closed conformation of ctenophore photoprotein berovin / L. P. Burakova, E. V. Eremeeva, E. S. Vysotski // Photochem. Photobiol. Sci. - 2020. - Vol. 19, Is. 3. - P313-323, DOI 10.1039/c9pp00436j . - ISSN 1474-905X
Кл.слова (ненормированные):
Amino acids -- Bioluminescence -- Conformations -- Phosphorescence -- Amino acid residues -- Amino acid sequence -- Hydrogen bond networks -- Hydromedusan -- Internal cavities -- Phenyl rings -- Photoproteins -- Pi interactions -- Hydrogen bonds
Аннотация: Light-sensitive Ca2+-regulated photoprotein berovin is responsible for the bioluminescence of the ctenophore Beroe abyssicola. It shares many properties of hydromedusan photoproteins although the degree of identity of its amino acid sequence with those of photoproteins is low. There is a hydrogen bond between C-terminal Pro and Arg situated in the N-terminal ?-helix of hydromedusan photoproteins that supports a closed conformation of the internal cavity of the photoprotein molecule with bound 2-hydroperoxycoelenterazine. The C- and N-terminal hydrogen bond network is necessary to properly isolate the photoprotein active site from the solvent and consequently to provide a high quantum yield of the bioluminescence reaction. In order to find out which berovin residues perform the same function we modified the N- and C-termini of the protein by replacing or deleting various amino acid residues. The studies on berovin mutants showed that the interaction between C-terminal Tyr208 and Tyr13 localized in the first ?-helix of the photoprotein is important for the stabilization and proper orientation of the oxygenated coelenterazine adduct within the internal cavity as well as for supporting the closed photoprotein conformation. We also suggest that the interplay between Tyr residues in ctenophore photoproteins occurs rather through the ?-? interaction of their phenyl rings than through hydrogen bonds as in hydromedusan photoproteins. This journal is © The Royal Society of Chemistry and Owner Societies.

Scopus
Держатели документа:
Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Burakova, L. P.; Eremeeva, E. V.; Vysotski, E. S.

Найти похожие
 1-20    21-40   41-60   61-80   81-100   101-120      
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)