Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (33)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=sampling<.>)
Общее количество найденных документов : 31
Показаны документы с 1 по 20
 1-20    21-31 
1.


   
    First circumpolar assessment of Arctic freshwater phytoplankton and zooplankton diversity: Spatial patterns and environmental factors / A. K. Schartau, H. L. Mariash, K. S. Christoffersen [et al.] // Freshw. Biol. - 2021, DOI 10.1111/fwb.13783 . - Article in press. - ISSN 0046-5070
Кл.слова (ненормированные):
ecoregions -- latitude -- taxonomic richness -- temperature -- ? diversity -- ? diversity
Аннотация: Arctic freshwaters are facing multiple environmental pressures, including rapid climate change and increasing land-use activities. Freshwater plankton assemblages are expected to reflect the effects of these stressors through shifts in species distributions and changes to biodiversity. These changes may occur rapidly due to the short generation times and high dispersal capabilities of both phyto- and zooplankton. Spatial patterns and contemporary trends in plankton diversity throughout the circumpolar region were assessed using data from more than 300 lakes in the U.S.A. (Alaska), Canada, Greenland, Iceland, the Faroe Islands, Norway, Sweden, Finland, and Russia. The main objectives of this study were: (1) to assess spatial patterns of plankton diversity focusing on pelagic communities; (2) to assess dominant component of ? diversity (turnover or nestedness); (3) to identify which environmental factors best explain diversity; and (4) to provide recommendations for future monitoring and assessment of freshwater plankton communities across the Arctic region. Phytoplankton and crustacean zooplankton diversity varied substantially across the Arctic and was positively related to summer air temperature. However, for zooplankton, the positive correlation between summer temperature and species numbers decreased with increasing latitude. Taxonomic richness was lower in the high Arctic compared to the sub- and low Arctic for zooplankton but this pattern was less clear for phytoplankton. Fennoscandia and inland regions of Russia represented hotspots for, respectively, phytoplankton and zooplankton diversity, whereas isolated regions had lower taxonomic richness. Ecoregions with high ? diversity generally also had high ? diversity, and turnover was the most important component of ? diversity in all ecoregions. For both phytoplankton and zooplankton, climatic variables were the most important environmental factors influencing diversity patterns, consistent with previous studies that examined shorter temperature gradients. However, barriers to dispersal may have also played a role in limiting diversity on islands. A better understanding of how diversity patterns are determined by colonisation history, environmental variables, and biotic interactions requires more monitoring data with locations dispersed evenly across the circumpolar Arctic. Furthermore, the importance of turnover in regional diversity patterns indicates that more extensive sampling is required to fully characterise the species pool of Arctic lakes. © 2021 The Authors. Freshwater Biology published by John Wiley & Sons Ltd.

Scopus
Держатели документа:
Norwegian Institute for Nature Research, Oslo, Norway
Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada
Freshwater Biological Section, Department of Biology, University of Copenhagen, Copenhagen O, Denmark
Alaska Center for Conservation Science, University of Alaska Anchorage, Anchorage, AK, United States
Institute of Biophysics, Krasnoyarsk Science Center, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Biology, Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russian Federation
Canadian Rivers Institute and Department of Biology, University of New Brunswick, Fredericton, NB, Canada
Natural History Museum of Kopavogur, Kopavogur, Iceland
Norwegian Institute for Nature Research, Trondheim, Norway
Department of General Ecology and Hydrobiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
State Nature Reserve Wrangel Island, Pevek, Chukotka Autonomous Region, Russian Federation
Departement des sciences fondamentales, Universite du Quebec a Chicoutimi, Saguenay, QC, Canada
Centre for Northern Studies (CEN), Universite Laval, Quebec City, QC, Canada
Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of Biology, Queen’s University, Kingston, ON, Canada
Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
Lammi Biological Station, University of Helsinki, Lammi, Finland

Доп.точки доступа:
Schartau, A. K.; Mariash, H. L.; Christoffersen, K. S.; Bogan, D.; Dubovskaya, O. P.; Fefilova, E. B.; Hayden, B.; Ingvason, H. R.; Ivanova, E. A.; Kononova, O. N.; Kravchuk, E. S.; Lento, J.; Majaneva, M.; Novichkova, A. A.; Rautio, M.; Ruhland, K. M.; Shaftel, R.; Smol, J. P.; Vrede, T.; Kahilainen, K. K.

Найти похожие
2.


   
    First circumpolar assessment of Arctic freshwater phytoplankton and zooplankton diversity: Spatial patterns and environmental factors / A. K. Schartau, H. L. Mariash, K. S. Christoffersen [et al.] // Freshw. Biol. - 2021, DOI 10.1111/fwb.13783. - Cited References:78. - RFBR, Grant/Award Number: 20-04-00145_a . - Article in press. - ISSN 0046-5070. - ISSN 1365-2427
РУБ Ecology + Marine & Freshwater Biology
Рубрики:
HIGH-LATITUDE LAKES
   CLIMATE-CHANGE

   SPECIES RICHNESS

   BETA DIVERSITY

Кл.слова (ненормированные):
alpha diversity -- beta diversity -- ecoregions -- latitude -- taxonomic -- richness -- temperature
Аннотация: Arctic freshwaters are facing multiple environmental pressures, including rapid climate change and increasing land-use activities. Freshwater plankton assemblages are expected to reflect the effects of these stressors through shifts in species distributions and changes to biodiversity. These changes may occur rapidly due to the short generation times and high dispersal capabilities of both phyto- and zooplankton. Spatial patterns and contemporary trends in plankton diversity throughout the circumpolar region were assessed using data from more than 300 lakes in the U.S.A. (Alaska), Canada, Greenland, Iceland, the Faroe Islands, Norway, Sweden, Finland, and Russia. The main objectives of this study were: (1) to assess spatial patterns of plankton diversity focusing on pelagic communities; (2) to assess dominant component of beta diversity (turnover or nestedness); (3) to identify which environmental factors best explain diversity; and (4) to provide recommendations for future monitoring and assessment of freshwater plankton communities across the Arctic region. Phytoplankton and crustacean zooplankton diversity varied substantially across the Arctic and was positively related to summer air temperature. However, for zooplankton, the positive correlation between summer temperature and species numbers decreased with increasing latitude. Taxonomic richness was lower in the high Arctic compared to the sub- and low Arctic for zooplankton but this pattern was less clear for phytoplankton. Fennoscandia and inland regions of Russia represented hotspots for, respectively, phytoplankton and zooplankton diversity, whereas isolated regions had lower taxonomic richness. Ecoregions with high alpha diversity generally also had high beta diversity, and turnover was the most important component of beta diversity in all ecoregions. For both phytoplankton and zooplankton, climatic variables were the most important environmental factors influencing diversity patterns, consistent with previous studies that examined shorter temperature gradients. However, barriers to dispersal may have also played a role in limiting diversity on islands. A better understanding of how diversity patterns are determined by colonisation history, environmental variables, and biotic interactions requires more monitoring data with locations dispersed evenly across the circumpolar Arctic. Furthermore, the importance of turnover in regional diversity patterns indicates that more extensive sampling is required to fully characterise the species pool of Arctic lakes.

WOS
Держатели документа:
Norwegian Inst Nat Res, Songsveien 68, NO-0855 Oslo, Norway.
Natl Wildlife Res Ctr, Environm & Climate Change Canada, Ottawa, ON, Canada.
Univ Copenhagen, Freshwater Biol Sect, Dept Biol, Copenhagen O, Denmark.
Univ Alaska Anchorage, Alaska Ctr Conservat Sci, Anchorage, AK USA.
Russian Acad Sci, Inst Biophys, Krasnoyarsk Sci Ctr, Siberian Branch, Krasnoyarsk, Russia.
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk, Russia.
Russian Acad Sci, Inst Biol, Komi Sci Ctr, Ural Branch, Syktyvkar, Russia.
Univ New Brunswick, Canadian Rivers Inst, Fredericton, NB, Canada.
Univ New Brunswick, Dept Biol, Fredericton, NB, Canada.
Nat Hist Museum Kopavogur, Kopavogur, Iceland.
Norwegian Inst Nat Res, Trondheim, Norway.
Lomonosov Moscow State Univ, Fac Biol, Dept Gen Ecol & Hydrobiol, Moscow, Russia.
State Nat Reserve Wrangel Isl, Pevek, Chukotka Autono, Russia.
Univ Quebec Chicoutimi, Dept Sci Fondamentales, Saguenay, PQ, Canada.
Univ Laval, Ctr Northern Studies CEN, Quebec City, PQ, Canada.
Queens Univ, Dept Biol, Paleoecol Environm Assessment & Res Lab PEARL, Kingston, ON, Canada.
Swedish Univ Agr Sci, Dept Aquat Sci & Assessment, Uppsala, Sweden.
Univ Helsinki, Lammi Biol Stn, Lammi, Finland.

Доп.точки доступа:
Schartau, Ann Kristin; Mariash, Heather L.; Christoffersen, Kirsten S.; Bogan, Daniel; Dubovskaya, Olga P.; Fefilova, Elena B.; Hayden, Brian; Ingvason, Haraldur R.; Ivanova, Elena A.; Kononova, Olga N.; Kravchuk, Elena S.; Lento, Jennifer; Majaneva, Markus; Novichkova, Anna A.; Rautio, Milla; Ruhland, Kathleen M.; Shaftel, Rebecca; Smol, John P.; Vrede, Tobias; Kahilainen, Kimmo K.; RFBRRussian Foundation for Basic Research (RFBR) [20-04-00145_a]

Найти похожие
3.


   
    Indicators of Oxic and Anoxic Conditions in the System of the Current Sedimentation of Saline Lake Shira (Khakassia), According to High-Resolution SR XRF Data on Bottom Sediments Frozen In Situ / I. A. Kalugin [et al.] // Bull. Russ. Acad. Sci. Phys. - 2019. - Vol. 83, Is. 2. - P198-203, DOI 10.3103/S1062873819020163 . - ISSN 1062-8738
Кл.слова (ненормированные):
Fluorescence -- Geochemistry -- Lakes -- Lithology -- Terahertz waves -- X rays -- Annual variations -- Anoxic conditions -- Bottom sediments -- Geochemical indicators -- Hydrological regime -- Quantitative estimates -- Terahertz radiation -- X ray fluorescence -- Oxic sediments
Аннотация: Abstract: Frozen upper layers of the bottom sediment of Lake Shira are selected using special sampling equipment. Frozen samples and solid samples prepared from the upper layers of a sediment core are examined by means of X-ray fluorescence at the Local and Scanning X-Ray Fluorescence Elemental Analysis Station of the Siberian Synchrotron and Terahertz Radiation Center’s Shared Resource Center. Analytical data on the initial frozen and processed solid samples demonstrate the good repeatability of the results. Quantitative estimates of the sedimentation regimes are obtained, and geochemical indicators of the change in redox conditions are determined from the analysis data. Lithological and geochemical records are synchronized with regional seasonal and annual variations in weather and climate, and with the hydrological regime of the lake for the last 50 years. © 2019, Allerton Press, Inc.

Scopus,
Смотреть статью
Держатели документа:
Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Kalugin, I. A.; Darin, A. V.; Babich, V. V.; Markovich, T. I.; Rakshun, Y. V.; Darin, F. A.; Sorokoletov, D. S.; Rogozin, D. Y.

Найти похожие
4.


   
    A low-cost underwater particle tracking velocimetry system for measuring in situ particle flux and sedimentation rate in low-turbulence environments / S. Simoncelli [et al.] // Limnol. Oceanogr. Methods. - 2019, DOI 10.1002/lom3.10341 . - Article in press. - ISSN 1541-5856
Аннотация: We describe a low-cost three-dimensional underwater particle tracking velocimetry system to directly measure particle settling rate and flux in low-turbulence aquatic environments. The system consists of two waterproof cameras that acquire stereoscopic videos of sinking particles at 48 frames s?1 over a tunable sampling volume of about 45 ? 25 ? 24 cm. A dedicated software package has been developed to allow evaluation of particle velocities, concentration and flux, but also of morphometric parameters such as particle area, sinking angle, shape irregularity, and density. Our method offers several advantages over traditional approaches, like sediment trap or expensive in situ camera systems: (1) it does not require beforehand particle collection and handling; (2) it is not subjected to sediment trap biases from turbulence, horizontal advection, or presence of swimmers, that may alter particulate load and flux; (3) the camera system enables faster data processing and flux computation at higher spatial resolution; (4) apart from the particle settling rates, the particle size distribution, and morphology is determined. We tested the camera system in Lake Stechlin (Germany) in low turbulence and mean flow, and analyzed the morphological properties and settling rates of particles to determine their sinking behavior. The particle flux assessed from conventional sediment trap measurements agreed well with that determined by our system. By this, the low-cost approach demonstrated its reliability in low turbulence environments and a strong potential to provide new insights into particulate carbon transport in aquatic systems. Extension of the method to more turbulent and advective conditions is also discussed. © 2019 The Authors. Limnology and Oceanography: Methods published by Wiley Periodicals, Inc. on behalf of Association for the Sciences of Limnology and Oceanography.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Potsdam University, Institute for Biochemistry and Biology, Potsdam, Germany

Доп.точки доступа:
Simoncelli, S.; Kirillin, G.; Tolomeev, A. P.; Grossart, H. -P.

Найти похожие
5.


   
    THE FIRST RECORDS OF SENECELLA SIBERICA VYSHKVARTZEVA 1994 (COPEPODA, CALANOIDA) IN LARGE NORILSK LAKES, PYASINA RIVER BASIN, CENTRAL SIBERIA / O. P. Dubovskaya, L. A. Glushchenko // Zool. Zhurnal. - 2018. - Vol. 97, Is. 10. - С. 1264-1271, DOI 10.1134/S0044513418100057. - Cited References:26 . - ISSN 0044-5134
РУБ Zoology
Рубрики:
LIMNOCALANUS-MACRURUS
   FRESH-WATER

   MICHIGAN

   ESTUARY

Кл.слова (ненормированные):
Senecella siberica -- marine glacial relict -- zooplankton -- Norilsk lakes -- central Siberia
Аннотация: The large, deep, freshwater Norilsk lakes (Lake Lama, Lake Sobachye, Lake Glubokoe and Lake Keta) are located beyond the Arctic Circle, at the northwestern edge of the Putorana Plateau. They underwent a Pleistocene boreal marine transgression. A relict of that transgression, Limnocalanus macrurus Sars 1863 (Copepoda, Calanoida), presently dominates the crustacean zooplankton of these lakes. Sympatric with the native relict species L. macrurus, Senecella siberica Vyshkvartzeva 1994, was found in our zooplankton samples taken from the deep parts of lakes Lama and Sobachye in the summer-autumn of 2014-2016. Sampling was performed using a Juday net hauled vertically from a depth of 15, 20(25/30) and/or 50 m to the surface. All Senecella specimens were older copepodites, mainly CIV stage in Lama and Sobachye lakes in August and CV in Sobachye Lake in September; their abundance was low (25-2000 ind. m(-2)). They inhabited the central deeper regions of the lakes, contributing up to 7-14% to the total wet biomass of net zooplankton in 0-20 and 0-50 m strata. Previous sporadic and rather superficial samplings in these lakes missed Senecella due to its deep locations, low abundance levels and the absence of both the oldest copepodites and adults in summer.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Inst Biophys,Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Dubovskaya, O. P.; Glushchenko, L. A.

Найти похожие
6.


   
    Role of certain amino acid residues of the coelenterazine-binding cavity in bioluminescence of light-sensitive Ca2+-regulated photoprotein berovin / L. P. Burakova [et al.] // Photochem. Photobiol. Sci. - 2016. - Vol. 15, Is. 5. - P691-704, DOI 10.1039/c6pp00050a . - ISSN 1474-905X
Аннотация: Bright bioluminescence of ctenophores is caused by Ca2+-regulated photoproteins. Although these photoproteins are functionally identical to and share many properties of cnidarian photoproteins, like aequorin and obelin, and retain the same spatial architecture, they are extremely sensitive to light, i.e. lose the ability to bioluminesce on exposure to light over the entire absorption spectrum. In addition, the degree of identity of their amino acid sequences with those of cnidarian photoproteins is only 29.4%. This suggests that the residues involved in bioluminescence of ctenophore and cnidarian photoproteins significantly differ. Here we describe the bioluminescent properties of berovin mutants with substitution of the residues located in the photoprotein internal cavity. Since the spatial structure of berovin bound with a substrate is not determined yet, to identify these residues we have modeled it with an accommodated substrate using the structures of some cnidarian Ca2+-regulated photoproteins with bound coelenterazine or coelenteramide as templates in order to obtain an adequate sampling and to take into account all possible conformers and variants for ligand-protein docking. Based on the impact of substitutions on the bioluminescent properties and model structures we speculate that within the internal cavity of ctenophore photoproteins, coelenterazine is bound as a 2-peroxy anion adduct which is stabilized owing to Coulomb interaction with a positively charged guanidinium group of Arg41 paired with Tyr204. In this case, the bioluminescence reaction is triggered by only calcium-induced conformational changes leading to the disturbance of charge-charge interaction. © 2016 The Royal Society of Chemistry and Owner Societies.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Burakova, L. P.; Stepanyuk, G. A.; Eremeeva, E. V.; Vysotski, E. S.

Найти похожие
7.


   
    Application of Enzyme Bioluminescence in Ecology [Text] / E. Esimbekova, V. Kratasyuk, O. Shimomura // Adv. Biochem. Eng. Biotechnol. : SPRINGER-VERLAG BERLIN, 2014. - Vol. 144. - P67-109. - (Advances in Biochemical Engineering-Biotechnology), DOI 10.1007/978-3-662-43385-0_3. - Cited References:85 . -
РУБ Biotechnology & Applied Microbiology
Рубрики:
BACTERIAL LUCIFERASE
   IN-VITRO

   PYRETHROID INSECTICIDES

   FRESH-WATER

Кл.слова (ненормированные):
Bioluminescence -- Ecological monitoring -- Enzymatic assay -- Immobilization -- Integral water toxicity -- Luciferase
Аннотация: This review examines the general principles of bioluminescent enzymatic toxicity bioassays and describes the applications of these methods and the implementation in commercial biosensors. Bioluminescent enzyme system technology (BEST) has been proposed in the bacterial coupled enzyme system, wherein NADH: FMN-oxidoreductase-luciferase substitutes for living organisms. BEST was introduced to facilitate and accelerate the development of cost-competitive enzymatic systems for use in biosensors for medical, environmental, and industrial applications. For widespread use of BEST, the multicomponent reagent "Enzymolum'' has been developed, which contains the bacterial luciferase, NADH: FMN-oxidoreductase, and their substrates, co-immobilized in starch or gelatin gel. Enzymolum is the central part of Portable Laboratory for Toxicity Detection (PLTD), which consists of a biodetector module, a sampling module, a sample preparation module, and a reagent module. PLTD instantly signals chemical-biological hazards and allows us to detect a wide range of toxic substances. Enzymolum can be integrated as a biological module into the portable biodetector-biosensor originally constructed for personal use. Based on the example of Enzymolum and the algorithm for creating new enzyme biotests with tailored characteristics, a new approach was demonstrated in biotechnological design and construction. The examples of biotechnological design of various bioluminescent methods for ecological monitoring were provided. Possible applications of enzyme bioassays are seen in the examples for medical diagnostics, assessment of the effect of physical load on sportsmen, analysis of food additives, and in practical courses for higher educational institutions and schools. The advantages of enzymatic assays are their rapidity (the period of time required does not exceed 3-5 min), high sensitivity, simplicity and safety of procedure, and possibility of automation of ecological monitoring; the required luminometer is easily available.

WOS
Держатели документа:
Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
ИБФ СО РАН

Доп.точки доступа:
Esimbekova, Elena; Kratasyuk, Valentina; Shimomura, Osamu

Найти похожие
8.


   
    Cytogenetic abnormalities in aquatic plant Elodea canadensis in anthropogenic contamination zone of Yenisei River [Text] / M. Y. Medvedeva, A. Y. Bolsunovsky, T. A. Zotina // Contemp. Probl. Ecol. - 2014. - Vol. 7, Is. 4. - P422-432, DOI 10.1134/S1995425514040088. - Cited References: 19. - The authors thank their colleagues from the Radioecology laboratory and Analytical laboratory for gamma spectrometric and chemical analyses. The authors express their appreciation to O.V. Kvitko (Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk) for her valuable methodical consultations. This research is partially funded by both a RFFI-r_Siberia-a, grant no. 13-04-98004 from the Russian Foundation for Basic Research and project no. 30.5 of the Biological Diversity Program of the Presidium of the Russian Academy of Sciences. . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology
Рубрики:
ALLIUM-TEST
   GENOTOXICITY

   TOXICITY

Кл.слова (ненормированные):
Elodea canadensis -- bottom sediments -- chromosome abnormalities -- anthropogenic radionuclides -- heavy metals -- genotoxicity
Аннотация: Chromosome abnormalities in ana-telophase cells of apical root meristem of aquatic plant Elodea. canadensis (elodea), sampled in 2011-2012 in the Yenisei River at a site with background level of contamination and at several sites on the stretch contaminated with artificial radionuclides, and with chemical pollutants from municipal and industrial discharges of the Krasnoyarsk city. Lowest rate (5.2%) of cells with chromosome abnormalities was registered at sampling site with background level of contamination upstream of the Krasnoyarsk, highest rate of cells with abnormalities (39.7%)-in roots of elodea sampled in bottom sediments with highest concentration of Cs-137. Sum of rates of cells with abnormalities and rates of cells with all types of abnormalities positively correlated with total concentration of artificial and natural radionuclides, with concentration of artificial radionuclides and Cs-137 in bottom sediments of the Yenisei River (r (2) = 0.91-0.96, p < 0.0005 for sum of rates of cells with abnormalities; r (2) = 0.58-0.92, p < 0.05 for all types of abnormalities).

WOS
Держатели документа:
[Medvedeva, M. Yu
Bolsunovsky, A. Ya
Zotina, T. A.] Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Medvedeva, M.Y.; Bolsunovsky, A.Y.; Zotina, T.A.; RFFI-r_Siberia-a from the Russian Foundation for Basic Research [13-04-98004]; Biological Diversity Program of the Presidium of the Russian Academy of Sciences [30.5]

Найти похожие
9.


   
    Spatial biodiversity of bacteria along the largest Arctic river determined by next-generation sequencing [Text] / O. V. Kolmakova [et al.] // FEMS Microbiol. Ecol. - 2014. - Vol. 89, Is. 2. - P442-450, DOI 10.1111/1574-6941.12355. - Cited References: 36. - This work was supported by the Attracting Leading Scientists to Russian Educational Institutions Program of the Russian Federation, agreement 11.G34.31.0014, and by the project G-1 of Siberian Federal University, carried out according to Federal tasks of the Ministry of Education and Science of Russian Federation. . - ISSN 0168-6496. - ISSN 1574-6941
РУБ Microbiology
Рубрики:
DISSOLVED ORGANIC-MATTER
   INLAND WATERS

   CARBON

   BACTERIOPLANKTON

   COMMUNITY

   GREENGENES

   ECOSYSTEM

   RESERVOIR

   PATTERNS

   PRIMERS

Кл.слова (ненормированные):
bacterial community -- diversity -- 16S rRNA gene -- Yenisei River
Аннотация: The biodiversity of bacterial communities along the Yenisei River at section c. 1800 km was studied using next-generation sequencing of 16S rRNA genes and common biodiversity indices. Overall, 3022 unique operational taxonomic units were identified. Actinobacteria and Proteobacteria were the dominant phyla at all sampling sites. The highest alpha-diversity values were found in the middle section of the studied river. The beta-diversity of bacterial assemblages in the river was related to the surrounding landscape (biome): three distinctly different bacterial assemblages occurred in sections of the river, situated in mountain taiga, plain taiga and in a region of permafrost, covered by forest-tundra and tundra. Tributaries arising from these different landscapes likely contributed substantially to the variations of Yenisei bacterial communities. In contrast to a prediction of the river continuum concept, the proportion of photoautotrophic Cyanobacteria in bacterial assemblages did not increase downstream, but peaked at the middle section.

WOS
Держатели документа:
[Kolmakova, Olesya V.
Gladyshev, Michail I.] Siberian Fed Univ, Krasnoyarsk, Russia
[Kolmakova, Olesya V.
Gladyshev, Michail I.
Trusova, Maria Y.] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia
[Rozanov, Alexey S.
Peltek, Sergey E.] Russian Acad Sci, Inst Cytol & Genet, Siberian Branch, Novosibirsk 630090, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kolmakova, O.V.; Gladyshev, M.I.; Rozanov, A.S.; Peltek, S.E.; Trusova, M.Y.; Attracting Leading Scientists to Russian Educational Institutions Program of the Russian Federation [11.G34.31.0014]; Siberian Federal University

Найти похожие
10.


   
    Radioactive contamination of pine (Pinus sylvestris) in Krasnoyarsk (Russia) following fallout from the Fukushima accident / A. Bolsunovsky, D. Dementyev // J. Environ. Radioact. - 2014. - Vol. 138. - P87-91, DOI 10.1016/j.jenvrad.2014.08.003 . - ISSN 0265-931X
Кл.слова (ненормированные):
Fukushima accident -- Pine samples -- Radiocesium activity ratio -- Radionuclides -- Russia -- Activity ratios -- Fukushima accidents -- Pinus sylvestris -- Radioactive contamination -- Russia -- Radioisotopes -- Pinus sylvestris
Аннотация: Following the Fukushima accident in March 2011, samples of pine trees (Pinus sylvestris) were collected from three sites near the city of Krasnoyarsk (Siberia, Russia) during 2011-2012 and analyzed for artificial radionuclides. Concentrations of Fukushima-derived radionuclides in the samples of pine needles in April 2011 reached 5.51 ± 0.52 Bq kg-1 131I, 0.92 ± 0.04 Bq kg-1 134Cs, and 1.51 ± 0.07 Bq kg-1 137Cs. An important finding was the detection of 134Cs from the Fukushima accident not only in the pine needles and branches but also in the new shoots in 2012, which suggested a transfer of Fukushima cesium isotopes from branches to shoots. In 2011 and 2012, the 137Cs/134Cs ratio for pine needles and branches collected in sampling areas Krasnoyarsk-1 and Krasnoyarsk-2 was greater than 1 (varying within a range of 1.2-2.6), suggesting the presence of “older“, pre-Fukushima accident 137Cs. Calculations showed that for pine samples growing in areas of the Krasnoyarskii Krai unaffected by contamination from the nuclear facility, the activity of the Fukushima-derived cesium isotopes was two-three times higher than the activity of the pre-accident 137Cs.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, 50-50 AkademgorodokKrasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Bolsunovsky, A.; Dementyev, D.

Найти похожие
11.


   
    Spatial biodiversity of bacteria along the largest Arctic river determined by next-generation sequencing / O. V. Kolmakova [et al.] // FEMS Microbiol. Ecol. - 2014. - Vol. 89, Is. 2. - P442-450, DOI 10.1111/1574-6941.12355 . - ISSN 1574-6941
Кл.слова (ненормированные):
16S rRNA gene -- Bacterial community -- Diversity -- Yenisei River -- Actinobacteria -- Bacteria (microorganisms) -- Cyanobacteria -- Proteobacteria
Аннотация: The biodiversity of bacterial communities along the Yenisei River at section c. 1800 km was studied using next-generation sequencing of 16S rRNA genes and common biodiversity indices. Overall, 3022 unique operational taxonomic units were identified. Actinobacteria and Proteobacteria were the dominant phyla at all sampling sites. The highest alpha-diversity values were found in the middle section of the studied river. The beta-diversity of bacterial assemblages in the river was related to the surrounding landscape (biome): three distinctly different bacterial assemblages occurred in sections of the river, situated in mountain taiga, plain taiga and in a region of permafrost, covered by forest-tundra and tundra. Tributaries arising from these different landscapes likely contributed substantially to the variations of Yenisei bacterial communities. In contrast to a prediction of the river continuum concept, the proportion of photoautotrophic Cyanobacteria in bacterial assemblages did not increase downstream, but peaked at the middle section. © 2014 Federation of European Microbiological Societies.

Scopus
Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kolmakova, O.V.; Gladyshev, M.I.; Rozanov, A.S.; Peltek, S.E.; Trusova, M.Y.

Найти похожие
12.


   
    Amino acid composition of epilithic biofilm and benthic animals in a large Siberian river / A. A. Kolmakova [et al.] // Freshwater Biology. - 2013. - Vol. 58, Is. 10. - P2180-2195, DOI 10.1111/fwb.12200 . - ISSN 0046-5070
Кл.слова (ненормированные):
Amino acids -- Epilithic microalgae and cyanobacteria -- Nutritive quality -- River ecosystem -- Zoobenthos
Аннотация: We studied amino acid (AA) composition of epilithic biofilms and zoobenthos near the shore at a middle section of the Yenisei River (Siberia, Russia). We hypothesised that there was an imbalance between the composition and content of amino acids in the biofilm and its consumers, the zoobenthos, as well as between those in the zoobenthos and fish. Based on monthly sampling from 2007 to 2010, there was seasonal variation in AA profiles in the epilithic biofilms, probably caused by the succession of microalgal and cyanobacterial species. Overall, there was an imbalance in the percentage of the essential amino acids (lysine and histidine) between benthic animals and their food (the epilithic biofilm), which suggests that benthic animals may be limited by food quality. Moreover, the zoobenthos had a significantly higher content of AA, relative to carbon, than the biofilm. Based on sampling in 2012, there was an imbalance between the AA profiles of zoobenthos and that of their main consumer, the Siberian grayling (Thymallus arcticus), particularly in the percentages of two essential amino acids, lysine and leucine. In terms of overall content of essential amino acids, the nutritional value to fish of gammarids, which have recently invaded the river, was significantly lower than that of indigenous taxa, trichopteran and chironomid larvae. В© 2013 John Wiley & Sons Ltd.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Science, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kolmakova, A.A.; Gladyshev, M.I.; Kalachova, G.S.; Kravchuk, E.S.; Ivanova, E.A.; Sushchik, N.N.

Найти похожие
13.


   
    Stable isotope composition of fatty acids in organisms of different trophic levels in the yenisei river / M. I. Gladyshev [et al.] // PLoS ONE. - 2012. - Vol. 7, Is. 3. - Ст. e34059, DOI 10.1371/journal.pone.0034059 . - ISSN 1932-6203
Кл.слова (ненормированные):
carbon 13 -- fatty acid -- carbon -- Apatania crymophila -- article -- benthos -- Eulimnogammarus viridis -- fatty acid analysis -- fatty acid desaturation -- Fontinalis antipyretica -- food chain -- food web -- freshwater fish -- isotope analysis -- lipid composition -- microalga -- moss -- nonhuman -- pelagic zone -- river ecosystem -- Russian Federation -- stable isotope analysis -- Thymallus arcticus -- trophic level -- animal -- chemistry -- larva -- metabolism -- river -- Bryophyta -- Gammaridae -- Trichoptera -- Animals -- Carbon Isotopes -- Fatty Acids -- Food Chain -- Larva -- Microalgae -- Rivers
Аннотация: We studied four-link food chain, periphytic microalgae and water moss (producers), trichopteran larvae (consumers I), gammarids (omnivorous - consumers II) and Siberian grayling (consumers III) at a littoral site of the Yenisei River on the basis of three years monthly sampling. Analysis of bulk carbon stable isotopes and compound specific isotope analysis of fatty acids (FA) were done. As found, there was a gradual depletion in 13C contents of fatty acids, including essential FA upward the food chain. In all the trophic levels a parabolic dependence of ? 13C values of fatty acids on their degree of unsaturation/chain length occurred, with 18:2n-6 and 18:3n-3 in its lowest point. The pattern in the ? 13C differences between individual fatty acids was quite similar to that reported in literature for marine pelagic food webs. Hypotheses on isotope fractionation were suggested to explain the findings. В© 2012 Gladyshev et al.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gladyshev, M.I.; Sushchik, N.N.; Kalachova, G.S.; Makhutova, O.N.

Найти похожие
14.


   
    Influence of anthropogenic pollution on content of essential polyunsaturated fatty acids in links of food chain of river ecosystem / M. I. Gladyshev [et al.] // Contemporary Problems of Ecology. - 2012. - Vol. 5, Is. 4. - P376-385, DOI 10.1134/S1995425512040051 . - ISSN 1995-4255
Кл.слова (ненормированные):
gammarus -- grayling -- heavy metals -- polyunsaturated fatty acids -- amphipod -- anthropogenic effect -- anthropogenic source -- fatty acid -- food chain -- heavy metal -- littoral environment -- oil pollution -- phenol -- river system -- salmonid -- sampling -- Krasnoyarsk [Russian Federation] -- Russian Federation -- Yenisei River -- Gammarus
Аннотация: In the course of monthly sampling in 2008-2010, two regions of the littoral of the Yenisei river were compared. One of these regions (conventionally pure) was situated upstream of Krasnoyarsk, while the other (conventionally polluted) was downstream of Krasnoyarsk. The concentrations of heavy metals, oil products, phenols, biogenic elements and essential polyunsaturated fatty acids (PUFAs) in various components of the river ecosystem were determined. It was discovered that the anthropogenic pollution causes a decrease in the resources of essential PUFA in the biomass of the upper links of the food chain of the river ecosystem. В© 2012 Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Krasnoyarsk 660036, Russian Federation
Siberian Federal University, Svobodnii prosp. 79, Krasnoyarsk 660041, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gladyshev, M.I.; Anishchenko, O.V.; Sushchnik, N.N.; Kalacheva, G.S.; Gribovskaya, I.V.; Ageev, A.V.

Найти похожие
15.


   
    Microbial community of the chemocline of the meromictic Lake Shunet (Khakassia, Russia) during summer stratification / D. Y. Rogozin [et al.] // Microbiology. - 2010. - Vol. 79, Is. 2. - P253-261, DOI 10.1134/S0026261710020189 . - ISSN 0026-2617
Кл.слова (ненормированные):
Chemocline -- Cyanobacteria -- Green sulfur bacteria -- Meromictic lakes -- Microstratification -- PCR-DGGE -- Phytoflagellates -- Purple sulfur bacteria -- Bacteria (microorganisms) -- Chlorobi -- Chromatiaceae -- Cryptomonas -- Cyanobacteria -- Lamprocystis purpurea -- Phytomastigophorea -- Proteobacteria -- Synechococcus
Аннотация: The spatio-temporal organization of the bacterial community inhabiting the chemocline of the stratified meromictic Lake Shunet (Khakassia, Russia) was investigated from May to September 2005 by means of microscopy, analysis of photosynthetic pigments, and PCR-DGGE with subsequent 16S rDNA analysis. The samples were collected with a multisyringe stratification sampler, sampling being performed every 5 cm. It was demonstrated that, during the period of investigation, there were no large changes in the bacterial community of the chlemocline, at least among the detected forms. During the whole period of study, purple sulfur bacteria related to Lamprocystis purpurea (Chromatiaceae) were predominant in the chemocline. Beneath the layer of purple bacteria, green sulfur bacteria were revealed that were phylogenetically distant from strain ShNPel02, which was previously isolated from this lake. Development of phytoflagellates of the genus Cryptomonas was observed in the upper zone of the chemocline. In the chemocline of Lake Shunet, the numbers of picoplankton cyanobacteria of the genus Synechococcus increased from May to September. It was demonstrated that the application of universal bacterial primers for DGGE resulted in the same qualitative distributional pattern of predominant species as microscopic studies. В© Pleiades Publishing, Ltd., 2010.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russian Federation
Siberian Federal University, pr. Svobodnyi, 79, Krasnoyarsk 660041, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Rogozin, D.Y.; Trusova, M.Y.; Khromechek, E.B.; Degermendzhy, A.G.

Найти похожие
16.


   
    Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia) / A. G. Degermendzhy [et al.] // Aquatic Ecology. - 2010. - Vol. 44, Is. 3. - P619-632, DOI 10.1007/s10452-010-9336-6 . - ISSN 1386-2588
Кл.слова (ненормированные):
Ciliates -- Cryptomonas -- Fishless lakes -- Gammarus -- Mathematical modelling -- Meromictic lakes -- Phytoplankton -- Stratification -- Sulphur bacteria -- amphipod -- bacterium -- biomass -- ciliate -- ecosystem modeling -- flagellate -- meromictic lake -- microbial community -- numerical model -- physicochemical property -- phytoplankton -- population density -- saline lake -- salinity -- stratification -- thermocline -- trophic interaction -- vertical profile -- zooplankton -- Khakassia -- Lake Shira -- Lake Shunet -- Russian Federation -- Siberia -- Amphipoda -- Bacteria (microorganisms) -- Ciliophora -- Copepoda -- Cryptomonas -- Cryptomonas sp. -- Gammaridae -- Gammarus -- Gammarus lacustris -- Phytomastigophorea -- Protista -- Rotifera
Аннотация: A feature of meromictic lakes is that several physicochemical and biological gradients affect the vertical distribution of different organisms. The vertical stratification of physical, chemical and biological components in saline, fishless meromictic lakes Shira and Shunet (Siberia, Russia) is quite different mainly because both mean depth and maximum depth of lakes differ as well as their salinity levels differ. The chemocline of the Lake Shira, as in many meromictic lakes, is inhabited by bacterial community consisting of purple sulphur and heterotrophic bacteria. As the depth of the chemocline is variable, the bacterial community does not attain high densities. The mixolimnion in Lake Shira, which is thermally stratified in summer, also creates different habitat for various species. The distribution of phytoplankton is non-uniform with its biomass peak in the metalimnion. The distribution of zooplankton is also heterogeneous with rotifers and juvenile copepods inhabiting the warmer epilimnion and older copepods found in the cold but oxic hypolimnion. The amphipod Gammarus lacustris which can be assigned to the higher trophic link in the fishless lake's ecosystem, such as Lake Shira, is also distributed non-uniformly, with its peak density generally observed in the thermocline region. The chemocline in Lake Shunet is located at the depth of 5 m, and unlike in Lake Shira, due to a sharp salinity gradient between the mixolimnion and monimolimnion, this depth is very stable. The mixolimnion in Lake Shunet is relatively shallow and the chemocline is inhabited by (1) an extremely dense bacterial community; (2) a population of Cryptomonas sp.; and (3) ciliate community comprising several species. As the mixolimnion of Lake Shunet is not thermally stratified for long period, the phytoplankton and zooplankton populations are not vertically stratified. The gammarids, however, tend to concentrate in a narrow layer located 1-2 m above the chemocline. We believe that in addition to vertical inhomogeneities of both physicochemical parameters, biological and physical factors also play a role in maintaining these inhomogeneities. We conclude that the stratified distributions of the major food web components will have several implications for ecosystem structure and dynamics. Trophic interactions as well as mass and energy flows can be significantly impacted by such heterogeneous distributions. Species spatially separated even by relatively short distances, say a few centimetres will not directly compete. Importantly, we demonstrate that not only bacteria, phytoflagellates and ciliate tend to concentrate in thin layers but also larger-sized species such Gammarus (amphipods) can also under certain environmental conditions have stratified distribution with maxima in relatively thin layer. As the vertical structure of the lake ecosystem is rather complex in such stratified lakes as ours, the strategy of research, including sampling techniques, should consider potentially variable and non-homogeneous distributions. В© 2010 The Author(s).

Scopus
Держатели документа:
Institute of Biophysics SB RAS, 660036 Krasnoyarsk, Akademgorodok, Russian Federation
Siberian Federal University, Svobodnyi 79, 660041 Krasnoyarsk, Russian Federation
Netherlands Environmental Assessment Agency (PBL), P.O. Box 303, 3720 AH Bilthoven, Netherlands
Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 3631 AC Nieuwersluis, Netherlands : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Degermendzhy, A.G.; Zadereev, E.S.; Rogozin, D.Y.; Prokopkin, I.G.; Barkhatov, Y.V.; Tolomeev, A.P.; Khromechek, E.B.; Janse, J.H.; Mooij, W.M.; Gulati, R.D.

Найти похожие
17.


   
    Sediments of the Yenisei River: Monitoring of radionuclide levels and estimation of sedimentation rates / A. Bolsunovsky, D. Dementyev // IAHS-AISH Publication. - 2010. - Vol. 337: Symposium on Sediment Dynamics for a Changing Future (14 June 2010 through 18 June 2010, Warsaw) Conference code: 84220. - P143-148
Кл.слова (ненормированные):
Artificial and natural radionuclides -- Dating methods -- River sediments -- Sedimentation rates -- Yenisei river -- Dating methods -- Natural radionuclides -- River sediments -- Sedimentation rates -- Yenisei river -- Anoxic sediments -- Cesium -- Europium -- Lead -- Nuclear energy -- Nuclear weapons -- Plutonium -- Radioisotopes -- River pollution -- Sedimentation -- Sedimentology -- Strontium -- Uranium -- Rivers -- cesium isotope -- cobalt isotope -- europium -- fluvial deposit -- plutonium isotope -- radioactive pollution -- radioactive waste -- radionuclide -- sampling -- sediment core -- sediment pollution -- sedimentation rate -- Krasnoyarsk [Russian Federation] -- Russian Federation -- Yenisei River
Аннотация: The Yenisei River, one of the largest rivers in the world, is contaminated with artificial radionuclides released by a Russian nuclear facility producing weapon-grade plutonium, which has been in operation for many years. Examination of Yenisei River sediment samples revealed the presence of artificial radionuclides typical of radioactive discharge from the Mining-and-Chemical- Combine (MCC) nuclear facility: isotopes of europium ( 152Eu, 154Eu, and 155Eu), caesium ( 137Cs and 134Cs), 60Co, 90Sr, and transuranium elements. Maximum radionuclide concentrations in sediments remained high as far as 240 km downstream of the MCC. In sediment cores collected upstream of the MCC, ?-spectrometric measurements registered only one artificial radionuclide, 137Cs, with a maximum activity of approx. 8 Bq kg -1 dry mass. Sediments of the Yenisei River also contain natural radionuclides. Sedimentation rates in several sections of the Yenisei River were determined using, different approaches: the 210Pb dating method and the ratios of artificial radionuclides - 137Cs/ 60Co and 152Eu/ 154Eu. With increasing distance downstream of the city of Krasnoyarsk, sedimentation rates increased from 0.88 cm year -1 to 1.30-1.51 cm year -1. Copyright В© 2010 IAHS Press.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, Akademgorodok, 660036, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Bolsunovsky, A.; Dementyev, D.

Найти похожие
18.


   
    Seasonal variations of metal concentrations in periphyton and taxonomic composition of the algal community at a Yenisei River littoral site / O. V. Anishchenko [et al.] // Central European Journal of Biology. - 2010. - Vol. 5, Is. 1. - P125-134, DOI 10.2478/s11535-009-0060-y . - ISSN 1895-104X
Кл.слова (ненормированные):
Heavy metals -- Periphyton -- Seasonal dynamics -- algae -- Chlorophyta -- Cyanobacteria -- Ulothrix zonata
Аннотация: The concentrations of metals K, Na, Ca, Mg, Fe, Mn, Zn, Cu, Ni, Pb, Co and Cr, in the water and periphyton (epilithic algal communities) were studied at a site in the middle stream of the Yenisei River (Siberia, Russia) during three years using monthly sampling frequencies. Despite considerable seasonal variations in aquatic concentrations of some metals, there was no correlation between metal contents in the water and in periphyton. Seasonal concentration variations of some metals in periphyton were related to the species (taxonomic) composition of periphytic microalgae and cyanobacteria. Enhanced levels of Ni and Co in periphyton in late autumn, winter, and early spring were likely caused by the predominance of cyanobacteria in the periphytic community, and annual maximum levels of K in periphyton in late spring and early summer were attributed to the domination of Chlorophyta, primarily Ulothrix zonata. В© Versita Warsaw and Springer-Verlag Berlin Heidelberg.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russian Federation
Siberian Federal University, 660041 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Anishchenko, O.V.; Gladyshev, M.I.; Kravchuk, E.S.; Ivanova, E.A.; Gribovskaya, I.V.; Sushchik, N.N.

Найти похожие
19.


   
    Correlations between fatty acid composition of seston and zooplankton and effects of environmental parameters in a eutrophic Siberian reservoir / M. I. Gladyshev [et al.] // Limnologica. - 2010. - Vol. 40, Is. 4. - P343-357, DOI 10.1016/j.limno.2009.12.004 . - ISSN 0075-9511
Кл.слова (ненормированные):
Eicosapentaenoic acid -- Fatty acids -- Phytoplankton -- Temperature -- Zooplankton -- canonical analysis -- correlation -- eutrophic environment -- fatty acid -- multivariate analysis -- phytoplankton -- seasonal variation -- seston -- taxonomy -- temperature effect -- water temperature -- zooplankton -- algae -- Bacillariophyta -- Ciliophora -- Cyanobacteria -- Cyclopoida -- Rotifera
Аннотация: During two sampling seasons we analyzed on weekly basis fatty acid (FA) composition of seston fraction <130?m and zooplankton fraction >130?m, and compared them using a multivariate canonical correlation analysis (CCA). Besides, we evaluated a possible impact of water temperature and inorganic nutrients on FA composition of the seston and the zooplankton.In spite of significant differences in percentages of several individual FAs, we found very strong canonical correlation (cross-correlation, 1-week lag) between FA composition of the seston and the zooplankton. The most important factor, providing the overall canonical cross-correlation between FA profiles of the seston and the zooplankton fractions was eicosapentaenoic acid (20:5?3, EPA). FA composition of the zooplankton fraction had comparatively poor correlations with taxonomic composition of the zooplankton. Thus, seasonal variations of FA composition of the zooplankton were determined primarily by seasonal changes in FA composition of the seston, rather than by taxonomic differences of FA profiles between rotifers, cyclopoids and cladocerans. FA composition of the seston was strongly affected by its taxonomic composition, namely by that of phytoplankton. According to CCA, the highest factor loadings pertained to diatoms interacting with their marker acids, including EPA, and cyanobacteria and greens, interacting with their marker acids. Ciliates and small rotifers composed considerable and sometimes major part of the seston biomass, but according to CCA their contributions to seasonal variations of the total FA profile of the seston were insignificant. This finding indirectly support the conclusion of the other authors, that the main source of FAs presented in ciliates and rotifers must be sought in algae and that they do not modify FA composition of food consumed, apart from repackaging it.Water temperature was the principal environmental parameter which drove the overall variations of FA composition. Factor loadings for the inorganic nutrients were comparatively negligible. The main contribution in the seasonal variation of FA composition of the seston was given by negative interaction between water temperature and percentage of EPA in the seston. В© 2009 Elsevier GmbH.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russian Federation
Siberian Federal University, Svobodny av. 79, Krasnoyarsk 660041, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gladyshev, M.I.; Sushchik, N.N.; Makhutova, O.N.; Dubovskaya, O.P.; Kravchuk, E.S.; Kalachova, G.S.; Khromechek, E.B.

Найти похожие
20.


   
    The effect of radionuclide and heavy metal contamination of the Yenisei River on cytogenetics of aquatic plant Elodea canadensis / A. Bolsunovsky [et al.] // Radioprotection. - 2009. - Vol. 44, Is. 5. - P83-88, DOI 10.1051/radiopro/20095021 . - ISSN 0033-8451
Аннотация: The study was done to determine concentrations of radionuclides and heavy metals and to evaluate the frequency of chromosomal aberrations in samples of Elodea canadensis, a submerged plant, collected in different parts of the Yenisei River. Samples were collected in the area subjected to radioactive impact of theMining-and-Chemical Combine (MCC) at Zheleznogorsk and in the control areas, upstream of the MCC. The investigations showed that Elodea biomass in the area affected by MCC operation contained a long inventory of artificial radionuclides typical of the MCC discharges. Upstream of the MCC, in the control sampling areas, the sediments and the Elodea biomass contained only one artificial radionuclide - 137Cs. Thus, the exposure doses to Elodea shoots and roots upstream of the MCC are small (not more than 8 ?Gy/d) and the main contribution to them is made by natural radionuclides. At the MCC discharge site (the village of Atamanovo) and downstream of it, the total dose rate increases almost an order of magnitude, reaching its maximal values - 72 ?Gy/d for Elodea shoots and 58 ? Gy/d for roots. Cytogenetic investigations of Elodea roots showed that at the MCC discharge site (the village of Atamanovo) and downstream of it the occurrence of chromosomal aberrations in ana-telophase and metaphase cells of Elodea was considerably higher than in the control area. It is highly probable that this simultaneous dramatic increase in the total exposure rate and the occurrence of chromosomal aberrations in Elodea is associated with the radiation factor. It is suggested that Elodea is affected not only by the radiation factor but also by the chemical factor - toxicity of heavy metals. В© 2009 EDP Sciences.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 660036 Krasnoyarsk, Russian Federation
Siberian Federal University, 79 Svobodnyi Ave., 660041 Krasnoyarsk, Russian Federation
Institute of Forest, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Bolsunovsky, A.; Muratova, E.; Sukovaty, A.; Kornilova, M.

Найти похожие
 1-20    21-31 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)