Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>S=CRYSTAL-STRUCTURE<.>)
Общее количество найденных документов : 23
Показаны документы с 1 по 20
 1-20    21-23 
1.


   
    Atomic resolution structure of obelin: soaking with calcium enhances electron density of the second oxygen atom substituted at the C2-position of coelenterazine [Text] / Z. J. Liu [et al.] // Biochem. Biophys. Res. Commun. - 2003. - Vol. 311, Is. 2. - P433-439, DOI 10.1016/j.bbrc.2003.09.231. - Cited References: 29 . - ISSN 0006-291X
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
CRYSTAL-STRUCTURE
   BIOLUMINESCENT PROTEIN

   VIOLET BIOLUMINESCENCE

   PHOTOPROTEIN AEQUORIN

   ANGSTROM RESOLUTION

   RECOMBINANT OBELIN

   W92F OBELIN

   PURIFICATION

   REFINEMENT

   EXPRESSION

Кл.слова (ненормированные):
photoprotein -- bioluminescence -- atomic resolution -- EF-hand
Аннотация: The spatial structure of the Ca2+-regulated photoprotein obelin has been solved to resolution of 1.1 Angstrom. Two oxygen atoms are revealed substituted at the C2-position of the coelenterazine in contrast to the obelin structure at 1.73 Angstrom resolution where one oxygen atom only was disclosed. The electron density of the second oxygen atom was very weak but after exposing the crystals to a trace of Ca2+, the electron densities of both oxygen atoms became equally intense. In addition, one Ca2+ was found bound in the loop of the first EF-hand motif. Four of the ligands were provided by protein residues Asp30, Asn32, Asn34, and the main chain oxygen of Lys36. The other two were from water molecules. From a comparison of B-factors for the residues constituting the active site, it is suggested that the variable electron densities observed in various photoprotein structures could be attributed to different mobilities of the peroxy oxygen atoms. (C) 2003 Elsevier Inc. All rights reserved.

Держатели документа:
Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
Univ Georgia, Dept Chem, Athens, GA 30602 USA
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Liu, Z.J.; Vysotski, E.S.; Deng, L...; Lee, J...; Rose, J...; Wang, B.C.

Найти похожие
2.


   
    Bacterial Luciferases from Vibrio harveyi and Photobacterium leiognathi Demonstrate Different Conformational Stability as Detected by Time-Resolved Fluorescence Spectroscopy / E. V. Nemtseva, D. V. Gulnov, M. A. Gerasimova [et al.] // Int. J. Mol. Sci. - 2021. - Vol. 22, Is. 19. - Ст. 10449, DOI 10.3390/ijms221910449. - Cited References:45. - The research was partially funded by the Ministry of Science and Higher Education of the Russian Federation (projects No. FSRZ-2020-0006); by the RFBR and Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science (projects No. 20-44-243002 and 20-44-240006); and by the RFBR (project No. 20-34-90118). . - ISSN 1422-0067
РУБ Biochemistry & Molecular Biology + Chemistry, Multidisciplinary
Рубрики:
TRYPTOPHAN FLUORESCENCE
   CRYSTAL-STRUCTURE

   SUBUNIT

   BIOLUMINESCENCE

Кл.слова (ненормированные):
bacterial luciferase -- urea-induced denaturation -- time-resolved -- spectroscopy -- conformational stability -- FRET -- tryptophan fluorescence -- molecular dynamics -- unfolding pathway
Аннотация: Detecting the folding/unfolding pathways of biological macromolecules is one of the urgent problems of molecular biophysics. The unfolding of bacterial luciferase from Vibrio harveyi is well-studied, unlike that of Photobacterium leiognathi, despite the fact that both of them are actively used as a reporter system. The aim of this study was to compare the conformational transitions of these luciferases from two different protein subfamilies during equilibrium unfolding with urea. Intrinsic steady-state and time-resolved fluorescence spectra and circular dichroism spectra were used to determine the stages of the protein unfolding. Molecular dynamics methods were applied to find the differences in the surroundings of tryptophans in both luciferases. We found that the unfolding pathway is the same for the studied luciferases. However, the results obtained indicate more stable tertiary and secondary structures of P. leiognathi luciferase as compared to enzyme from V. harveyi during the last stage of denaturation, including the unfolding of individual subunits. The distinctions in fluorescence of the two proteins are associated with differences in the structure of the C-terminal domain of alpha-subunits, which causes different quenching of tryptophan emissions. The time-resolved fluorescence technique proved to be a more effective method for studying protein unfolding than steady-state methods.



WOS
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Inst Biophys SB RAS, Photobiol Lab, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Inst Prot Res, Pushchino 142290, Russia.

Доп.точки доступа:
Nemtseva, Elena, V; Gulnov, Dmitry, V; Gerasimova, Marina A.; Sukovatyi, Lev A.; Burakova, Ludmila P.; Karuzina, Natalya E.; Melnik, Bogdan S.; Kratasyuk, Valentina A.; Burakova, Lyudmila; Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0006]; RFBRRussian Foundation for Basic Research (RFBR) [20-34-90118]; Krasnoyarsk Regional Fund of Science [20-44-243002, 20-44-240006]; RFBRRussian Foundation for Basic Research (RFBR)

Найти похожие
3.


   
    Bioluminescent and spectroscopic properties of His-Trp-Tyr triad mutants of obelin and aequorin / E. V. Eremeeva [et al.] // Photochem. Photobiol. Sci. - 2013. - Vol. 12, Is. 6. - P1016-1024, DOI 10.1039/c3pp00002h. - Cited References: 46. - The work was supported by RFBR grant 12-04-00131, by the Programs of the Government of Russian Federation "Measures to Attract Leading Scientists to Russian Educational Institutions" (grant 11.G34.31.0058), "Molecular and Cellular Biology" of RAS, President of Russian Federation "Leading science school" (grant 1044.2012.2). E.V.E. was supported by Wageningen University Sandwich PhD-Fellowship Program. . - ISSN 1474-905X
РУБ Biochemistry & Molecular Biology + Biophysics + Chemistry, Physical
Рубрики:
CA2+-REGULATED PHOTOPROTEINS
   CA2+-BINDING PHOTOPROTEIN

   SEQUENCE-ANALYSIS

   CRYSTAL-STRUCTURE

   VIOLET BIOLUMINESCENCE

   ANGSTROM RESOLUTION

   MNEMIOPSIS-LEIDYI

   LIGHT-EMISSION

   W92F OBELIN

   CLONING

Аннотация: Ca2+-regulated photoproteins are responsible for the bioluminescence of a variety of marine organisms, mostly coelenterates. The photoproteins consist of a single polypeptide chain to which an imidazopyrazinone derivative (2-hydroperoxycoelenterazine) is tightly bound. According to photoprotein spatial structures the side chains of His175, Trp179, and Tyr190 in obelin and His169, Trp173, Tyr184 in aequorin are at distances that allow hydrogen bonding with the peroxide and carbonyl groups of the 2-hydroperoxycoelenterazine ligand. We replaced these amino acids in both photoproteins by residues with different hydrogen bond donor-acceptor capacity. All mutants exhibited luciferase-like bioluminescence activity, hardly present in the wild-type photoproteins, and showed low or no photoprotein activity, except for aeqH169Q (24% of wild-type activity), obeW179Y (23%), obeW179F (67%), obeY190F (14%), and aeqY184F (22%). The results clearly support the supposition made from photoprotein spatial structures that the hydrogen bond network formed by His-Trp-Tyr triad participates in stabilizing the 2-hydroperoxy adduct of coelenterazine. These residues are also essential for the positioning of the 2-hydroperoxycoelenterazine intermediate, light emitting reaction, and for the formation of active photoprotein. In addition, we demonstrate that although the positions of His-Trp-Tyr residues in aequorin and obelin spatial structures are almost identical the substitution effects might be noticeably different.

Держатели документа:
[Eremeeva, Elena V.
Markova, Svetlana V.
Frank, Ludmila A.
Vysotski, Eugene S.] Russian Acad Sci, Siberian Branch, Inst Biophys, Photobiol Lab, Krasnoyarsk 660036, Russia
[Eremeeva, Elena V.
Visser, Antonie J. W. G.
van Berkel, Willem J. H.] Wageningen Univ, Biochem Lab, NL-6703 HA Wageningen, Netherlands
[Eremeeva, Elena V.
Markova, Svetlana V.
Frank, Ludmila A.
Vysotski, Eugene S.] Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Lab Bioluminescence Biotechnol, Krasnoyarsk 660041, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Eremeeva, E.V.; Markova, S.V.; Frank, L.A.; Visser, AJWG; van Berkel, WJH; Vysotski, E.S.

Найти похожие
4.


   
    Bioluminescent properties of obelin and aequorin with novel coelenterazine analogues [Text] / R. . Gealageas [et al.] // Anal. Bioanal. Chem. - 2014. - Vol. 406, Is. 11. - P2695-2707, DOI 10.1007/s00216-014-7656-4. - Cited References: 57. - R.G. acknowledges the ICSN for a fellowship. We are grateful for the ANR grant to P.B. and a CNRS Physics, Chemistry and Biology interface grant to R.H.D. and P.B.; N.P.M, L.P.B., and E.S.V. acknowledge the RFBR grant 12-04-00131 and the Program of the Government of Russian Federation "Measures to attract leading scientists to Russian educational institutions" (grant 11.G34.31.0058). P.B. and A.J.B. are indebted to Eric Karplus from Science Wares Inc. for helping with single-photon imaging software. . - ISSN 1618-2642. - ISSN 1618-2650
РУБ Biochemical Research Methods + Chemistry, Analytical
Рубрики:
PHOTOPROTEIN OBELIN
   CRYSTAL-STRUCTURE

   CA2+-REGULATED PHOTOPROTEINS

   CA2+-ACTIVATED PHOTOPROTEIN

   SEMISYNTHETIC AEQUORINS

   ANGSTROM RESOLUTION

   RECOMBINANT OBELIN

   BINDING PROTEIN

   CALCIUM-BINDING

   CA2+ DYNAMICS

Кл.слова (ненормированные):
Bioluminescence -- Luciferase -- Photoprotein -- Coelenterazine
Аннотация: The main analytical use of Ca2+-regulated photoproteins from luminous coelenterates is for real-time non-invasive visualization of intracellular calcium concentration ([Ca2+](i)) dynamics in cells and whole organisms. A limitation of this approach for in vivo deep tissue imaging is the fact that blue light emitted by the photoprotein is highly absorbed by tissue. Seven novel coelenterazine analogues were synthesized and their effects on the bioluminescent properties of recombinant obelin from Obelia longissima and aequorin from Aequorea victoria were evaluated. Only analogues having electron-donating groups (m-OCH3 and m-OH) on the C6 phenol moiety or an extended resonance system at the C8 position (1-naphthyl and alpha-styryl analogues) showed a significant red shift of light emission. Of these, only the alpha-styryl analogue displayed a sufficiently high light intensity to allow eventual tissue penetration. The possible suitability of this compound for in vivo assays was corroborated by studies with aequorin which allowed the monitoring of [Ca2+](i) dynamics in cultured CHO cells and in hippocampal brain slices. Thus, the alpha-styryl coelenterazine analogue might be potentially useful for non-invasive, in vivo bioluminescence imaging in deep tissues of small animals.

WOS
Держатели документа:
[Gealageas, Ronan
Dodd, Robert H.] Ctr Natl Rech Sci, Inst Chim Subst Nat, UPR 2301, F-91198 Gif Sur Yvette, France
[Malikova, Natalia P.
Burakova, Ludmila P.
Vysotski, Eugene S.] Russian Acad Sci, Inst Biophys, Siberian Branch, Photobiol Lab, Krasnoyarsk 660036, Russia
[Malikova, Natalia P.
Burakova, Ludmila P.
Vysotski, Eugene S.] Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Lab Bioluminescent Biotechnol, Krasnoyarsk 660041, Russia
[Picaud, Sandrine
Borgdorff, Aren J.
Brulet, Philippe] Ctr Natl Rech Sci, Inst Neurosci Alfred Fessard, UPR 3294, F-91198 Gif Sur Yvette, France
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gealageas, R...; Malikova, N.P.; Picaud, S...; Borgdorff, A.J.; Burakova, L.P.; Brulet, P...; Vysotski, E.S.; Dodd, R.H.; ICSN; CNRS Physics, Chemistry and Biology interface grant; RFBR [12-04-00131]; Government of Russian Federation [11.G34.31.0058]; ANR

Найти похожие
5.


   
    Ca2+-regulated photoproteins: structure, bioluminescent reaction mechanism, engineering, and application [Text] / E. S. Vysotski [et al.] // Luminescence. - 2010. - Vol. 25, Is. 2. - P212-212. - Cited References: 6 . - ISSN 1522-7235
РУБ Biochemistry & Molecular Biology
Рубрики:
CRYSTAL-STRUCTURE
   OBELIN


Держатели документа:
[Vysotski, E. S.
Markova, S., V
Frank, L. A.
Malikova, N. P.
Stepanyuk, G. A.
Burakova, L. P.
Eremeeva, E., V] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia
[Golz, S.] Bayer Schering Pharma AG, BSP GDD GTR TD GT, Wuppertal, Germany
[Lee, J.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Vysotski, E.S.; Markova, S.V.; Frank, L.A.; Malikova, N.P.; Stepanyuk, G.A.; Burakova, L.P.; Eremeeva, E.V.; Golz, S...; Lee, J...

Найти похожие
6.


   
    Calcium-regulated photoproteins of marine coelenterates [Text] / E. S. Vysotski, S. V. Markova, L. A. Frank // Mol. Biol. - 2006. - Vol. 40, Is. 3. - P355-367, DOI 10.1134/S0026893306030022. - Cited References: 99 . - ISSN 0026-8933
РУБ Biochemistry & Molecular Biology
Рубрики:
BIOLUMINOMETRIC HYBRIDIZATION ASSAYS
   HYDROID OBELIA-GENICULATA

   GREEN-FLUORESCENT PROTEIN

   POLYMERASE-CHAIN-REACTION

   BIOLUMINESCENT IMMUNOASSAY

   RECOMBINANT AEQUORIN

   CRYSTAL-STRUCTURE

   BIOTINYLATED AEQUORIN

   ANGSTROM RESOLUTION

   CA2+-REGULATED PHOTOPROTEINS

Кл.слова (ненормированные):
bioluminescence -- obelin -- aequorin -- intracellular calcium -- molecular diagnosis
Аннотация: Calcium-regulated photoproteins are bioluminescent proteins that are responsible for the luminescence of marine coelenterates. A photoprotein molecule is a stable enzyme-substrate complex consisting of a single polypeptide chain and an oxygen-preactivated substrate, 2-hydroperoxcoelenterazine, which is tightly but noncovalently bound with the protein. Bioluminescence is triggered by Ca2+ and results from decarboxylation of the substrate bound with the protein. This review considers the current information about the structure of photoproteins, the mechanism of the bioluminescent reaction, the function of particular amino acid residues of the active center in catalysis and the formation of the emitter, and the use of photoproteins in bioluminescent microanalysis.

Держатели документа:
Russian Acad Sci, Siberian Div, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Vysotski, E.S.; Markova, S.V.; Frank, L.A.

Найти похожие
7.


   
    Coelenterazine-binding protein of Renilla muelleri: cDNA cloning, overexpression, and characterization as a substrate of luciferase [Text] / M. S. Titushin [et al.] // Photochem. Photobiol. Sci. - 2008. - Vol. 7, Is. 2. - P189-196, DOI 10.1039/b713109g. - Cited References: 41 . - ISSN 1474-905X
РУБ Biochemistry & Molecular Biology + Biophysics + Chemistry, Physical
Рубрики:
CRYSTAL-STRUCTURE
   LIGHT-EMISSION

   CA2+-REGULATED PHOTOPROTEINS

   BIOLUMINESCENT REPORTER

   RENIFORMIS LUCIFERASE

   ANGSTROM RESOLUTION

   RECOMBINANT OBELIN

   ENERGY-TRANSFER

   EXCITED-STATE

   CALCIUM

Аннотация: The Renilla bioluminescent system in vivo is comprised of three proteins-the luciferase, green-fluorescent protein, and coelenterazine-binding protein (CBP), previously called luciferin-binding protein (LBP). This work reports the cloning of the full-size cDNA encoding CBP from soft coral Renilla muelleri, its overexpression and properties of the recombinant protein. The apo-CBP was quantitatively converted to CBP by simple incubation with coelenterazine. The physicochemical properties of this recombinant CBP are determined to be practically the same as those reported for the CBP (LBP) of R. reniformis. CBP is a member of the four-EF-hand Ca2+-binding superfamily of proteins with only three of the EF-hand loops having the Ca2+-binding consensus sequences. There is weak sequence homology with the Ca2+-regulated photoproteins but only as a result of the necessary Ca2+-binding loop structure. In combination with Renilla luciferase, addition of only one Ca2+ is sufficient to release the coelenterazine as a substrate for the luciferase for bioluminescence. This combination of the two proteins generates bioluminescence with higher reaction efficiency than using free coelenterazine alone as the substrate for luciferase. This increased quantum yield, a difference of bioluminescence spectra, and markedly different kinetics, implicate that a CBP-luciferase complex might be involved.

Держатели документа:
[Titushin, Maxim S.
Markova, Svetlana V.
Frank, Ludmila A.
Malikova, Natalia P.
Stepanyuk, Galina A.
Vysotski, Eugene S.] Russian Acad Sci, Siberian Branch, Inst Biophys, Photobiol Lab, Krasnoyarsk 660036, Russia
[Lee, John
Vysotski, Eugene S.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Titushin, M.S.; Markova, S.V.; Frank, L.A.; Malikova, N.P.; Stepanyuk, G.A.; Lee, J...; Vysotski, E.S.

Найти похожие
8.


   
    Expression, purification and characterization of the secreted luciferase of the copepod Metridia longa from Sf9 insect cells [Text] / G. A. Stepanyuk [et al.] // Protein Expr. Purif. - 2008. - Vol. 61, Is. 2. - P142-148, DOI 10.1016/j.pep.2008.05.013. - Cited References: 34. - This work was supported by the National Institutes of Health (Grant 1P50 GM62407), University of Georgia Research Foundation and Georgia Research Alliance, the Russian Foundation for Basic Research and Taiwan National Science Council (Grant 06-0489502) and the program for "Molecular and Cellular Biology" of Russian Academy of Sciences. . - ISSN 1046-5928
РУБ Biochemical Research Methods + Biochemistry & Molecular Biology + Biotechnology & Applied Microbiology
Рубрики:
VARGULA-HILGENDORFII LUCIFERASE
   CRYSTAL-STRUCTURE

   RENILLA-RENIFORMIS

   GAUSSIA LUCIFERASE

   BIOLUMINESCENT REPORTER

   OBELIN BIOLUMINESCENCE

   ANGSTROM RESOLUTION

   MAMMALIAN-CELLS

   GENE-EXPRESSION

   IN-VIVO

Аннотация: Metridia luciferase is a secreted luciferase from a marine copepod and uses coelenterazine as a substrate to produce a blue bioluminescence This luciferase has been successfully applied as a bioluminescent reporter in mammalian cells. The main advantage of secreted luciferase as a reporter is the capability of measuring intracellular events without destroying the cells or tissues and this property is well suited for development of high throughput screening technologies. However because Metridia luciferase is a Cys-rich protein, Escherichia coli expression systems produce an incorrectly folded protein, hindering its biochemical characterization and application for development of in vitro bioluminescent assays. Here we report the successful expression of Metridia luciferase with its signal peptide for secretion, in insect (Sf9) cells using the baculovirus expression system. Functionally active luciferase secreted by insect cells into the culture media has been efficiently purified with a yield of high purity protein of 2-3mg/L This Metridia luciferase expressed in the insect cell system is a monomeric protein showing 3.5-fold greater bioluminescence activity than luciferase expressed and purified from E. coli. The near coincidence of the experimental mass of Metridia luciferase purified from insect cells with that calculated from amino acid sequence. indicates that luciferase does not undergo post-translational modifications such as phosphorylation or glycosylation and also, the cleavage site of the signal peptide for secretion is at VQA-KS, as predicted from sequence analysis. (c) 2008 Elsevier Inc. All rights reserved.

Держатели документа:
[Stepanyuk, Galina A.
Markova, Svetlana V.
Vysotski, Eugene S.] Russian Acad Sci, Photobiol Lab, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
[Stepanyuk, Galina A.
Xu, Hao
Wu, Chia-Kuei
Lee, John
Vysotski, Eugene S.
Wang, Bi-Cheng] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Stepanyuk, G.A.; Xu, H...; Wu, C.K.; Markova, S.V.; Lee, J...; Vysotski, E.S.; Wang, B.C.

Найти похожие
9.


   
    Functional divergence between evolutionary-related LuxG and Fre oxidoreductases of luminous bacteria / A. A. Deeva [et al.] // Proteins. - 2019. - Vol. 87, Is. 9. - P723-729, DOI 10.1002/prot.25696. - Cited References:39. - The Russian Foundation for Basic Research and Krasnoyarsk Region Science and Technology Support Fund, Grant/Award Number: 18-44-243009; Ministry of Education and Science of the Russian Federation, Grant/Award Numbers: 0356-2019-0019, 6.7734.2017 . - ISSN 0887-3585. - ISSN 1097-0134
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
ESCHERICHIA-COLI
   FLAVIN OXIDOREDUCTASE

   CRYSTAL-STRUCTURE

Кл.слова (ненормированные):
bacterial bioluminescence -- Fre -- functional divergence -- gene duplication -- LuxG -- NAD(P)H -- flavin-oxidoreductase
Аннотация: In luminous bacteria NAD(P)H:flavin-oxidoreductases LuxG and Fre, there are homologous enzymes that could provide a luciferase with reduced flavin. Although Fre functions as a housekeeping enzyme, LuxG appears to be a source of reduced flavin for bioluminescence as it is transcribed together with luciferase. This study is aimed at providing the basic conception of Fre and LuxG evolution and revealing the peculiarities of the active site structure resulted from a functional variation within the oxidoreductase family. A phylogenetic analysis has demonstrated that Fre and LuxG oxidoreductases have evolved separately after the gene duplication event, and consequently, they have acquired changes in the conservation of functionally related sites. Namely, different evolutionary rates have been observed at the site responsible for specificity to flavin substrate (Arg 46). Also, Tyr 72 forming a part of a mobile loop involved in FAD binding has been found to be conserved among Fre in contrast to LuxG oxidoreductases. The conservation of different amino acid types in NAD(P)H binding site has been defined for Fre (arginine) and LuxG (proline) oxidoreductases.

WOS,
Смотреть статью
Держатели документа:
Siberian Fed Univ, Lab Bioluminescent Biotechnol, Svobodny Prosp 79, Krasnoyarsk 660041, Russia.
RAS, Inst Cell Biophys, Mech Cell Genome Functioning Lab, Pushchino, Moscow Region, Russia.
State Inst Informat Technol & Telecommun SIIT & T, Dept Appl Res Informatizat, Moscow, Russia.
RAS, Fed Res Ctr, Krasnoyarsk Sci Ctr SB, Lab Photobiol,Inst Biophys SB, Krasnoyarsk, Russia.

Доп.точки доступа:
Deeva, Anna A.; Zykova, Evgenia A.; Nemtseva, Elena V.; Kratasyuk, Valentina A.; Nemtseva, Elena; Russian Foundation for Basic Research [18-44-243009]; Ministry of Education and Science of the Russian Federation [0356-2019-0019, 6.7734.2017]; Krasnoyarsk Region Science and Technology [18-44-243009]

Найти похожие
10.


   
    Green-fluorescent protein from the bioluminescent jellyfish Clytia gregaria: cDNA cloning, expression, and characterization of novel recombinant protein [Text] / S. V. Markova [et al.] // Photochem. Photobiol. Sci. - 2010. - Vol. 9, Is. 6. - P757-765, DOI 10.1039/c0pp00023j. - Cited References: 42. - We thank Dr John Lee (University of Georgia) for constructive suggestions. This work was supported by the Russian Foundation for Basic Research (Grants: 08-04-92209 and 09-04-12022), "Molecular and Cell Biology" program of RAS, and Bayer AG (Germany). . - ISSN 1474-905X
РУБ Biochemistry & Molecular Biology + Biophysics + Chemistry, Physical
Рубрики:
ENERGY-TRANSFER
   CA2+-REGULATED PHOTOPROTEINS

   RENILLA BIOLUMINESCENCE

   ANGSTROM RESOLUTION

   SEQUENCE-ANALYSIS

   CRYSTAL-STRUCTURE

   EXCITED-STATE

   AEQUORIN

   PURIFICATION

   OBELIN

Аннотация: The bioluminescent systems of many marine organisms are comprised of two proteins - the Ca2+-regulated photoprotein and green-fluorescent protein (GFP). This work reports the cloning of the full-size cDNA encoding GFP (cgreGFP) from jellyfish Clytia gregaria, its expression and properties of the recombinant protein. The overall degree of identity between the amino acid sequence of the novel cgreGFP and the sequence of GFP (avGFP) from Aequorea victoria is 42% (similarity - 64%) despite these GFPs originating from jellyfish that both belong to the same class, Hydrozoa. However although the degree of identity is low, three residues, Ser-Tyr-Gly, which form the chromophore are identical in both GFPs. The cgreGFP displayed two absorption peaks at 278 and 485 nm, and the fluorescence maximum at 500 nm. The fluorescence quantum yield was determined to be 0.86, the brightness to be 54 mM(-1) cm(-1). For the first time we have also demonstrated an efficient radiationless energy transfer in vitro between clytin and cgreGFP in solution at micromolar concentrations. The cgreGFP may be a useful intracellular fluorescent marker, as it was able to be expressed in mammalian cells.

Держатели документа:
[Markova, Svetlana V.
Burakova, Ludmila P.
Frank, Ludmila A.
Korostileva, Kseniya A.
Vysotski, Eugene S.] Russian Acad Sci, Inst Biophys, Siberian Branch, Photobiol Lab, Krasnoyarsk 660036, Russia
[Markova, Svetlana V.
Frank, Ludmila A.
Korostileva, Kseniya A.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Golz, Stefan] Bayer Schering Pharma AG, BSP GDD GTR TD GT, D-42096 Wuppertal, Germany
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Markova, S.V.; Burakova, L.P.; Frank, L.A.; Golz, S...; Korostileva, K.A.; Vysotski, E.S.

Найти похожие
11.


   
    Interchange of aequorin and obelin bioluminescence color is determined by substitution of one active site residue of each photoprotein [Text] / G. A. Stepanyuk [et al.] // FEBS Lett. - 2005. - Vol. 579, Is. 5. - P1008-1014, DOI 10.1016/j.febslet.2005.01.004. - Cited References: 49 . - ISSN 0014-5793
РУБ Biochemistry & Molecular Biology + Biophysics + Cell Biology
Рубрики:
FIREFLY LUCIFERASE
   SEQUENCE-ANALYSIS

   CA2+-REGULATED PHOTOPROTEINS

   CA2+-DISCHARGED PHOTOPROTEIN

   VIOLET BIOLUMINESCENCE

   INTRACELLULAR CALCIUM

   ENDOPLASMIC-RETICULUM

   ANGSTROM RESOLUTION

   CRYSTAL-STRUCTURE

   APOAEQUORIN CDNA

Кл.слова (ненормированные):
coelenterazine -- calcium -- reporter protein -- mammalian expression -- fluorescence spectrum
Аннотация: The bioluminescence spectra from the Ca2+-regulated photoproteins aequorin (lambda(max) = 469 nm) and obelin (lambda(max) = 482 nm) differ because aequorin has an H-bond from its Tyr82 to the bound coelenteramide, not present in obelin at the corresponding Phe88. Substitutions of this Phe88 by Tyr, Trp, or His shifted the obelin bioluminescence to shorter wavelength with F88Y having lambda(max) = 453 nm. Removal of the H-bond by the substitution of Y82F in aequorin shifted its bioluminescence to lambda(max) = 501 nm. All mutants were stable with good activity and were expressible in mammalian cells, thereby demonstrating potential for monitoring multiple events in cells using multi-color detection. (C) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Photobiol Lab, Krasnoyarsk 660036, Russia
Bayer AG, Pharma Res Mol Screening Technol, D-42096 Wuppertal, Germany
Univ Georgia, Dept Mol Biol & Biochem, Athens, GA 30602 USA
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Stepanyuk, G.A.; Golz, S...; Markova, S.V.; Frank, L.A.; Lee, J...; Vysotski, E.S.

Найти похожие
12.


   
    Interchange of aequorin and obelin bioluminescence color is determined by substitution of one active site residue of each photoprotein [Text] / G. A. Stepanyuk [et al.] // FEBS Lett. - 2005. - Vol. 579, Is. 5. - P1008-1014, DOI 10.1016/j.febslet.2005.01.004. - Cited References: 49 . - ISSN 0014-5793
РУБ Biochemistry & Molecular Biology + Biophysics + Cell Biology
Рубрики:
FIREFLY LUCIFERASE
   SEQUENCE-ANALYSIS

   CA2+-REGULATED PHOTOPROTEINS

   CA2+-DISCHARGED PHOTOPROTEIN

   VIOLET BIOLUMINESCENCE

   INTRACELLULAR CALCIUM

   ENDOPLASMIC-RETICULUM

   ANGSTROM RESOLUTION

   CRYSTAL-STRUCTURE

   APOAEQUORIN CDNA

Кл.слова (ненормированные):
coelenterazine -- calcium -- reporter protein -- mammalian expression -- fluorescence spectrum
Аннотация: The bioluminescence spectra from the Ca2+-regulated photoproteins aequorin (lambda(max) = 469 nm) and obelin (lambda(max) = 482 nm) differ because aequorin has an H-bond from its Tyr82 to the bound coelenteramide, not present in obelin at the corresponding Phe88. Substitutions of this Phe88 by Tyr, Trp, or His shifted the obelin bioluminescence to shorter wavelength with F88Y having lambda(max) = 453 nm. Removal of the H-bond by the substitution of Y82F in aequorin shifted its bioluminescence to lambda(max) = 501 nm. All mutants were stable with good activity and were expressible in mammalian cells, thereby demonstrating potential for monitoring multiple events in cells using multi-color detection. (C) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Photobiol Lab, Krasnoyarsk 660036, Russia
Bayer AG, Pharma Res Mol Screening Technol, D-42096 Wuppertal, Germany
Univ Georgia, Dept Mol Biol & Biochem, Athens, GA 30602 USA
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Stepanyuk, G.A.; Golz, S...; Markova, S.V.; Frank, L.A.; Lee, J...; Vysotski, E.S.

Найти похожие
13.


   
    Ligand binding and conformational states of the photoprotein obelin / E. V. Eremeeva [et al.] // FEBS Lett. - 2012. - Vol. 586, Is. 23. - P4173-4179, DOI 10.1016/j.febslet.2012.10.015. - Cited References: 24. - The work was supported by RFBR grant 12-04-00131, by the Program of the Government of Russian Federation "Measures to Attract Leading Scientists to Russian Educational Institutions" (grant 11.G34.31.058), by the Program "Molecular and Cellular Biology" of RAS. The Wageningen University Sandwich PhD-Fellowship Program supported E.V.E. . - ISSN 0014-5793
РУБ Biochemistry & Molecular Biology + Biophysics + Cell Biology
Рубрики:
RECOMBINANT OBELIN
   CRYSTAL-STRUCTURE

   LIGHT-EMISSION

   APO-AEQUORIN

   BIOLUMINESCENCE

   COELENTERAZINE

   LUMINESCENCE

   STABILITY

   ANGSTROM

   PROTEINS

Кл.слова (ненормированные):
Bioluminescence -- Coelenterazine -- Photoprotein -- Thermostability
Аннотация: Many proteins require a non-covalently bound ligand to be functional. How ligand binding affects protein conformation is often unknown. Here we address thermal unfolding of the free and ligand-bound forms of photoprotein obelin. Fluorescence and far-UV circular dichroism ( CD) data show that the various ligand-dependent conformational states of obelin differ significantly in stability against thermal unfolding. Binding of coelenterazine and calcium considerably stabilizes obelin. In solution, all obelin structures are similar, except for apo-obelin without calcium. This latter protein is an ensemble of conformational states, the populations of which alter upon increasing temperature. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.

Держатели документа:
[Eremeeva, Elena V.
Westphal, Adrie H.
van Mierlo, Carlo P. M.
van Berkel, Willem J. H.] Wageningen Univ, Biochem Lab, NL-6703 HA Wageningen, Netherlands
[Eremeeva, Elena V.
Vysotski, Eugene S.] Russian Acad Sci, Photobiol Lab, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
[Eremeeva, Elena V.
Vysotski, Eugene S.] Siberian Fed Univ, Lab Bioluminescence Biotechnol, Inst Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Eremeeva, E.V.; Vysotski, E.S.; Westphal, A.H.; van Mierlo, CPM; van Berkel, WJH

Найти похожие
14.


   
    NMR-derived Topology of a GFP-photoprotein Energy Transfer Complex [Text] / M. S. Titushin [et al.] // J. Biol. Chem. - 2010. - Vol. 285, Is. 52. - P40891-40900, DOI 10.1074/jbc.M110.133843. - Cited References: 54. - This work was supported by the National Natural Science Foundation of China, Ministry of Science and Technology of China, CAS Research Grant, CAS Fellowship for Young International Scientists Grant, Russian Foundation for Basic Research (08-09-92209 RFBR-China joint grant), SB RAS Grant 2, "Molecular and Cell Biology" program of RAS, Bayer AG (Germany), and by the University of Georgia Research Foundation and the Georgia Research Alliance. . - ISSN 0021-9258
РУБ Biochemistry & Molecular Biology
Рубрики:
GREEN-FLUORESCENT PROTEIN
   STRUCTURAL DETERMINANTS

   RENILLA BIOLUMINESCENCE

   ANGSTROM RESOLUTION

   CRYSTAL-STRUCTURE

   ELECTRON-DENSITY

   SOFTWARE

   PROGRAM

   BINDING

   SYSTEM

Аннотация: Forster resonance energy transfer within a protein-protein complex has previously been invoked to explain emission spectral modulation observed in several bioluminescence systems. Here we present a spatial structure of a complex of the Ca2+ regulated photoprotein clytin with its green-fluorescent protein (cgGFP) from the jellyfish Clytia gregaria, and show that it accounts for the bioluminescence properties of this system in vitro. We adopted an indirect approach of combining x-ray crystallography determined structures of the separate proteins, NMR spectroscopy, computational docking, and mutagenesis. Heteronuclear NMR spectroscopy using variously N-15, C-13, H-2-enriched proteins enabled assignment of backbone resonances of more than 94% of the residues of both proteins. In a mixture of the two proteins at millimolar concentrations, complexation was inferred from perturbations of certain H-1-N-15 HSQC-resonances, which could be mapped to those residues involved at the interaction site. A docking computation using HADDOCK was employed constrained by the sites of interaction, to deduce an overall spatial structure of the complex. Contacts within the clytin-cgGFP complex and electrostatic complementarity of interaction surfaces argued for a weak protein-protein complex. A weak affinity was also observed by isothermal titration calorimetry (K-D = 0.9 mM). Mutation of clytin residues located at the interaction site reduced the degree of protein-protein association concomitant with a loss of effectiveness of cgGFP in color-shifting the bioluminescence. It is suggested that this clytin-cgGFP structure corresponds to the transient complex previously postulated to account for the energy transfer effect of GFP in the bioluminescence of aequorin or Renilla luciferase.

Держатели документа:
[Wang, Jinfeng] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China
[Titushin, Maxim S.
Stepanyuk, Galina A.
Markova, Svetlana V.
Vysotski, Eugene S.] Russian Acad Sci, Inst Biophys, Siberian Branch, Lab Photobiol, Krasnoyarsk 660036, Russia
[Golz, Stefan] Bayer Schering Pharma AG, BSP GDD GTR TD GT, D-42096 Wuppertal, Germany
[Stepanyuk, Galina A.
Wang, Bi-Cheng
Lee, John] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Titushin, M.S.; Feng, Y.G.; Stepanyuk, G.A.; Li, Y...; Markova, S.V.; Golz, S...; Wang, B.C.; Lee, J...; Wang, J.F.; Vysotski, E.S.; Liu, Z.J.

Найти похожие
15.


   
    Oxygen Activation of Apo-obelin-Coelenterazine Complex / E. V. Eremeeva [et al.] // ChemBioChem. - 2013. - Vol. 14, Is. 6. - P739-745, DOI 10.1002/cbic.201300002. - Cited References: 46. - The work was supported by grants from the RFBR 12-04-91153, and NSFC 31270795 and 31021062, by the Russian Federation Government Program "Measures to Attract Leading Scientists to Russian Educational Institutions" (grant 11.G34.31.0058), "Molecular and Cellular Biology" of RAS, President of the Russian Federation "Leading Science School" (grant 1044.2012.2). E.V.E. was supported by a Wageningen University Sandwich PhD Fellowship Program. . - ISSN 1439-4227
РУБ Biochemistry & Molecular Biology + Chemistry, Medicinal
Рубрики:
GREEN-FLUORESCENT PROTEIN
   JELLYFISH CLYTIA-GREGARIA

   CRYSTAL-STRUCTURE

   CA2+-DISCHARGED PHOTOPROTEIN

   ANGSTROM RESOLUTION

   RECOMBINANT OBELIN

   MOLECULAR-OXYGEN

   AEQUORIN

   CALCIUM

   BIOLUMINESCENCE

Кл.слова (ненормированные):
aequorin -- coelenterazine -- luminescence -- photoprotein -- protein folding
Аннотация: Ca2+-regulated photoproteins use a noncovalently bound 2-hydroperoxycoelenterazine ligand to emit light in response to Ca2+ binding. To better understand the mechanism of formation of active photoprotein from apoprotein, coelenterazine and molecular oxygen, we investigated the spectral properties of the anaerobic apo-obelincoelenterazine complex and the kinetics of its conversion into active photoprotein after exposure to air. Our studies suggest that coelenterazine bound within the anaerobic complex might be a mixture of N7-protonated and C2() anionic forms, and that oxygen shifts the equilibrium in favor of the C2() anion as a result of peroxy anion formation. Proton removal from N7 and further protonation of peroxy anion and the resulting formation of 2-hydroperoxycoelenterazine in obelin might occur with the assistance of His175. It is proposed that this conserved His residue might play a key role both in formation of active photoprotein and in Ca2+-triggering of the bioluminescence reaction.

Держатели документа:
[Eremeeva, Elena V.
Natashin, Pavel V.
Liu, Zhi-Jie] Chinese Acad Sci, Natl Lab Biomacromol, Inst Biophys, Beijing 100101, Peoples R China
[Eremeeva, Elena V.
Natashin, Pavel V.
Vysotski, Eugene S.] Russian Acad Sci, Photobiol Lab, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
[Eremeeva, Elena V.
Natashin, Pavel V.
Vysotski, Eugene S.] Siberian Fed Univ, Lab Bioluminescence Biotechnol, Inst Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia
[Eremeeva, Elena V.
Natashin, Pavel V.
Vysotski, Eugene S.] Siberian Fed Univ, Chair Biophys, Inst Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia
[Eremeeva, Elena V.
van Berkel, Willem J. H.] Wageningen Univ, Biochem Lab, NL-6703 HA Wageningen, Netherlands
[Song, Lei
Zhou, Yuguang] Chinese Acad Sci, China Gen Microbiol Culture Collect Ctr, Inst Microbiol, Beijing 100101, Peoples R China
[Liu, Zhi-Jie] Kunming Med Univ, Inst Mol & Clin Med, Kunming 650500, Peoples R China
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Eremeeva, E.V.; Natashin, P.V.; Song, L...; Zhou, Y.G.; van Berkel, WJH; Liu, Z.J.; Vysotski, E.S.

Найти похожие
16.


   
    Picosecond Fluorescence Relaxation Spectroscopy of the Calcium-Discharged Photoproteins Aequorin and Obelin [Text] / B. . van Oort [et al.] // Biochemistry. - 2009. - Vol. 48, Is. 44. - P10486-10491, DOI 10.1021/bi901436m. - Cited References: 33. - This work was supported by NATO Collaborative Linkage Grant No 979229,Grants of SB RAS and RFBR 09-04-12-022, MCB program of RAS BvO was supported by 'Stichung voor Fundamenteel Onderzock der Materic (FOM)', which is financially supported by the NWO. and by I Rubicon grant of NWO E V E was supported by Wageningen University Sandwich Ph D-Fellowship program S P L was supported by Wageningen University Sandwich Ph D.-Fellowship program, European Community Marie Curie Research Training Network MRTN-CT-2005-019481 (From FLIM to FLIN), and Computational Science Gram 635 000 014 from the netherlands Organization for Scientific Research . - ISSN 0006-2960
РУБ Biochemistry & Molecular Biology
Рубрики:
CA2+-REGULATED PHOTOPROTEINS
   VIOLET BIOLUMINESCENCE

   ANGSTROM RESOLUTION

   RECOMBINANT OBELIN

   CRYSTAL-STRUCTURE

   W92F OBELIN

   COELENTERAZINE

   MECHANISM

   EXPRESSION

   PROTEINS

Аннотация: Addition of calcium tons to the Ca(2+)-regulated photoproteins, such its aequorin and obelin, produces it blue bioluminescence originating from fluorescence transition of the protein-bound product coelenteramide. The kinetics of several transient fluorescent species of the bound coelenteramide is resolved after picosecond-laser excitation and streak camera detection. The Initially formed spectral distributions at picosecond-times are broad, evidently comprised of two contributions, One at higher energy (similar to 25 000 cm(-1)) assigned as from the Ca(2+)-discharged photoprotein-bound coelenteramide in its neutral state. This component decays much more rapidly (t(1/2) similar to 2 ps) in the case of the Ca(2+)-discharged obelin than aequorin (t(1/2) similar to 30 ps). The Second component at lower energy shows several intermediates in the 150-500 ps miles. with it Final species having spectral maxima 19 400 cm(-1), bound to Ca(2+)-discharged obelin. and 2 1300 cm(-1), bound to Ca(2+)-discharged aequorin, and both have it fluorescence decay lifetime of 4 ns It is proposed that the rapid kinetics of these fluorescence transients oil the picosecond time scale, correspond to times For relaxation of the protein Structural environment of the binding cavity

Держатели документа:
[Lee, John] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
[van Oort, Bart
Koehorst, Rob B. M.
Laptenok, Sergey P.
van Amerongen, Herbert] Wageningen Univ, Biophys Lab, NL-6703 HA Wageningen, Netherlands
[Eremeeva, Elena V.
Laptenok, Sergey P.
van Berkel, Willem J. H.
Visser, Antonie J. W. G.] Wageningen Univ, Biochem Lab, NL-6703 HA Wageningen, Netherlands
[Koehorst, Rob B. M.
van Amerongen, Herbert
Visser, Antonie J. W. G.] Wageningen Univ, Microspect Ctr, NL-6703 HA Wageningen, Netherlands
[Eremeeva, Elena V.
Malikova, Natalia P.
Markova, Svetlana V.
Vysotski, Eugene S.] Russian Acad Sci, Inst Biophys, Photobiol Lab, Siberian Branch, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
van Oort, B...; Eremeeva, E.V.; Koehorst, RBM; Laptenok, S.P.; van Amerongen, H...; van Berkel, WJH; Malikova, N.P.; Markova, S.V.; Vysotski, E.S.; Visser, AJWG; Lee, J...; NATO Collaborative Linkage [979229]; RFBR [09-04-12-022]; 'Stichung voor Fundamenteel Onderzock der Materic (FOM)'; NWO; Wageningen University; European Community Marie Curie Research Training Network [MRTN-CT-2005-019481]; netherlands Organization [635 000 014]

Найти похожие
17.


   
    Protein-protein complexation in bioluminescence [Text] / M. S. Titushin [et al.] // Protein Cell. - 2011. - Vol. 2, Is. 12. - P957-972, DOI 10.1007/s13238-011-1118-y. - Cited References: 114. - The work was funded by "Fellowship for Young International Scientists" of Chinese Academy of Sciences. This work was supported by the National Natural Science Foundation of China (Grant Nos: 30870483, 31070660, 31021062 and 81072449), Ministry of Science and Technology of China (Nos. 2009DFB30310, 2009CB918803 and 2011CB911103), CAS Research Grants (Nos. YZ200839 and KSCX2-EW-J-3). . - ISSN 1674-800X
РУБ Cell Biology
Рубрики:
GREEN-FLUORESCENT PROTEIN
   LUCIFERIN-BINDING-PROTEIN

   RENILLA-RENIFORMIS LUCIFERASE

   VIBRIO-FISCHERI Y1

   JELLYFISH CLYTIA-GREGARIA

   ALPHA/BETA-HYDROLASE FOLD

   AMINO-ACID-SEQUENCE

   BACTERIAL LUCIFERASE

   ENERGY-TRANSFER

   CRYSTAL-STRUCTURE

Кл.слова (ненормированные):
green-fluorescent protein (GFP) -- photoprotein -- luciferase -- lumazine protein -- Forster resonance energy transfer (FRET) -- docking
Аннотация: In this review we summarize the progress made towards understanding the role of protein-protein interactions in the function of various bioluminescence systems of marine organisms, including bacteria, jellyfish and soft corals, with particular focus on methodology used to detect and characterize these interactions. In some bioluminescence systems, protein-protein interactions involve an "accessory protein" whereby a stored substrate is efficiently delivered to the bioluminescent enzyme luciferase. Other types of complexation mediate energy transfer to an "antenna protein" altering the color and quantum yield of a bioluminescence reaction. Spatial structures of the complexes reveal an important role of electrostatic forces in governing the corresponding weak interactions and define the nature of the interaction surfaces. The most reliable structural model is available for the protein-protein complex of the Ca2+-regulated photoprotein clytin and green-fluorescent protein (GFP) from the jellyfish Clytia gregaria, solved by means of X-ray crystallography, NMR mapping and molecular docking. This provides an example of the potential strategies in studying the transient complexes involved in bioluminescence. It is emphasized that structural studies such as these can provide valuable insight into the detailed mechanism of bioluminescence.

Держатели документа:
[Titushin, Maxim S.
Liu, Zhi-Jie] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China
[Feng, Yingang] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
[Lee, John] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
[Vysotski, Eugene S.] Russian Acad Sci, Siberian Branch, Inst Biophys, Lab Photobiol, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Titushin, M.S.; Feng, Y.G.; Lee, J...; Vysotski, E.S.; Liu, Z.J.

Найти похожие
18.


   
    Role of key residues of obelin in coelenterazine binding and conversion into 2-hydroperoxy adduct [Text] / E. V. Eremeeva [et al.] // J. Photochem. Photobiol. B-Biol. - 2013. - Vol. 127. - P133-139, DOI 10.1016/j.jphotobiol.2013.08.012. - Cited References: 65. - The work was supported by RFBR grant 12-04-00131, by the Programs of the Government of Russian Federation "Measures to Attract Leading Scientists to Russian Educational Institutions" (grant 11.G34.31.0058), "Molecular and Cellular Biology" of RAS, President of Russian Federation "Leading science school" (grant 3951.2012.4). E.V.E. was supported by Wageningen University Sandwich PhD-Fellowship Program. . - ISSN 1011-1344
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
CA2+-REGULATED PHOTOPROTEINS
   SEQUENCE-ANALYSIS

   CRYSTAL-STRUCTURE

   APO-OBELIN

   CA2+-BINDING PHOTOPROTEIN

   VIOLET BIOLUMINESCENCE

   AEQUORIN REGENERATION

   ANGSTROM RESOLUTION

   RECOMBINANT OBELIN

   MNEMIOPSIS-LEIDYI

Кл.слова (ненормированные):
Bioluminescence -- Coelenterazine -- Obelin -- Aequorin -- Photoprotein
Аннотация: Bioluminescence of a variety of marine organisms is caused by monomeric Ca2+-regulated photoproteins, to which a peroxy-substituted coelenterazine, 2-hydroperoxycoelenterazine, is firmly bound. From the spatial structure the side chains of Tyr138, His175, Trp179, and Tyr190 of obelin are situated within the substrate-binding pocket at hydrogen bond distances with different atoms of the 2-hydroperoxycoelenterazine. Here we characterized several obelin mutants with substitutions of these residues regarding their bioluminescence, coelenterazine binding, and kinetics of active obelin formation. We demonstrate that Tyr138, His175, Trp179, and Tyr190 are all important for coelenterazine activation; substitution of any of these residues leads to significant decrease of the apparent reaction rate. The hydrogen bond network formed by Tyr138, Trp179 and Tyr190 participates in the proper positioning of coelenterazine in the active site and subsequent stabilization of the 2-hydroperoxy adduct of coelenterazine. His175 might serve as a proton shuttle during 2-hydroperoxycoelenterazine formation. (C) 2013 Elsevier B.V. All rights reserved.

WOS
Держатели документа:
[Eremeeva, Elena V.
Markova, Svetlana V.
Vysotski, Eugene S.] Russian Acad Sci, Photobiol Lab, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
[Eremeeva, Elena V.
van Berkel, Willem J. H.] Wageningen Univ, Biochem Lab, NL-6703 HA Wageningen, Netherlands
[Eremeeva, Elena V.
Markova, Svetlana V.
Vysotski, Eugene S.] Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Lab Bioluminescence Biotechnol, Krasnoyarsk 660041, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Eremeeva, E.V.; Markova, S.V.; van Berkel, WJH; Vysotski, E.S.; RFBR [12-04-00131]; Programs of the Government of Russian Federation "Measures to Attract Leading Scientists to Russian Educational Institutions" [11.G34.31.0058]; "Molecular and Cellular Biology" of RAS, President of Russian Federation "Leading science school" [3951.2012.4]; Wageningen University Sandwich PhD-Fellowship Program

Найти похожие
19.


   
    Spatial structure of the novel light-sensitive photoprotein berovin from the ctenophore Beroe abyssicola in the Ca2+-loaded apoprotein conformation state [Text] / G. A. Stepanyuk [et al.] // BBA-Proteins Proteomics. - 2013. - Vol. 1834, Is. 10. - P2139-2146, DOI 10.1016/j.bbapap.2013.07.006. - Cited References: 64. - This work was supported by RFBR grants 09-04-00172, 12-04-00131, 12-04-91153, and NSFC 31270795 and 31021062, by the Programs of the Government of Russian Federation "Measures to Attract Leading Scientists to Russian Educational Institutions" (grant 11.G34.31.0058) "Molecular and Cellular Biology" of the RAS. It was also supported in part with funds from the National Institutes of Health (GM62407), The Georgia Research Alliance and the University of Georgia Research Foundation. Data were collected at Southeast Regional Collaborative Access Team (SER-CAT) 22-ID beamline at the Advanced Photon Source, Argonne National Laboratory. Supporting institutions may be found at www.ser-cat.org/members.html. The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. . - ISSN 1570-9639
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
CALCIUM-ACTIVATED PHOTOPROTEINS
   COELENTERAZINE-BINDING PROTEIN

   CRYSTAL-STRUCTURE

   MNEMIOPSIS-SP

   CA2+-REGULATED PHOTOPROTEINS

   OBELIN BIOLUMINESCENCE

   ANGSTROM RESOLUTION

   RECOMBINANT OBELIN

   RENILLA-RENIFORMIS

   APO-OBELIN

Кл.слова (ненормированные):
Coelenterazine -- Calcium -- Bioluminescence -- Luciferase
Аннотация: The bright bioluminescence of ctenophores, found in oceans worldwide, is determined by Ca2+-regulated photoproteins, functionally identical to and sharing many properties of hydromedusan photoproteins. In contrast, however, the ctenophore photoproteins are extremely sensitive to UV and visible light over the range of their absorption spectrum. The spatial structure of a novel light-sensitive photoprotein from the ctenophore Beroe abyssicola in its apoform bound with three calcium ions is determined at 2.0 angstrom. We demonstrate that the apoberovin is a slightly asymmetrical compact globular protein formed by two domains with a cavity in the center, which exactly retains the fold architecture characteristic of hydromedusan photoproteins despite their low amino acid sequence identity. However, the structural alignment of these two photoprotein classes clearly shows that despite the high similarity of shape and geometry of their coelenterazine-binding cavities, their interiors differ drastically. The key residues appearing to be crucial for stabilizing the 2-hydroperoxycoelenterazine and for formation of the emitter in hydromedusan photoproteins, are replaced in berovin by amino acid residues having completely different side chain properties. Evidently, these replacements must be responsible for the distinct properties of ctenophore photoproteins such as sensitivity to light or the fact that the formation of active photoprotein from apophotoprotein, coelenterazine, and oxygen is more effective at alkaline pH. (C) 2013 Elsevier B.V. All rights reserved.

WOS
Держатели документа:
[Stepanyuk, Galina A.
Liu, Zhi-Jie
Lee, John
Rose, John
Wang, Bi-Cheng] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
[Stepanyuk, Galina A.
Burakova, Ludmila P.
Vysotski, Eugene S.] Russian Acad Sci, Inst Biophys, Photobiol Lab, Siberian Branch, Krasnoyarsk 660036, Russia
[Liu, Zhi-Jie] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China
[Liu, Zhi-Jie] Kunming Med Univ, Inst Mol & Clin Med, Kunming 650500, Peoples R China
[Burakova, Ludmila P.
Vysotski, Eugene S.] Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Lab Bioluminescence Biotechnol, Krasnoyarsk 660041, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Stepanyuk, G.A.; Liu, Z.J.; Burakova, L.P.; Lee, J...; Rose, J...; Vysotski, E.S.; Wang, B.C.; RFBR [09-04-00172, 12-04-00131, 12-04-91153]; NSFC [31270795, 31021062]; Government of Russian Federation of the RAS [11.G34.31.0058]; National Institutes of Health [GM62407]; Georgia Research Alliance; University of Georgia Research Foundation; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38]

Найти похожие
20.


   
    Structures of the Ca2+-regulated photoprotein obelin Y138F mutant before and after bioluminescence support the catalytic function of a water molecule in the reaction [Text] / P. V. Natashin [et al.] // Acta Crystallogr. Sect. D-Biol. Crystallogr. - 2014. - Vol. 70. - P720-732, DOI 10.1107/S1399004713032434. - Cited References: 71. - We acknowledge the use of beamline BL17U1 at the Shanghai Synchrotron Radiation Facility, China. This work was supported by RFBR grants 12-04-91153, 12-04-00131 and the China-Russia International Collaboration grant from the Chinese Academy of Sciences and NSFC, by the Programs of the Government of the Russian Federation 'Measures to Attract Leading Scientists to Russian Educational Institutions' (grant 11.G34.31.0058) and 'Molecular and Cellular Biology' of the RAS, the President of the Russian Federation 'Leading Science School' (grant 3951.2012.4). PVN and EVE were supported by RFBR grant 14-04-31092. . - ISSN 0907-4449. - ISSN 1399-0047
РУБ Biochemical Research Methods + Biochemistry & Molecular Biology + Biophysics + Crystallography
Рубрики:
AEQUORIN BIOLUMINESCENCE
   SEQUENCE-ANALYSIS

   CRYSTAL-STRUCTURE

   CA2+-BINDING PHOTOPROTEIN

   VIOLET BIOLUMINESCENCE

   CALCIUM CONCENTRATION

   ANGSTROM RESOLUTION

   RECOMBINANT OBELIN

   MNEMIOPSIS-LEIDYI

   EXCITED-STATES

Аннотация: Ca2+-regulated photoproteins, which are responsible for light emission in a variety of marine coelenterates, are a highly valuable tool for measuring Ca2+ inside living cells. All of the photoproteins are a single-chain polypeptide to which a 2-hydroperoxycoelenterazine molecule is tightly but noncovalently bound. Bioluminescence results from the oxidative decarboxylation of 2-hydroperoxycoelenterazine, generating protein-bound coelenteramide in an excited state. Here, the crystal structures of the Y138F obelin mutant before and after bioluminescence are reported at 1.72 and 1.30 angstrom resolution, respectively. The comparison of the spatial structures of the conformational states of Y138F obelin with those of wild-type obelin gives clear evidence that the substitution of Tyr by Phe does not affect the overall structure of both Y138F obelin and its product following Ca2+ discharge compared with the corresponding conformational states of wild-type obelin. Despite the similarity of the overall structures and internal cavities of Y138F and wild-type obelins, there is a substantial difference: in the cavity of Y138F obelin a water molecule corresponding to W2 in wild-type obelin is not found. However, in Ca2+-discharged Y138F obelin this water molecule now appears in the same location. This finding, together with the observed much slower kinetics of Y138F obelin, clearly supports the hypothesis that the function of a water molecule in this location is to catalyze the 2-hydroperoxycoelenterazine decarboxylation reaction by protonation of a dioxetanone anion before its decomposition into the excited-state product. Although obelin differs from other hydromedusan Ca2+-regulated photoproteins in some of its properties, they are believed to share a common mechanism.

wos
Держатели документа:
[Natashin, Pavel V.
Ding, Wei
Liu, Zhi-Jie] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100080, Peoples R China
[Natashin, Pavel V.
Eremeeva, Elena V.
Markova, Svetlana V.
Vysotski, Eugene S.] Russian Acad Sci, Inst Biophys, Photobiol Lab, Siberian Branch, Krasnoyarsk, Russia
[Natashin, Pavel V.
Eremeeva, Elena V.
Markova, Svetlana V.
Vysotski, Eugene S.] Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Lab Bioluminescence Biotechnol, Chair Biophys, Krasnoyarsk, Russia
[Ding, Wei] Chinese Acad Sci, Inst Biophys, Ctr Biol Imaging, Beijing 100080, Peoples R China
[Lee, John] Univ Georgia, Dept Biochem Mol Biol, Athens, GA 30602 USA
[Liu, Zhi-Jie] Shanghai Tech Univ, Human Inst, Shanghai, Peoples R China
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Natashin, P.V.; Ding, W...; Eremeeva, E.V.; Markova, S.V.; Lee, J...; Vysotski, E.S.; Liu, Z.J.; RFBR [12-04-91153, 12-04-00131, 14-04-31092]; Chinese Academy of Sciences; NSFC; Programs of the Government of the Russian Federation 'Measures to Attract Leading Scientists to Russian Educational Institutions' [11.G34.31.0058]; RAS; Russian Federation 'Leading Science School' [3951.2012.4]

Найти похожие
 1-20    21-23 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)