Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Bioregenerative<.>)
Общее количество найденных документов : 20
Показаны документы с 1 по 20
1.


   
    Use of halophytic plants for recycling NaCl in human liquid waste in a bioregenerative life support system / Y. Balnokin [et al.] // Advances in Space Research. - 2010. - Vol. 46, Is. 6. - P768-774, DOI 10.1016/j.asr.2010.03.020 . - ISSN 0273-1177
Кл.слова (ненормированные):
Biological life support system -- Halophytes -- Human waste recycling -- NaCl recycling -- A plants -- Biological life support systems -- Biomass productions -- Bioregenerative life support systems -- Daily ration -- Europaea -- Growth conditions -- Halophytes -- Halophytic plants -- Human waste -- Liquid wastes -- Nutrient solution -- Optimal conditions -- Salicornia europaea -- Body fluids -- Liquids -- Nutrients -- Plant shutdowns -- Plants (botany) -- Recycling -- Sodium alloys -- Sodium chloride
Аннотация: The purpose of this work was to develop technology for recycling NaCl containing in human liquid waste as intrasystem matter in a bioregenerative life support system (BLSS). The circulation of Na+ and Cl- excreted in urine is achieved by inclusion of halophytes, i.e. plants that naturally inhabit salt-rich soils and accumulate NaCl in their organs. A model of Na+ and Cl- recycling in a BLSS was designed, based on the NaCl turnover in the human-urine-nutrient solution-halophytic plant-human cycle. The study consisted of (i) selecting a halophyte suitable for inclusion in a BLSS, and (ii) determining growth conditions supporting maximal Na + and Cl- accumulation in the shoots of the halophyte growing in a nutrient solution simulating mineralized urine. For the selected halophytic plant, Salicornia europaea, growth rate under optimal conditions, biomass production and quantities of Na+ and Cl- absorbed were determined. Characteristics of a plant production conveyor consisting of S. europaea at various ages, and allowing continuity of Na+ and Cl - turnover, were estimated. It was shown that closure of the NaCl cycle in a BLSS can be attained if the daily ration of fresh Salicornia biomass for a BLSS inhabitant is approximately 360 g. В© 2010 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
K.A. Timiryazev Plant Physiology Institute, Russian Academy of Sciences, 127276 Moscow, Russian Federation
Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk, Russian Federation
TEC-MCT, ESA/Estec, 1 Keplerlaan, 2201 AG Noordwijk, Netherlands
Universite Blaise Pascal, LGCB, Polytech'Clermont-Ferrand, BP206, 63174 Aubire cedex, France : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Balnokin, Y.; Nikolai, M.; Popova, L.; Tikhomirov, A.; Ushakova, S.; Lasseur, C.; Gros, J.-B.

Найти похожие
2.


   
    Production characteristics of the "higher plants-soil-like substrate" system as an element of the bioregenerative life support system / V. V. Velichko [et al.] // Advances in Space Research. - 2013. - Vol. 51, Is. 1. - P115-123, DOI 10.1016/j.asr.2012.08.003 . - ISSN 0273-1177
Кл.слова (ненормированные):
Biological-technical life support system -- Soil-like substrate -- Utilization of plant wastes -- Age groups -- Bioregenerative life support systems -- Cultivated crops -- Cyperus esculentus -- Growth chamber -- Higher plants -- Mineral element -- Nitrogen content -- Nutrient solution -- Plant wastes -- Raphanus sativus -- Root zone -- Soil-like substrate -- Study materials -- Biomass -- Carbon dioxide -- Harvesting -- Minerals -- Plants (botany) -- Soils -- Substrates -- Waste utilization -- Ecology
Аннотация: The study addresses the possibility of long-duration operation of a higher plant conveyor, using a soil-like substrate (SLS) as the root zone. Chufa (Cyperus esculentus L.), radish (Raphanus sativus L.), and lettuce (Lactuca sativa L.) were used as study material. A chufa community consisting of 4 age groups and radish and lettuce communities consisting of 2 age groups were irrigated with a nutrient solution, which contained mineral elements extracted from the SLS. After each harvest, inedible biomass of the harvested plants and inedible biomasses of wheat and saltwort were added to the SLS. The amounts of the inedible biomasses of wheat and saltwort to be added to the SLS were determined based on the nitrogen content of the edible mass of harvested plants. CO2 concentration in the growth chamber was maintained within the range of 1100-1700 ppm. The results of the study show that higher plants can be grown quite successfully using the proposed process of plant waste utilization in the SLS. The addition of chufa inedible biomass to the SLS resulted in species-specific inhibition of growth of both cultivated crops and microorganisms in the "higher plants - SLS" system. There were certain differences between the amounts of some mineral elements removed from the SLS with the harvested edible biomass and those added to it with the inedible biomasses of wheat and saltwort. В© 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch of Russian Academy of Science, Akademgorodok, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Velichko, V.V.; Tikhomirov, A.A.; Ushakova, S.A.; Tikhomirova, N.A.; Shihov, V.N.; Tirranen, L.S.; Gribovskaya, I.A.

Найти похожие
3.


   
    Use of human wastes oxidized to different degrees in cultivation of higher plants on the soil-like substrate intended for closed ecosystems / A. A. Tikhomirov [et al.] // Advances in Space Research. - 2010. - Vol. 46, Is. 6. - P744-750, DOI 10.1016/j.asr.2010.02.024 . - ISSN 0273-1177
Кл.слова (ненормированные):
Life support systems -- Microflora -- Mineralized human wastes -- Phototrophic unit -- Wet incineration -- Alternating electromagnetic field -- Bioregenerative life support systems -- Degree of oxidations -- Denitrifying microorganisms -- Growth and development -- Higher plants -- Human waste -- Life support systems -- Mass exchange -- Microbiotas -- Microflora -- Microscopic fungi -- Mineralized human wastes -- Nutrient solution -- Oxidation level -- Phytopathogenic bacteria -- Plant productivity -- Soil-like substrate -- Wheat plants -- Biomolecules -- Electromagnetic fields -- Irrigation -- Magnetic field effects -- Metabolism -- Metabolites -- Oxidation -- Plants (botany) -- Soils -- Solvent extraction -- Wastes -- Waste incineration
Аннотация: To close mass exchange loops in bioregenerative life support systems more efficiently, researchers of the Institute of Biophysics SB RAS (Krasnoyarsk, Russia) have developed a procedure of wet combustion of human wastes and inedible parts of plants using H2O2 in alternating electromagnetic field. Human wastes pretreated in this way can be used as nutrient solutions to grow plants in the phototrophic unit of the LSS. The purpose of this study was to explore the possibilities of using human wastes oxidized to different degrees to grow plants cultivated on the soil-like substrate (SLS). The treated human wastes were analyzed to test their sterility. Then we investigated the effects produced by human wastes oxidized to different degrees on growth and development of wheat plants and on the composition of microflora in the SLS. The irrigation solution contained water, substances extracted from the substrate, and certain amounts of the mineralized human wastes. The experiments showed that the human wastes oxidized using reduced amounts of 30% H2O2: 1 ml/g of feces and 0.25 ml/ml of urine were still sterile. The experiments with wheat plants grown on the SLS and irrigated by the solution containing treated human wastes in the amount simulating 1/6 of the daily diet of a human showed that the degree of oxidation of human wastes did not significantly affect plant productivity. On the other hand, the composition of the microbiota of irrigation solutions was affected by the oxidation level of the added metabolites. In the solutions supplemented with partially oxidized metabolites yeast-like microscopic fungi were 20 times more abundant than in the solutions containing fully oxidized metabolites. Moreover, in the solutions containing incompletely oxidized human wastes the amounts of phytopathogenic bacteria and denitrifying microorganisms were larger. Thus, insufficiently oxidized sterile human wastes added to the irrigation solutions significantly affect the composition of the microbiological component of these solutions, which can ultimately unbalance the system as a whole. В© 2010 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, Akademgorodok, 50/50, Krasnoyarsk 660036, Russian Federation
Universite Blaise Pascal, 24 avenue des Landais, 63174 Aubiere cedex, France
ESA/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, Netherlands : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Kudenko, Y.A.; Ushakova, S.A.; Tirranen, L.S.; Gribovskaya, I.A.; Gros, J.-B.; Lasseur, C.

Найти похожие
4.


   
    Some methods for human liquid and solid waste utilization in bioregenerative life-support systems / S. A. Ushakova [et al.] // Applied Biochemistry and Biotechnology. - 2008. - Vol. 151, Is. 2-3. - P676-685, DOI 10.1007/s12010-008-8291-3 . - ISSN 0273-2289
Кл.слова (ненормированные):
Closure -- Human waste -- Life-support systems -- Salicornia -- Sodium chloride -- Above-ground biomass -- Biological lives -- Bioregenerative -- Closure -- Cultivation process -- Culture methods -- Human waste -- Irrigation waters -- Life-support systems -- Manned space missions -- Mineral elements -- Physico-chemical methods -- Salicornia -- Salicornia europaea -- Salt-tolerant -- Soil-like substrates -- Biomass -- Body fluids -- Electrodialysis -- Grain (agricultural product) -- Irrigation -- Liquids -- Metal refining -- Minerals -- Mining -- Oxidation -- Plant shutdowns -- Sodium chloride -- Soils -- Solid wastes -- Substrates -- Water supply -- Vegetation -- article -- biomass -- controlled study -- electrodialysis -- halophyte -- irrigation (agriculture) -- microclimate -- nonhuman -- recycling -- Salicornia europaea -- solid waste -- bioremediation -- dialysis -- feces -- goosefoot -- growth, development and aging -- human -- methodology -- salt tolerance -- urine -- waste management -- wheat -- Batis maritima -- Salicornia -- Salicornia europaea -- Triticum aestivum -- Biodegradation, Environmental -- Chenopodiaceae -- Dialysis -- Feces -- Humans -- Life Support Systems -- Salt-Tolerance -- Triticum -- Urine -- Waste Management
Аннотация: Bioregenerative life-support systems (BLSS) are studied for developing the technology for a future biological life-support system for long-term manned space missions. Ways to utilize human liquid and solid wastes to increase the closure degree of BLSS were investigated. First, urine and faeces underwent oxidation by Kudenko's physicochemical method. The products were then used for root nutrition of wheat grown by the soil-like substrate culture method. Two means of eliminating sodium chloride, introduced into the irrigation solution together with the products of urine oxidation, were investigated. The first was based on routine electrodialysis of irrigation water at the end of wheat vegetation. Dialysis eliminated about 50% of Na from the solution. This desalinization was performed for nine vegetations. The second method was new: after wheat cultivation, the irrigation solution and the solution obtained by washing the substrate containing mineral elements not absorbed by the plants were used to grow salt-tolerant Salicornia europaea L. plants (saltwort). The above-ground biomass of this plant can be used as a food, and roots can be added to the soil-like substrate. Four consecutive wheat and Salicornia vegetations were cultivated. As a result of this wheat and Salicornia cultivation process, the soil-like substrate salinization by NaCl were considerably decreased. В© 2008 Humana Press.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Science, Siberian Branch, 660036 Krasnoyarsk, Russian Federation
K.A. Timiraziev Institute of Plant Physiology, Russian Academy of Science, 35 Botanisheskaya, 127276 Moscow, Russian Federation
LGCB, Universite Blaise Pascal, Polytech'Clermont-Ferrand, P.O. Box 206, 63174 Aubiere cedex, France : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Ushakova, S.A.; Zolotukhin, I.G.; Tikhomirov, A.A.; Tikhomirova, N.A.; Kudenko, Yu.A.; Gribovskaya, I.V.; Balnokin, Yu.; Gros, J.B.

Найти похожие
5.


   
    Possibility of Salicornia europaea use for the human liquid wastes inclusion into BLSS intrasystem mass exchange / N. A. Tikhomirova [et al.] // Acta Astronautica. - 2008. - Vol. 63, Is. 7-10. - P1106-1110, DOI 10.1016/j.actaastro.2008.01.003 . - ISSN 0094-5765
Кл.слова (ненормированные):
BLSS -- NaCl turnover -- Salicornia europaea -- Space biology -- Acids -- Amides -- Arsenic compounds -- Biochemical engineering -- Biochemistry -- Biomass -- Cellulose -- Curing -- Drying -- Environmental engineering -- Fatty acids -- Garnets -- Health -- Human engineering -- Lipids -- Mineralogy -- Minerals -- Mining -- Nitrates -- Nitrogen -- Plants (botany) -- Polysaccharides -- Polyvinyl alcohols -- Renewable energy resources -- Silica -- Silicate minerals -- Sodium -- Sodium chloride -- Solutions -- Sugar (sucrose) -- Sugars -- Waste utilization -- Biochemical composition -- Biochemical substances -- Bioregenerative life support systems (BLSS) -- Component conditions -- Crude protein (CP) -- Dry weight (DW) -- Essential fatty acids -- Europaea -- H igh concentrations -- Human urine -- Linoleic acid (LA) -- Linolenic -- Lipid content -- Liquid wastes -- Mass exchanges -- Mineral compositions -- Nitrate nitrogen -- Nitrogen nutrition -- Non saturation -- Physico chemical processes -- Plant functions -- Plant lipids -- Reduced nitrogen -- Salicornia europaea -- Soluble sugars -- Wide spectrum -- Nonmetals -- Amides -- Arsenic -- Biochemistry -- Biomass -- Biotechnology -- Cellulose -- Curing -- Drying -- Fatty Acids -- Lipids -- Nonmetals -- Plants -- Polysaccharides -- Sugars
Аннотация: One of the ways of solving the problem of the human liquid wastes utilization in bioregenerative life support systems (BLSS) can be the use of halophytic vegetable plant Salicornia europaea capable of accumulating sodium chloride in rather high concentrations. Since the most specific higher plant function in BLSS, which at present cannot be substituted by physicochemical processes, appears to be the biosynthesis of a wide spectrum of nutritive substances necessary for a human, the object of the given work was the investigation of the S. europaea productivity, biochemical and mineral composition when grown under close to optimal BLSS vegetative component conditions. As the use of human urine after its preliminary physicochemical processing is supposed to be the mineral solution basis for the S. europaea cultivation, it is necessary to clear up the effect of reduced nitrogen on plants growth. Ground research was carried out. Biochemical composition of the S. europaea edible part showed that crude protein was contained in the highest degree. At that the content of crude protein (24% per dry weight) and cellulose (4.7% per dry weight) was higher in the plants grown on solutions containing amide nitrogen in comparison with the plants grown on solutions with nitrate nitrogen (15.4%-3.1% correspondingly). The water-soluble sugar contents were not high in the S. europaea edible part and depending on the nitrogen nutrition form they amounted to 1.1% (amide nitrogen) and 1.5% (nitrate nitrogen). The polysaccharide number (except cellulose) was rather higher and varied from 7.7% to 8.2%. Although the lipid content in the S. europaea plants was relatively low (7% per dry weight), it was shown that the plant lipids are characterized by a high nonsaturation degree mainly due to alpha linolenic and linoleic acids. Nitrogen nutrition form did not significantly affect the S. europaea productivity, and dry edible biomass of one plant was 8.6 g. Sodium and its concentrations predominated in the plant mineral composition and amounted in average to 9% per dry weight. Thus the S. europaea being the vegetable plant it can be the source of several biochemical substances and essential fatty acids. The present work also considers the influence of nitrate and amide forms of nitrogen on S. europaea biochemical and mineral composition. В© 2008 Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Akademgorodok, 660036 Krasnoyarsk, Russian Federation
LGCB, Universite B. Pascal, CUST, BP206, 63174 Aubie're, cedex, France : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirova, N.A.; Ushakova, S.A.; Tikhomirov, A.A.; Kalacheva, G.S.; Gros, J.-B.

Найти похожие
6.


   
    Estimation of the stability of the photosynthetic unit in the bioregenerative life support system with plant wastes included in mass exchange / A. A. Tikhomirov [et al.] // Acta Astronautica. - 2008. - Vol. 63, Is. 7-10. - P1111-1118, DOI 10.1016/j.actaastro.2007.12.025 . - ISSN 0094-5765
Кл.слова (ненормированные):
BLSS -- Mass exchange -- Plant wastes -- Agricultural products -- Air pollution -- Biological materials -- Biomass -- Environmental engineering -- Estimation -- Experiments -- Human engineering -- Incineration -- Renewable energy resources -- Space research -- Substrates -- System stability -- Bioregenerative -- Life-support systems -- Mass exchanges -- Plant biomass -- Plant productivity -- Plant wastes -- Radish plants -- Significant reduction -- Soil like substrates -- Wheat straws -- Waste incineration
Аннотация: The purpose of this study is to estimate the possible effect produced on plant productivity by inedible plant biomass added to soil-like substrate (SLS). Results of the experiments with radish plants grown on the SLS with inedible biomass of carrot and beet plants added in the amounts roughly equal to their yields harvested from the same area showed a significant reduction in productivity of radish plants. The yield of radish plants grown on the SLS with added radish tops was almost the same as the yield of the radish grown on the neutral substrate. Experiments with addition of dry wheat straw to the SLS and growing of wheat and radish plants on that substrate also showed that the productivity of the plants grown in that way was decreased. Attempts to negate the adverse effect of plant wastes proved that the most effective way was to mineralize the wastes using the technique of "wet incineration". В© 2008 Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics Russian Academy of Sciences, Siberian Branch, Akademgorodok, 660036 Krasnoyarsk, Russian Federation
Environmental Control and Life Support Section, ESA-ESTEC, Postbus 299, 2200 AG Noordwijk, Netherlands
Institute of Biology Komi SC, Ural Branch Russian Academy of Sciences, Kommunisticheskaya Street, 28, 167982 Siktivkar, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Velichko, V.V.; Zolotukhin, I.G.; Shklavtsova, E.S.; Lasseur, C.; Golovko, T.K.

Найти похожие
7.


   
    Testing soil-like substrate for growing plants in bioregenerative life support systems / J. B. Gros [et al.] // Advances in Space Research. - 2005. - Vol. 36, Is. 7. - P1312-1318, DOI 10.1016/j.asr.2005.05.079 . - ISSN 0273-1177
Кл.слова (ненормированные):
Life support system -- Matter recycling -- Plants -- Soil-like substrate -- Biodiversity -- Correlation methods -- Growth kinetics -- Hormones -- Plants (botany) -- Recycling -- Soils -- Bioregeneration -- Life support system -- Matter recycling -- Soil-like substrate -- Space research
Аннотация: We studied soil-like substrate (SLS) as a potential candidate for plant cultivation in bioregenerative life support systems (BLSS). The SLS was obtained by successive conversion of wheat straw by oyster mushrooms and worms. Mature SLS contained 9.5% humic acids and 4.9% fulvic acids. First, it was shown that wheat, bean and cucumber yields as well as radish yields when cultivated on mature SLS were comparable to yields obtained on a neutral substrate (expanded clay aggregate) under hydroponics. Second, the possibility of increasing wheat and radish yields on the SLS was assessed at three levels of light intensity: 690, 920 and 1150 ?mol m-2 s-1 of photosynthetically active radiation (PAR). The highest wheat yield was obtained at 920 ?mol m-2 s-1, while radish yield increased steadily with increasing light intensity. Third, long-term SLS fertility was tested in a BLSS model with mineral and organic matter recycling. Eight cycles of wheat and 13 cycles of radish cultivation were carried out on the SLS in the experimental system. Correlation coefficients between SLS nitrogen content and total wheat biomass and grain yield were 0.92 and 0.97, respectively, and correlation coefficients between nitrogen content and total radish biomass and edible root yield were 0.88 and 0.87, respectively. Changes in hormone content (auxins, gibberellins, cytokinins and abscisic acid) in the SLS during matter recycling did not reduce plant productivity. Quantitative and species compositions of the SLS and irrigation water microflora were also investigated. Microbial community analysis of the SLS showed bacteria from Bacillus, Pseudomonas, Proteus, Nocardia, Mycobacterium, Arthrobacter and Enterobacter genera, and fungi from Trichoderma, Penicillium, Fusarium, Aspergillus, Mucor, Botrytis, and Cladosporium genera. В© 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
LGCB, Universite B. Pascal, CUST, BP206, 63174 Aubiere cedex, France
Environmental Control and Life Support Section, ESA-Estec, Postbus 299, 2200 AG, Noordwijk, Netherlands
Institute of Biophysics (Russian Academy of Sciences, Siberian Branch), Academgorodok, Krasnoyarsk 660036, Russian Federation
Department of Plant Physiology and Biotechnology, Tomsk State University, Lenin av. 36, Tomsk 634050, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gros, J.B.; Lasseur, Ch.; Tikhomirov, A.A.; Manukovsky, N.S.; Kovalev, V.S.; Ushakova, S.A.; Zolotukhin, I.G.; Tirranen, L.S.; Karnachuk, R.A.; Dorofeev, V.Yu.

Найти похожие
8.


   
    Influence of high concentrations of mineral salts on production process and NaCl accumulation by Salicornia europaea plants as a constituent of the LSS phototroph link / N. A. Tikhomirova [et al.] // Advances in Space Research. - 2005. - Vol. 35, Is. 9 SPEC. ISS. - P1589-1593, DOI 10.1016/j.asr.2005.01.055 . - ISSN 0273-1177
Кл.слова (ненормированные):
BLSS -- Intensity of PAR -- Mineral nutrition -- Productivity -- Salicornia europaea -- Biomass -- Concentration (process) -- Nitrogen -- Nutrition -- Photosynthesis -- Productivity -- Sodium chloride -- Bioregenerative life support systems (BLSS) -- Intensity of PAR -- Mineral nutrition -- Salicornia europaea -- Plants (botany) -- calcium -- magnesium -- nitrogen -- phosphorus -- potassium -- sodium chloride -- sulfur -- urea -- biomass -- conference paper -- culture medium -- dose response -- drug effect -- goosefoot -- growth, development and aging -- human -- light -- metabolism -- microclimate -- radiation exposure -- urine -- Biomass -- Calcium -- Chenopodiaceae -- Culture Media -- Dose-Response Relationship, Drug -- Ecological Systems, Closed -- Humans -- Life Support Systems -- Light -- Magnesium -- Nitrogen -- Phosphorus -- Potassium -- Sodium Chloride -- Sulfur -- Urea -- Urine
Аннотация: Use of halophytes (salt-tolerant vegetation), in a particular vegetable Salicornia europaea plants which are capable of utilizing NaCl in rather high concentrations, is one of possible means of NaCl incorporation into mass exchange of bioregenerative life support systems. In preliminary experiments it was shown that S. europaea plants, basically, could grow on urine pretreated with physicochemical processing and urease-enzyme decomposing of urea with the subsequent ammonia distillation. But at the same time inhibition of the growth process of the plants was observed. The purpose of the given work was to find out the influence of excessive quantities of some mineral elements contained in products of physicochemical processing of urine on the production process and NaCl accumulation by S. europaea plants. As the content of mineral salts in the human liquid wastes (urine) changed within certain limits, two variants of experimental solutions were examined. In the first variant, the concentration of mineral salts was equivalent to the minimum salt content in the urine and was: K - 1.5 g/l, P - 0.5 g/l, S - 0.5 g/l, Mg - 0.07 g/l, Ca - 0.2 g/l. In the second experimental variant, the content of mineral salts corresponded to the maximum salt content in urine and was the following: K - 3.0 g/l, P - 0.7 g/l, S - 1.2 g/l, Mg - 0.2 g/l, Ca - 0.97 g/l. As the control, the Tokarev nutrient solution containing nitrogen in the form of a urea, and the Knop nutrient solution with nitrogen in the nitrate form were used. N quantity in all four variants made up 177 mg/l. Air temperature was 24 В°C, illumination was continuous. Light intensity was 690 ?mol/m2s of photosynthetically active radiation. NaCl concentration in solutions was 1%. Our researches showed that the dry aboveground biomass of an average plant of the first variant practically did not differ from the control and totaled 11 g. In the second variant, S. europaea productivity decreased and the dry aboveground biomass of an average plant totaled 8 g. The increase of K quantity in the experimental solutions resulted in an elevated content of the element in the plants. The increase of K uptake in the second experimental variant was accompanied by a 30-50% decrease of Na content in comparison with the other variants. Comparative Na content in the other variants was practically identical. N, Mg and P content in the control and experimental variants was also practically identical. The increase of S quantity in the second experimental variant also increased S uptake by the plants. But Ca quantity, accumulated in aboveground plants biomass in the experimental variants was lower than in the control. NaCl uptake by plants, depending on the concentration of mineral salts in the experimental solutions, ranged from 8 g (maximum salt content) up to 15 g (minimum salt content) on a plant growth area that totaled 0.032 m2. Thus, high concentrations of mineral salts simulating the content of mineral salts contained in urine did not result in a significant decrease of S. europaea productivity. The present work also considers the influence of higher light intensity concentrations on productivity and NaCl accumulation by S. europaea plants grown on experimental solutions with high salt content. В© 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Akademgorodok, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirova, N.A.; Ushakova, S.A.; Kovaleva, N.P.; Gribovskaya, I.V.; Tikhomirov, A.A.

Найти похожие
9.


   
    Potential of salt-accumulating and salt-secreting halophytic plants for recycling sodium chloride in human urine in bioregenerative life support systems / N. A. Tikhomirova [et al.] // Advances in Space Research. - 2011. - Vol. 48, Is. 2. - P378-382, DOI 10.1016/j.asr.2011.03.016 . - ISSN 0273-1177
Кл.слова (ненормированные):
BLSS -- Limonium gmelinii -- Mineral nutrition -- NaCl -- Salicornia europaea -- BLSS -- Limonium gmelinii -- Mineral nutrition -- NaCl -- Salicornia europaea -- Body fluids -- Pilot plants -- Recycling -- Silicate minerals -- Sodium chloride -- Plants (botany)
Аннотация: This study addresses the possibility of growing different halophytic plants on mineralized human urine as a way to recycle NaCl from human wastes in a bioregenerative life support system (BLSS). Two halophytic plant species were studied: the salt-accumulating Salicornia europaea and the salt-secreting Limonium gmelinii. During the first two weeks, plants were grown on Knop's solution, then an average daily amount of urine produced by one human, which had been preliminarily mineralized, was gradually added to the experimental solutions. Nutrient solutions simulating urine mineral composition were gradually added to control solutions. NaCl concentrations in the stock solutions added to the experimental and control solutions were 9 g/L in the first treatment and 20 g/L in the second treatment. The mineralized human urine showed some inhibitory effects on S. europaea and L. gmelinii. The biomass yield of experimental plants was lower than that of control ones. If calculated for the same time period (120 d) and area (1 m 2), the amount of sodium chloride taken up by S. europaea plants would be 11.7 times larger than the amount taken up by L. gmelinii plants (486 g/m 2 vs. 41 g/m 2). Thus, S. europaea is the better choice of halophyte for recycling sodium chloride from human wastes in BLSS. В© 2011 COSPAR. Published by Elsevier Ltd. All rights reserved. 25.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, 50 Akademgorodok, Krasnoyarsk 660036, Russian Federation
K.A. Timiryazev Plant Physiology Institute, Russian Academy of Sciences, 35 Botanicheskaya St., Moscow 127276, Russian Federation
Universite Blaise Pascal, LGCB, Polytech, BP 206, 36174 Aubiere, France
TFC-MCT, ESA/Estec, 1 Keplerlaan, 2201 AG Noordwijk, Netherlands : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirova, N.A.; Ushakova, S.A.; Kudenko, Yu.A.; Gribovskaya, I.V.; Shklavtsova, E.S.; Balnokin, Yu.V.; Popova, L.G.; Myasoedov, N.A.; Gros, J.-B.; Lasseur, Ch.

Найти похожие
10.


   
    Production process in Salicornia europaea plants as a prospective phototrophic constituent in bioregenerative life support systems / N. A. Tikhomirova, S. A. Ushakova, G. S. Kalacheva // Russian Journal of Plant Physiology. - 2009. - Vol. 56, Is. 1. - P22-28, DOI 10.1134/S102144370901004X . - ISSN 1021-4437
Кл.слова (ненормированные):
Ambient CO 2 -- Gas exchange -- Halophyte -- Macronutrients -- Productivity -- Salicornia europaea -- Salt tolerance -- Salicornia europaea
Аннотация: Plant productivity of a common glasswort Salicornia europaea L. was investigated in relation to the type of nitrogen nutrition and as a function of macronutrient concentrations mimicking the mineral composition of human urine. The source of nutrient nitrogen had no substantial effect on productivity of Salicornia europaea. In plants grown on media with amide as a nitrogen source, the content of nitrogenous substances, including glutamic and aspartic amino acids, was higher than in plants grown with nitrate. In plants grown on media with mineral composition analogous to that of human urine, the shoots accumulated Na and K in almost equally high amounts, on the background of high and nearly equal Na and K concentrations in the nutrient media. В© 2008 MAIK Nauka.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirova, N.A.; Ushakova, S.A.; Kalacheva, G.S.

Найти похожие
11.


   
    Bios-3: Siberian experiments in bioregenerative life support / F. B. Salisbury, J. I. Gitelson, G. M. Lisovsky // BioScience. - 1997. - Vol. 47, Is. 9. - P575-585 . - ISSN 0006-3568
Кл.слова (ненормированные):
agriculture -- Chlorella -- construction work and architectural phenomena -- crop -- energy metabolism -- evaluation -- growth, development and aging -- human -- metabolism -- methodology -- microbiology -- microclimate -- NASA Discipline Life Support Systems -- Non-NASA Center -- photon -- review -- Russian Federation -- space flight -- NASA Discipline Life Support Systems -- Non-NASA Center -- Agriculture -- Chlorella -- Crops, Agricultural -- Ecological Systems, Closed -- Energy Metabolism -- Environment, Controlled -- Environmental Microbiology -- Evaluation Studies -- Facility Design and Construction -- Humans -- Life Support Systems -- Photons -- Siberia -- Space Flight -- Space Simulation

Scopus
Держатели документа:
Dept. Plants, Soils, Biometeorology, College of Agriculture, Utah State University, Logan, UT 84322-4820, United States
Institute of Biophysics, Academy of Sciences of Russia, Siberian Branch, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Salisbury, F.B.; Gitelson, J.I.; Lisovsky, G.M.

Найти похожие
12.


   
    Opportunities and constraints of closed man-made ecological systems on the moon / V. Blum [et al.] // Advances in Space Research. - 1994. - Vol. 14, Is. 6. - P271-280 . - ISSN 0273-1177
Аннотация: Most scenarios for a manned lunar base include a combination of physical-chemical and bioregenerative life support systems. Especially on the lunar surface, however, there is a series of special environmental factors which seriously affect the organisms suitable for food production and biological regeneration of the habitat atmosphere and water. So, e.g. the lunar day/night period creates difficult problems for higher plant culture. The paper presents the current scientific approaches to bioregenerative life support systems of a lunar base and discusses critically the possibilities of their realization. Moreover, a scientific strategy is developed with the biologist's point of view to implement in a stepwise manner bioregenerative life support modules into a lunar base covering the possibilities of the untilization of chemolytotrophic bacteria, microalgae and higher plants as well as those of animal breeding and protein production in intensive aquaculture systems. В© 1994.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
German Aerospace Establishment, Cologne-Porz, Germany
Comparative Endocrinology Research Section, Ruhr-University, Bochum, Germany : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Blum, V.; Gitelson, J.I.; Horneck, G.; Kreuzberg, K.

Найти похожие
13.


   
    Material balance and diet in bioregenerative life support systems: Connection with coefficient of closure / N. S. Manukovsky [et al.] // Advances in Space Research. - 2005. - Vol. 35, Is. 9 SPEC. ISS. - P1563-1569, DOI 10.1016/j.asr.2005.01.002 . - ISSN 0273-1177
Кл.слова (ненормированные):
Bioregenerative life support system -- Coefficient of closure -- Diet -- Soil-like substrate -- Additives -- Degradation -- Materials balance -- Nitrogen -- Nutrition -- Stoichiometry -- Bioregenerative life support systems -- Coefficient of closure -- Soil-like substrates -- Life support systems (spacecraft) -- vegetable protein -- biomass -- conference paper -- culture medium -- diet -- feces -- growth, development and aging -- human -- methodology -- microclimate -- plant -- urine -- waste management -- Biomass -- Culture Media -- Diet -- Ecological Systems, Closed -- Feces -- Humans -- Life Support Systems -- Plant Proteins -- Plants, Edible -- Urine -- Waste Management
Аннотация: Bioregenerative life support systems (BLSS) with different coefficients of closure are considered. The 66.2% coefficient of closure achieved in "BIOS-3" facility experiments has been taken as a base value. The increase in coefficient of closure up to 72.6-93.0% is planned due to use of soil-like substrate (SLS) and concentrating of urine. Food values were estimated both in a base variant ("BIOS-3"), and with increases in the coefficient of closure. It is shown that food requirements will be more fully satisfied by internal crop production with an increase in the coefficient of closure of the BLSS. Changes of massflow rates on an 'input-output' and inside BLSS are considered. Equations of synthesis and degradation of organic substances in BLSS were examined using a stoichiometric model. The paper shows that at incomplete closure of BLSS containing SLS there is a problem of nitrogen balancing. To compensate for the removal of nitrogen from the system in urine and feces, it is necessary to introduce food and a nitrogen-containing additive. В© 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Academgorodok, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Manukovsky, N.S.; Kovalev, V.S.; Somova, L.A.; Gurevich, Yu.L.; Sadovsky, M.G.

Найти похожие
14.


   
    The carbon cycle in a bioregenerative life support system with a soil-like substrate [Text] / Y. L. Gurevich [et al.] // Acta Astronaut. - 2008. - Vol. 63: 16th IAA Humans in Space Symposium (MAY 20-24, 2007, Beijing, PEOPLES R CHINA), Is. 07.10.2013. - P1043-1048, DOI 10.1016/j.actaastro.2008.03.009. - Cited References: 28 . - 6. - ISSN 0094-5765
РУБ Engineering, Aerospace
Рубрики:
ECOSYSTEM
   PLANTS

   MODEL

Кл.слова (ненормированные):
life support system -- soil-like substrate -- carbon cycle -- mass-flow model
Аннотация: A mass-flow model of carbon cycle in a bioregenerative life support system (BLSS) including Resource, Plant Growth, Food Processing, Human, Waste Processing, and Waste Storage Modules was developed. A human received food from Plant Growth and Resource Modules. Plants were assumed to be growing on the soil-like substrate (SLS). Another function of SLS was balancing the carbon cycle. The input of BLSS was set to 81 g of carbon per day along with food from the Resource Module. To balance the carbon cycle an equal arnount of carbon was removed from BLSS along with urine, feces, plant wastes, and SLS. A mass flow of carbon cycle was used to simulate the effect of light intensity on the basic parameters of the Plant Growth Module. It was calculated that the stationary dry mass of SLS increases from 10 to 35 kg m(-2) with increase canopy-level daily photosynthetic photon flux (PPF) from 34 to 178 mol m(-2) d(-1). On the contrary dry mass of SLS needed to provide one person with plant food is not dependent on light intensity. (C) 2008 Elsevier Ltd. All rights reserved.

Держатели документа:
[Gurevich, Yu. L.
Manukovsky, N. S.
Kovalev, V. S.
Degermendzy, A. G.] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
[Hu, Dawei
Liu, Hong] Beijing Univ Aeronaut & Astronaut, Dept Bioengn, Beijing 100083, Peoples R China
[Hue, EnZhu] Beijing Univ Aeronaut & Astronaut, Dept Environm Engn, Beijing 100083, Peoples R China : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gurevich, Y.L.; Manukovsky, N.S.; Kovalev, V.S.; Degermendzy, A.G.; Hu, D.W.; Hue, E.Z.; Liu, H...

Найти похожие
15.


   
    Effects of mineral nutrition conditions on heat tolerance of chufa (Cyperus esculentus L.) plant communities to super optimal air temperatures in the BTLSS / E. S. Shklavtsova [et al.] // Adv. Space Res. - 2014. - Vol. 54, Is. 6. - P1135-1145, DOI 10.1016/j.asr.2014.05.031 . - ISSN 1879-1948
Кл.слова (ненормированные):
Bioregenerative life support system -- Chlorophyll fluorescence -- Cyperus esculentus L. -- Heat shock -- Lipid peroxidation -- Mineralized human wastes -- Atmospheric temperature -- Carbon dioxide -- Lipids -- Metabolism -- Minerals -- Nitrates -- Nitrogen -- Nutrition -- Plants (botany) -- Urea -- Wastes -- Bioregenerative life support systems -- Chlorophyll fluorescence -- Cyperus esculentus -- Heat-shock -- Human waste -- Lipid peroxidation -- Plant shutdowns
Аннотация: The use of mineralized human wastes as a basis for nutrient solutions will increase the degree of material closure of bio-technical human life support systems. As stress tolerance of plants is determined, among other factors, by the conditions under which they have been grown before exposure to a stressor, the purpose of the study is to investigate the level of tolerance of chufa (Cyperus esculentus L.) plant communities grown in solutions based on mineralized human wastes to a damaging air temperature, 45 °C. Experiments were performed with 30-day-old chufa plant communities grown hydroponically, on expanded clay aggregate, under artificial light, at 690 ?mol m-2 s-1 PAR and at a temperature of 25 °C. Plants were grown in Knop's solution and solutions based on human wastes mineralized according to Yu.A. Kudenko's method, which contained nitrogen either as ammonium and urea or as nitrates. The heat shock treatment lasted 20 h at 690 and 1150 ?mol m -2 s-1 PAR. Chufa heat tolerance was evaluated based on parameters of CO2 gas exchange, the state of its photosynthetic apparatus (PSA), and intensity of peroxidation of leaf lipids. Chufa plants grown in the solutions based on mineralized human wastes that contained ammonium and urea had lower heat tolerance than plants grown in standard mineral solutions. Heat tolerance of the plants grown in the solutions based on mineralized human wastes that mainly contained nitrate nitrogen was insignificantly different from the heat tolerance of the plants grown in standard mineral solutions. A PAR intensity increase from 690 ?mol m -2 s-1 to 1150 ?mol m-2 s-1 enhanced heat tolerance of chufa plant communities, irrespective of the conditions of mineral nutrition under which they had been grown. © 2014 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
SB RAS Institute of Biophysics, 660036 Akademgorodok, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shklavtsova, E.S.; Ushakova, S.A.; Shikhov, V.N.; Anishchenko, O.V.

Найти похожие
16.


   
    Effects of mineral nutrition conditions on heat tolerance of chufa (Cyperus esculentus L.) plant communities to super optimal air temperatures in the BTLSS [Text] / E. S. Shklavtsova [et al.] // Adv. Space Res. - 2014. - Vol. 54, Is. 6. - P1135-1145, DOI 10.1016/j.asr.2014.05.031. - Cited References: 26. - The study was performed within the framework of the program of fundamental research for the Russian academies of sciences for 2013-2020, subject No. 56.1.4. . - ISSN 0273-1177. - ISSN 1879-1948
РУБ Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences
Рубрики:
LIFE-SUPPORT-SYSTEMS
   CHLOROPHYLL FLUORESCENCE

   STRESS

   WASTE

   WHEAT

   LSS

Кл.слова (ненормированные):
Bioregenerative life support system -- Cyperus esculentus L. -- Heat shock -- Mineralized human wastes -- Chlorophyll fluorescence -- Lipid peroxidation
Аннотация: The use of mineralized human wastes as a basis for nutrient solutions will increase the degree of material closure of bio-technical human life support systems. As stress tolerance of plants is determined, among other factors, by the conditions under which they have been grown before exposure to a stressor, the purpose of the study is to investigate the level of tolerance of chufa (Cyperus esculentus L.) plant communities grown in solutions based on mineralized human wastes to a damaging air temperature, 45 degrees C. Experiments were performed with 30-day-old chufa plant communities grown hydroponically, on expanded clay aggregate, under artificial light, at 690 mu mol m(-2) s(-1) PAR and at a temperature of 25 degrees C. Plants were grown in Knop's solution and solutions based on human wastes mineralized according to Yu.A. Kudenko's method, which contained nitrogen either as ammonium and urea or as nitrates. The heat shock treatment lasted 20 h at 690 and 1150 mu mol m(-2) s(-1) PAR. Chufa heat tolerance was evaluated based on parameters of CO2 gas exchange, the state of its photosynthetic apparatus (PSA), and intensity of peroxidation of leaf lipids. Chufa plants grown in the solutions based on mineralized human wastes that contained ammonium and urea had lower heat tolerance than plants grown in standard mineral solutions. Heat tolerance of the plants grown in the solutions based on mineralized human wastes that mainly contained nitrate nitrogen was insignificantly different from the heat tolerance of the plants grown in standard mineral solutions. A PAR intensity increase from 690 mu mol m(-2) s(-1) to 1150 mu mol m(-2) s(-1) enhanced heat tolerance of chufa plant communities, irrespective of the conditions of mineral nutrition under which they had been grown. (C) 2014 COSPAR. Published by Elsevier Ltd. All rights reserved.

WOS
Держатели документа:
[Shklavtsova, E. S.
Ushakova, S. A.
Shikhov, V. N.
Anishchenko, O. V.] SB RAS Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shklavtsova, E.S.; Ushakova, S.A.; Shikhov, V.N.; Anishchenko, O.V.; program of fundamental research for the Russian academies of sciences [56.1.4]

Найти похожие
17.


   
    Computing-feasibility study of NASA nutrition requirements as applied to a bioregenerative life support system / V. S. Kovalev, N. S. Manukovsky, A. A. Tikhomirov // Acta Astronaut. - 2019. - Vol. 159. - P371-376, DOI 10.1016/j.actaastro.2019.04.001 . - ISSN 0094-5765
Кл.слова (ненормированные):
Constraint -- Food -- Modeling -- Nutrient -- Objective function -- Amino acids -- Animals -- Food products -- Models -- NASA -- Nutrients -- Nutrition -- Proteins -- Saturated fatty acids -- Uncertainty analysis -- Vitamins -- Bioregenerative life support systems -- Constraint -- Essential amino acids -- Independent variables -- Interpretation of models -- Long duration missions -- Lower and upper bounds -- Objective functions -- Life support systems (spacecraft)
Аннотация: In view of previous studies, a list of 46 foods designated for use in bioregenerative life support system was composed. With the help of a computer program, daily sets of foods of plant and animal origin were compiled from the list of foods. The objective function of modeling was intended to minimize the discrepancy between the calculated values of nutrients in daily food sets and NASA nutrition requirements for long-duration missions. The independent variables in the model were the masses of foods restricted by the lower and upper bounds. It was established that a food set is able to comprise 10-46 foods with violation of the NASA nutrition requirements for iron, vitamin B5 and vitamin D daily intakes. Inclusion of 9 foods in a set resulted in a further violation of the NASA standards concerning saturated fat. As the number of foods in a set has increased from 10 to 22, the objective function decreased from 1.0736 to 1.0332, followed by a gradual increase to 1.1233, when the maximum number of foods was selected from the list of foods. The source of uncertainty in the interpretation of modeling results are the standard NASA intakes of magnesium, potassium, zinc, manganese, vitamin C, thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, vitamin E, vitamin K and n-6 fatty acids, given as exact values. Varying the nutrient content of food sets did not significantly affect the value of the objective function. However, some solutions were infeasible, due to the violation of the NASA standard concerning saturated fat. Also, there were food sets in which the scores of sulfur-containing amino acids and threonine were below 100. In order to reliably maintain the scores of essential amino acids above 100 in a food set, it is necessary to maintain a mass ratio of “animal protein/total protein” equal to 2/3 in accordance with the requirement of NASA. © 2019 IAA

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Kovalev, V. S.; Manukovsky, N. S.; Tikhomirov, A. A.

Найти похожие
18.


   
    Establishing cycling processes in an experimental model of a closed ecosystem / A. Tikhomirov, S. Ushakova, N. Tikhomirova [et al.] // Acta Astronaut. - 2020. - Vol. 166: 21st International-Academy-of-Astronautics (IAA) Humans in Space (NOV 27-30, 2017, Shenzhen, PEOPLES R CHINA). - P537-544, DOI 10.1016/j.actaastro.2018.08.023. - Cited References:18. - The study was supported by the Russian Science Foundation, Russia (Project No. 14-14-00599 Pi) and carried out in the IBP SB RAS at FRCKRC SB RAS. No competing financial interests exist. . - ISSN 0094-5765. - ISSN 1879-2030
РУБ Engineering, Aerospace
Рубрики:
BIOREGENERATIVE LIFE-SUPPORT
   EXCHANGE

   WASTES

   MASS

Кл.слова (ненормированные):
Experimental model of the closed ecosystem -- Oxidation of human and plant -- wastes -- Plant productivity -- Cycling
Аннотация: The purpose of this study was to investigate mass exchange processes in the experimental model of a closed ecological system intended for an estimated portion of a human in the long-duration (several-month) experiment. The diversity of the vegetable crop community in the system was increased, human wastes were involved in mass exchange processes, and human respiration was periodically connected to the system. The system has been designed to test different prospective technologies for future closed life support systems intended for prolonged autonomous operation in space and terrestrial applications. Three methods of plant cultivation in the conveyer mode have been used: hydroponics on expanded clay aggregate, growing plants on the soil-like substrate, and plant cultivation in aquaculture. The technology of more effective oxidation of organic wastes in a physicochemical processing reactor has been developed. A human exhaled the air into the system and consumed the air from the system. O-2 concentration did not drop below 20.8% and did not rise above 22.6%. CO2 concentration varied between 800 ppm and 2500 ppm. Plants growing under this CO2 range at a preset light irradiance showed optimal photosynthetic activity. The closure coefficients for Ca, Mg, S, N, K and P were above 90%. However, compared with the inflow, only 55% Ca, about 80% Mg, and 75% Na and P were removed from the system. The technological processes developed in this study will need to be modified and improved before they can be used in a full-scale closed biotechnical life support system intended for prolonged operation.

WOS
Держатели документа:
RAS, Inst Biophys, Krasnoyarsk Sci Ctr, Fed Res Ctr,SB, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Tikhomirov, Alexander; Ushakova, Sofya; Tikhomirova, Natalia; Velichko, Vladimir; Trifonov, Sergey; Anishchenko, Olesya; Russian Science Foundation, RussiaRussian Science Foundation (RSF) [14-14-00599Pi]

Найти похожие
19.


   
    Bioregenerative life support space diet and nutrition requirements: still seeking accord / V. S. Kovalev, N. S. Manukovsky, A. A. Tikhomirov // Life Sci. Space Res. - 2020. - Vol. 27. - P99-104, DOI 10.1016/j.lssr.2020.07.004. - Cited References:24. - The work was carried out within the framework of the State Program on the topic No. 56.1.4, section VI of the Program of Fundamental Scientific Research of the Russian Academy of Sciences for 2013-2020. . - ISSN 2214-5524. - ISSN 2214-5532
РУБ Astronomy & Astrophysics + Biology + Multidisciplinary Sciences
Рубрики:
SYSTEMS
   FOOD

Кл.слова (ненормированные):
Modeling -- Diet -- Dish -- Ingredient -- Nutrient -- Imbalance
Аннотация: The capability of "dish" and "ingredient in dish" modeling to reduce the number of nutrition imbalances in bioregenerative life support diet was compared. Masses of dishes were assumed to be the independent variables in the 'dish' model, while in the 'ingredient in dish' model the independent variables were the total masses of the ingredients in a one-day menu and masses of ingredients in the dishes. The objective function in both models was minimization of discrepancy between the calculated nutrition intakes and the daily nutrition requirements of NASA for long duration space missions. Comparing of two models was carried out for the case of a one-day diet containing 12 dishes and 32 ingredients. It was established that the diet simulation by 'dish' model brings 6 nutrition imbalances. The use of the 'ingredient in dish' modeling has helped to reduce the number of nutrition imbalances to 3, namely, an excess of iron, vitamin A and saturated fat. Obstacles to the fulfillment of all nutrition requirements were the nomenclature and masses of ingredients in the dish recipes.

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kovalev, V. S.; Manukovsky, N. S.; Tikhomirov, A. A.; Program of Fundamental Scientific Research of the Russian Academy of Sciences [56.1.4]

Найти похожие
20.


   
    Modeling a lunar base mushroom farm / V. S. Kovalev, W. Grandl, N. S. Manukovsky [et al.] // Life Sci. Space Res. - 2022. - Vol. 33. - P1-6, DOI 10.1016/j.lssr.2021.12.005. - Cited References:31 . - ISSN 2214-5524. - ISSN 2214-5532
РУБ Astronomy & Astrophysics + Biology + Multidisciplinary Sciences
Рубрики:
SUPPORT
   CULTIVATION

Кл.слова (ненормированные):
Mushroom -- Module -- Structure -- Design -- Calculation
Аннотация: To calculate the equivalent system mass of mushrooms, a conceptual configuration of a mushroom farm as part of a bioregenerative life support system on an inhabited lunar base was designed. The mushroom farm consists of two connected modules. Each module is a double-shell rigid pipe-in-pipe aluminum structure. The first module is used to prepare and sterilize the substrate, while the mushrooms are sown and grown in the second module. Planned productivity of the mushroom farm is 28 kg of fresh mushrooms per one process cycle lasting 66 days for 14 consumers. Mushroom production can be increased using additional modules. The calculated equivalent system masses of the mushroom farm and the mushrooms produced therein is 88,432 kg and 31,550 kg per 1 kg of dry mushrooms in one process cycle, respectively. At that, the biggest contributor to the equivalent system mass of mushrooms is the total pressurized volume of the farm - 68%. The results obtained may be a prerequisite for performing trade-off studies between different configurations of mushroom farm and calculating a space diet using the equivalent system mass of mushrooms.

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Moscow, Russia.
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk, Russia.

Доп.точки доступа:
Kovalev, V. S.; Grandl, W.; Manukovsky, N. S.; Tikhomirov, A. A.; Bock, C.

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)