Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Detoxification<.>)
Общее количество найденных документов : 16
Показаны документы с 1 по 16
1.


   
    Detoxification of AM-241 solutions by humic substances: Bioluminescent monitoring / T. Rozhko [et al.] // Analytical and Bioanalytical Chemistry. - 2011. - Vol. 400, Is. 2. - P329-334, DOI 10.1007/s00216-010-4442-9 . - ISSN 1618-2642
Кл.слова (ненормированные):
Detoxification -- Humic substances -- Ionizing radiation -- Luminous bacteria -- Bacterial cells -- Bottom sediments -- Humic substances -- Luminescent intensity -- Luminous bacteria -- Natural transformations -- Organic substances -- Photobacterium phosphoreum -- Physiological activity -- Protecting agent -- Water solutions -- Anoxic sediments -- Bacteriology -- Bioluminescence -- Detoxification -- Ionizing radiation -- Luminance -- Radiation shielding -- Radioactivity -- Bacteria -- americium -- radioisotope -- article -- bioremediation -- chemistry -- environmental monitoring -- evaluation -- humic substance -- instrumentation -- luminescence -- metabolism -- methodology -- Photobacterium -- water pollutant -- Americium -- Biodegradation, Environmental -- Environmental Monitoring -- Humic Substances -- Luminescence -- Photobacterium -- Radioisotopes -- Water Pollutants, Chemical -- Bacteria (microorganisms) -- Photobacterium phosphoreum
Аннотация: The study addresses the effect of humic substances on marine luminous bacteria Photobacterium phosphoreum exposed to Am-241 (3,000 Bq L -1, water solution). Luminescent intensity of the bacteria was applied as a marker of their physiological activity. Humic substances have been found to reduce the effect of Am-241 on luminescence, decrease damage to cells, and change distribution of Am-241 between bacterial cells and intercellular media. It was shown that water-soluble humic substances, being products of natural transformation of organic substances in soil and bottom sediments, can serve as protecting agents for water microorganisms exposed to alpha radionuclides. В© 2010 Springer-Verlag.

Scopus
Держатели документа:
Siberian Federal University, Krasnoyarsk 660041, Russian Federation
Institute of Biophysics SB RAS, Krasnoyarsk 660036, Russian Federation
Irkutsk State University, Irkutsk 664003, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Rozhko, T.; Bondareva, L.; Mogilnaya, O.; Vydryakova, G.; Bolsunovsky, A.; Stom, D.; Kudryasheva, N.

Найти похожие
2.


   
    Specific Characteristics of Rhodiola rosea Growth and Development under the Photoculture Conditions / N. P. Kovaleva, A. A. Tikhomirov, V. A. Dolgushev // Russian Journal of Plant Physiology. - 2003. - Vol. 50, Is. 4. - P527-531, DOI 10.1023/A:1024781025696 . - ISSN 1021-4437
Кл.слова (ненормированные):
Photoculture -- Plant growth and development -- Rhodiola rosea -- Salidroside -- Crassulaceae -- Rhodiola -- Rhodiola rosea
Аннотация: Growth and development of Rhodiola rosea L. plants (the family Crassulaceae) were compared in their natural habitat, field stands, and in photoculture. By the indices of growth and development, plants grown for 135-137 days under the intensive photoculture were shown to exceed the 3-year-old plants developed in the natural habitats and 1-1.5-year-old plants grown in the field stands. Under the photoculture, 35% of all the plants under study started flowering at the day 75-77 after seed germination. The content of salidroside in the rhizomes of the 135-137-day-old plants was 0.4-0.6% per dry weight. Following photoculturing for 245 days, rhizome weight increased 4. 5-fold as compared to the 135-137-day-old plants, and the salidroside concentration reached 1.2%, the level corresponding to the maximum content of this glycoside in the plants growing in their natural habitat and exceeding by 1.5-3 times the levels observed in the plants grown in the field stands. Under the photoculture conditions, plants of R. rosea were shown to grow without the dormancy period. Several factors apparently raised the salidroside concentration in the 245-day-old plants under the photoculture conditions, including enhanced growth, absence of the dormancy period and the period of lowered temperatures; as a whole, these factors promoted the detoxification, storage, and/or transport of the primary metabolic products.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kovaleva, N.P.; Tikhomirov, A.A.; Dolgushev, V.A.

Найти похожие
3.


   
    Hematological Parameters and the State of Liver Cells of Rats After Oral Administration of Aflatoxin B1 Alone and Together with Nanodiamonds [Text] / O. A. Mogilnaya [et al.] // Nanoscale Res. Lett. - 2010. - Vol. 5, Is. 5. - P908-912, DOI 10.1007/s11671-010-9571-8. - Cited References: 23. - The study was financially supported by the Russian Foundation for Basic Research (RFBR) (Grant No. 06-0490234) and the RAS Presidium (Program No. 27, Project No. 64). . - ISSN 1931-7573
РУБ Nanoscience & Nanotechnology + Materials Science, Multidisciplinary + Physics, Applied
Рубрики:
B-1
   MYCOTOXINS

   ADSORPTION

Кл.слова (ненормированные):
Nanodiamonds -- Aflatoxin B(1) -- Detoxification -- Adsorbent
Аннотация: Hematological parameters and the state of liver cells of rats were examined in vivo after the animals received aflatoxin B(1) (AfB(1)) alone and together with modified nanodiamonds (MND) synthesized by detonation. The rats that had received the MND hydrosol had elevated leukocyte levels, mainly due to higher granulocyte counts and somewhat increased monocyte counts compared to control rats. Hematological parameters of the rats that had received AfB(1) alone differed from those of the control rats in another way: total white blood cell counts were significantly lower due to the decreased lymphocyte counts. In rats that had consumed AfB(1) with the MND hydrosol, changes in hematological parameters were less pronounced than in rats that had consumed either AfB(1) or MND. Electron microscopy showed that hepatocytes of the rats that had received the MND hydrosol or AfB(1) with the MND hydrosol contained elevated levels of lipid inclusions and lysosomes. Hyperplasia of the smooth endoplasmic reticulum (EPR) was revealed in liver specimens of the rats that had received AfB(1). Results of the study suggest the conclusion about mutual mitigation of the effects of nanoparticles and the mycotoxin on rats blood and liver cells after AfB(1) has adsorbed on MND.

Держатели документа:
[Mogilnaya, O. A.
Puzyr, A. P.
Bondar, V. S.] Inst Biophys SB RAS, Krasnoyarsk 660036, Russia
[Baron, A. V.] Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Mogilnaya, O.A.; Puzyr, A.P.; Baron, A.V.; Bondar, V.S.

Найти похожие
4.


   
    Specific characteristics of Rhodiola rosea growth and development under the photoculture conditions [Text] / N. P. Kovaleva, A. A. Tikhomirov, V. A. Dolgushev // Russ. J. Plant Physiol. - 2003. - Vol. 50, Is. 4. - P. 527-531, DOI 10.1023/A:1024781025696. - Cited References: 19 . - ISSN 1021-4437
РУБ Plant Sciences

Кл.слова (ненормированные):
Rhodiola rosea -- plant growth and development -- photoculture -- salidroside
Аннотация: Growth and development of Rhodiola rosea L. plants (the family Crassulaceae) were compared in their natural habitat, field stands, and in photoculture. By the indices of growth and development, plants grown for 135-137 days under the intensive photoculture were shown to exceed the 3-year-old plants developed in the natural habitats and 1-1.5-year-old plants grown in the field stands. Under the photoculture, 35% of all the plants under study started flowering at the day 75-77 after seed germination. The content of salidroside in the rhizomes of the 135-137-day-old plants was 0.4-0.6% per dry weight. Following photoculturing for 245 days, rhizome weight increased 4.5-fold as compared to the 135-137-day-old plants, and the salidroside concentration reached 1.2%, the level corresponding to the maximum content of this glycoside in the plants growing in their natural habitat and exceeding by 1.5-3 times the levels observed in the plants grown in the field stands. Under the photoculture conditions, plants of R. rosea were shown to grow without the dormancy period. Several factors apparently raised the salidroside concentration in the 245-day-old plants under the photoculture conditions, including enhanced growth, absence of the dormancy period and the period of lowered temperatures; as a whole, these factors promoted the detoxification, storage, and/or transport of the primary metabolic products.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Div, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kovaleva, N.P.; Tikhomirov, A.A.; Dolgushev, V.A.

Найти похожие
5.


   
    Pollutant toxicity and detoxification by humic substances: mechanisms and quantitative assessment via luminescent biomonitoring [Text] / N. S. Kudryasheva, A. S. Tarasova // Environ. Sci. Pollut. Res. - 2015. - Vol. 22, Is. 1. - P155-167, DOI 10.1007/s11356-014-3459-6. - Cited References:120. - The work was supported by the Russian Foundation for Basic Research,Grant No. 13-04-98072-sibir-a. Part of the work (analysis ofdetoxification of radioactive solutions) was supported by the RussianScience Foundation, Grant No. 14-14-00076. . - ISSN 0944-1344. - ISSN 1614-7499
РУБ Environmental Sciences
Рубрики:
PHOTOBACTERIUM-LEIOGNATHI LUCIFERASE
   DISSOLVED ORGANIC-MATTER

Кл.слова (ненормированные):
Detoxification mechanisms -- Humic substances -- Pollutants -- Bioassays -- Bioluminescence
Аннотация: The paper considers mechanisms of detoxification of pollutant solutions by water-soluble humic substances (HSs), natural detoxifying agents. The problems and perspectives of bioassay application for toxicity monitoring of complex solutions are discussed from ecological point of view. Bioluminescence assays based on marine bacteria and their enzymes are of special attention here; they were shown to be convenient tools to study the detoxifying effects on cellular and biochemical levels. The advantages of bioluminescent enzymatic assay for monitoring both integral and oxidative toxicities in complex solutions of model pollutants and HS were demonstrated. The efficiencies of detoxification of the solutions of organic oxidizers and salts of metals (including radioactive ones) by HS were analyzed. The dependencies of detoxification efficiency on time of exposure to HS and HS concentrations were demonstrated. Antioxidant properties of HS were considered in detail. The detoxifying effects of HS were shown to be complex and regarded as 'external' (binding and redox processes in solutions outside the organisms) and/or 'internal' organismal processes. The paper demonstrates that the HS can stimulate a protective response of bacterial cells as a result of (1) changes of rates of biochemical reactions and (2) stabilization of mucous layers outside the cell walls. Acceleration of auto-oxidation of NADH, endogenous reducer, by HS was suggested as a reason for toxicity increase in the presence of HS due to abatement of reduction ability of intracellular media.

WOS
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
RAS, Inst Biophys, SB, Krasnoyarsk 660036, Russia.
ИБФ СО РАН

Доп.точки доступа:
Kudryasheva, N.S.; Tarasova, A.S.; Russian Foundation for Basic Research [13-04-98072-sibir-a]; RussianScience Foundation [14-14-00076]

Найти похожие
6.


   
    Antioxidant activity of humic substances via bioluminescent monitoring in vitro [Text] / A. S. Tarasova, D. I. Stom, N. S. Kudryasheva // Environ. Monit. Assess. - 2015. - Vol. 187, Is. 3. - Ст. 89, DOI 10.1007/s10661-015-4304-1. - Cited References:51. - This work was supported by the Russian Foundation for Basic Research, Grant No. 15-03-06786a, the Program "Molecular and Cellular Biology" of the Russian Academy of Sciences, project VI 57.1.1. . - ISSN 0167-6369. - ISSN 1573-2959
РУБ Environmental Sciences
Рубрики:
DETOXIFICATION PROCESSES
   TOXICITY

   BIOASSAYS

   BACTERIA

   ASSAY

Кл.слова (ненормированные):
Antioxidant activity -- Oxidative toxicity -- General toxicity -- Humic -- substances -- Bioassay -- Bioluminescence
Аннотация: This work considers antioxidant properties of natural detoxifying agents-humic substances (HS) in solutions of model inorganic and organic compounds of oxidative nature-complex salt K-3[Fe(CN)(6)] and 1,4-benzoquinone. Bioluminescent system of coupled enzymatic reactions catalyzed by NAD(P) H:FMN-oxidoreductase and bacterial luciferase was used as a bioassay in vitro to monitor toxicity of the oxidizer solutions. Toxicities of general and oxidative types were evaluated using bioluminescent kinetic parameters-bioluminescence intensity and induction period, respectively. Antioxidant activity of HS was attributed to their ability to decrease both general and oxidative toxicities; the HS antioxidant efficiency was characterized with detoxification coefficients D-GT and D-OxT, respectively. Dependencies of D-GT and D-OxT on HS concentration and time of preliminary incubation of the oxidizers with HS were demonstrated. The optimal conditions for detoxification of the oxidizers were >20-min incubation time and 0.5x10(-4) to 2x10(-4) M of HS concentration. The present study promotes application of the enzymatic luminescent bioassay to monitor toxicity of pollutants of oxidative nature in environmental and waste waters in remediation procedures.

WOS
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
Irkutsk State Univ, Irkutsk 664003, Russia.
ИБФ СО РАН

Доп.точки доступа:
Tarasova, A.S.; Stom, D.I.; Kudryasheva, N.S.; Russian Foundation for Basic Research [15-03-06786a]; Russian Academy of Sciences [VI 57.1.1]

Найти похожие
7.


   
    On mechanism of antioxidant effect of fullerenols / A. S. Sachkova [et al.] // Biochem. Biophys. Rep. - 2017. - Vol. 9. - P1-8, DOI 10.1016/j.bbrep.2016.10.011 . - ISSN 2405-5808
Кл.слова (ненормированные):
Antioxidant activity -- Bacterial enzymes -- Fullerenol -- Hormesis -- Luminous marine bacteria -- Ultralow concentrations
Аннотация: Fullerenols are nanosized water-soluble polyhydroxylated derivatives of fullerenes, specific allotropic form of carbon, bioactive compounds and perspective pharmaceutical agents. Antioxidant activity of fullerenols was studied in model solutions of organic and inorganic toxicants of oxidative type – 1,4-benzoquinone and potassium ferricyanide. Two fullerenol preparations were tested: С60О2–4(ОН)20–24 and mixture of two types of fullerenols С60О2–4(ОН)20–24+С70О2–4(ОН)20–24. Bacteria-based and enzyme-based bioluminescent assays were used to evaluate a decrease in cellular and biochemical toxicities, respectively. Additionally, the enzyme-based assay was used for the direct monitoring of efficiency of the oxidative enzymatic processes. The bacteria-based and enzyme-based assays showed similar peculiarities of the detoxification processes: (1) ultralow concentrations of fullerenols were active (ca 10–17–10?4 and 10–17–10? 5 g/L, respectively), (2) no monotonic dependence of detoxification efficiency on fullerenol concentrations was observed, and (3) detoxification of organic oxidizer solutions was more effective than that of the inorganic oxidizer. The antioxidant effect of highly diluted fullerenol solutions on bacterial cells was attributed to hormesis phenomenon; the detoxification was concerned with stimulation of adaptive cellular response under low-dose exposures. Sequence analysis of 16S ribosomal RNA was carried out; it did not reveal mutations in bacterial DNA. The suggestion was made that hydrophobic membrane-dependent processes are involved to the detoxifying mechanism. Catalytic activity of fullerenol (10? 8 g/L) in NADH-dependent enzymatic reactions was demonstrated and supposed to contribute to adaptive bacterial response. © 2016 The Authors

Scopus,
Смотреть статью
Держатели документа:
National Research Tomsk Polytechnic University, Tomsk, Russian Federation
Institute of Biophysics SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Physics SB RAS, Krasnoyarsk, Russian Federation
SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russian Federation

Доп.точки доступа:
Sachkova, A. S.; Kovel, E. S.; Churilov, G. N.; Guseynov, O. A.; Bondar, A. A.; Dubinina, I. A.; Kudryasheva, N. S.

Найти похожие
8.


   
    Bioluminescent Enzymatic Assay as a Tool for Studying Antioxidant Activity and Toxicity of Bioactive Compounds / N. S. Kudryasheva [et al.] // Photochem. Photobiol. - 2017. - Vol. 93, Is. 2. - P536-540, DOI 10.1111/php.12639. - Cited References:40. - The work was supported by the Russian Foundation for Basic Research, Grants 15-03-06786 and 15-43-04377-sibir; the state budget allocated to the fundamental research at the Russian Academy of Sciences (project 01201351504). . - ISSN 0031-8655. - ISSN 1751-1097
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
LUMINOUS MARINE-BACTERIA
   HUMIC SUBSTANCES

   DETOXIFICATION PROCESSES

Аннотация: A bioluminescent assay based on a system of coupled enzymatic reactions catalyzed by bacterial luciferase and NADH:FMN-oxidoreductase was developed to monitor toxicity and antioxidant activity of bioactive compounds. The assay enables studying toxic effects at the level of biomolecules and physicochemical processes, as well as determining the toxicity of general and oxidative types. Toxic and detoxifying effects of bioactive compounds were studied. Fullerenols, perspective pharmaceutical agents, nanosized particles, water-soluble polyhydroxylated fullerene-60 derivatives were chosen as bioactive compounds. Two homologous fullerenols with different number and type of substituents, C60O2-4(OH)(20-24) and Fe0.5C60(OH) O-x(y) (x + y = 40-42), were used. They suppressed bioluminescent intensity at concentrations 0.01 g L-1 and 0.001 g L-1 for C60O2-4(OH)(20-24) and Fe0.5C60(OH)(x)O-y, respectively; hence, a lower toxicity of C60O2-4(OH)(20-24) was demonstrated. Antioxidant activity of fullerenols was studied in model solutions of organic and inorganic oxidizers; changes in toxicities of general and oxidative type were determined; detoxification coefficients were calculated. Fullerenol C60O2-4(OH)(20-24) revealed higher antioxidant ability at concentrations 10(-17)-10(-5) g L-1. The difference in the toxicity and antioxidant activity of fullerenols was explained through their electron donor/acceptor properties and different catalytic activity. Principles of bioluminescent enzyme assay application for evaluating the toxic effect and antioxidant activity of bioactive compounds were summarized and the procedure steps were described.

WOS,
Смотреть статью
Держатели документа:
Inst Biophys SB RAS, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Natl Res Tomsk Polytech Univ, Tomsk, Russia.
Inst Phys SB RAS, Krasnoyarsk, Russia.

Доп.точки доступа:
Kudryasheva, Nadezhda S.; Kovel, Ekaterina S.; Sachkova, Anna S.; Vorobeva, Anna A.; Isakova, Viktoriya G.; Churilov, Grigoriy N.; Russian Foundation for Basic Research [15-03-06786, 15-43-04377-sibir]; Russian Academy of Sciences [01201351504]

Найти похожие
9.


   
    Antioxidant Activity of Fullerenols. Bioluminescent Monitoring in vitro / A. S. Sachkova [et al.] ; ed.: A. . Turner, A. . Tang // BIOSENSORS 2016 : ELSEVIER SCIENCE BV, 2017. - Vol. 27: 26th Anniversary World Congress on Biosensors (Biosensors) (MAY 25-27, 2016, Gothenburg, SWEDEN). - P230-231. - (Procedia Technology), DOI 10.1016/j.protcy.2017.04.097. - Cited References:2. - The work was supported by the Russian Foundation for Basic Research, Grants No. 15-03-06786 and 15-43-04377-sibir; the state budget to the fundamental research at the Russian Academy of Sciences (project No 01201351504) . -
РУБ Engineering, Biomedical

Кл.слова (ненормированные):
bioluminescence -- enzymatic assay -- toxicity sensor -- antioxidant activity -- fullerenol
Аннотация: Bioluminescence of isolated enzymes is a perspective phenomenon for biosensors development due to simplicity of registration of a physiological parameter - light intensity. Enzyme-based bioluminescent assay is widely used to evaluate a decrease in biochemical toxicities. Also the enzyme-based assay is used for the direct biochemical monitoring of oxidative toxicity. This work considers antioxidant properties of fullerenols, water-soluble polyhydroxylated derivatives of fullerenes and perspective pharmaceutical agents, in solutions of model inorganic and organic toxicants of oxidative type K-3[Fe(CN)(6)] and 1,4-benzoquinone. Two fullerenol preparations were used: C60O2-4(OH)(20-24) and mixture of two types of fullerenols C60O2-4(OH)(20-24)+C70O2-4(OH)(20-24). The enzyme-based assays showed the peculiarities of the detoxification processes: ultralow concentrations of fullerenols were active (ca 10(-17)-10(-5)g/L); no monotonic dependence of detoxification efficiency on fullerenol concentrations was observed, and detoxification of organic oxidizer solutions was more effective than that of the inorganic oxidizer. The antioxidant effects of highly diluted fullerenol solutions were attributed to hormesis phenomenon; the detoxification was concerned with stimulation of adaptive cellular response under low-dose exposures. (C) 2017 The Authors. Published by Elsevier Ltd.

WOS,
Смотреть статью
Держатели документа:
Natl Res Tomsk Polytech Univ, Lenin Ave 30, Tomsk 634050, Russia.
SB RAS, Inst Biophys, Akademgorodok 50-50, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodny Pr 79, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Sachkova, A. S.; Kovel, E. S.; Vorobeva, A. A.; Kudryasheva, N. S.; Turner, A... \ed.\; Tang, A... \ed.\; Russian Foundation for Basic Research [15-03-06786, 15-43-04377-sibir]; state budget to the fundamental research at the Russian Academy of Sciences [01201351504]

Найти похожие
10.


   
    Biological activity of carbonic nano-structures—comparison via enzymatic bioassay / A. S. Sachkova [et al.] // J. Soils Sed. - 2018, DOI 10.1007/s11368-018-2134-9 . - Article in press. - ISSN 1439-0108
Кл.слова (ненормированные):
Antioxidant activity -- Bioactive compounds -- Fullerenol -- Humic substances -- Reactive oxygen species -- Toxicity
Аннотация: Purpose: The aim of the work is to compare the biological activity of carbonic nano-structures of natural and artificial origination, namely, humic substances (HS) and fullerenols. Materials and methods: The representative of the fullerenol group, С60Оy(OH)x where у + x = 20–22, was chosen. Enzyme-based luminescent bioassay was applied to evaluate toxicity and antioxidant properties of HS and fullerenol (F); chemiluminescent luminol method was used to study a content of reactive oxygen species (ROS) in the solutions. Toxicity of the bioactive compounds was evaluated using effective concentrations ЕС50; detoxification coefficients DOxT were applied to study and compare antioxidant activity of the compounds. Antioxidant activity and ranges of active concentrations of the bioactive compounds were determined in model solutions of organic and inorganic oxidizers—1,4-benzoquinone and potassium ferricianide. Results and discussion: Values of ЕС50 revealed higher toxicity of HS than F (0.005 and 0.108 g L?1, respectively); detoxifying concentrations of F were found to be lower. Antioxidant ability of HS was demonstrated to be time-dependent; the 50-min preliminary incubation in oxidizer solutions was suggested as optimal for the detoxification procedure. On the contrary, F’ antioxidant effect demonstrated independency on time. Antioxidant effect of HS did not depend on amphiphilic characteristics of the media (values of DOxT were 1.3 in the solutions of organic and inorganic oxidizers), while this of F was found to depend: it was maximal (DOxT = 2.0) in solutions of organic oxidizer, 1,4-benzoquinone. Conclusions: Both HS and F demonstrated toxicity and low-concentration antioxidant ability; however, quantitative characteristics of their effects were different. The differences were explained with HS polyfunctionality, higher ability to decrease ROS content, non-rigidity, and diffusion restrictions in their solutions. Antioxidant effect of the bioactive compounds was presumably attributed to catalytic redox activity of their ?-fragments. The paper demonstrates a high potential of luminescent enzymatic bioassay to study biological activity of nano-structures of natural and artificial origination. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

Scopus,
Смотреть статью,
WOS
Держатели документа:
National Research Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
Institute of Biophysics FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Physics FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Irkutsk National Research Technical University, Irkutsk, 664074, Russian Federation

Доп.точки доступа:
Sachkova, A. S.; Kovel, E. S.; Churilov, G. N.; Stom, D. I.; Kudryasheva, N. S.

Найти похожие
11.


   
    Antioxidant Activity and Toxicity of Fullerenols via Bioluminescence Signaling: Role of Oxygen Substituents / E. S. Kovel [et al.] // Int J Mol Sci. - 2019. - Vol. 20, Is. 9, DOI 10.3390/ijms20092324 . - ISSN 1422-0067
Кл.слова (ненормированные):
antioxidant activity -- bioactive compound -- bioluminescence bioassay -- fullerenol -- reactive oxygen species -- toxicity
Аннотация: Fullerenols are nanosized water-soluble polyhydroxylated derivatives of fullerenes, a specific allotropic form of carbon, bioactive compounds, and perspective basis for drug development. Our paper analyzes the antioxidant activity and toxicity of a series of fullerenols with different number of oxygen substituents. Two groups of fullerenols were under investigation: (1) C60Oy(OH)x, C60,70Oy(OH)x, where x + y = 24-28 and (2) C60,70Oy(OH)x, Fe0,5C60Oy(OH)x, Gd@C82Oy(OH)x, where x + y = 40-42. Bioluminescent cellular and enzymatic assays (luminous marine bacteria and their enzymatic reactions, respectively) were applied to monitor toxicity in the model fullerenol solutions and bioluminescence was applied as a signaling physiological parameter. The inhibiting concentrations of the fullerenols were determined, revealing the fullerenols' toxic effects. Antioxidant fullerenol' ability was studied in solutions of model oxidizer, 1,4-benzoquinone, and detoxification coefficients of general and oxidative types (DGT and DOxT) were calculated. All fullerenols produced toxic effect at high concentrations (>0.01 g L-1), while their antioxidant activity was demonstrated at low and ultralow concentrations (<0.001 g L-1). Quantitative toxic and antioxidant characteristics of the fullerenols (effective concentrations, concentration ranges, DGT, and DOxT) were found to depend on the number of oxygen substituents. Lower toxicity and higher antioxidant activity were determined in solutions of fullerenols with fewer oxygen substituents (x + y = 24-28). The differences in fullerenol properties were attributed to their catalytic activity due to reversible electron acceptance, radical trapping, and balance of reactive oxygen species in aqueous solutions. The results provide pharmaceutical sciences with a basis for selection of carbon nanoparticles with appropriate toxic and antioxidant characteristics. Based on the results, we recommend, to reduce the toxicity of prospective endohedral gadolinium-fullerenol preparations Gd@C82Oy(OH)x, decreasing the number of oxygen groups to x + y = 24-28. The potential of bioluminescence methods to compare toxic and antioxidant characteristics of carbon nanostructures were demonstrated.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Physics SB RAS, Krasnoyarsk, 660036, Russian Federation
National Research Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
Institute of Physics SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Kovel, E. S.; Sachkova, A. S.; Vnukova, N. G.; Churilov, G. N.; Knyazeva, E. M.; Kudryasheva, N. S.

Найти похожие
12.


   
    Effects of Modified Magnetite Nanoparticles on Bacterial Cells and Enzyme Reactions / L. S. Bondarenko, E. S. Kovel, K. A. Kydralieva [et al.] // Nanomaterials. - 2020. - Vol. 10, Is. 8. - Ст. 1499, DOI 10.3390/nano10081499. - Cited References:83. - This research was funded by the Russian Foundation for Basic Research (#19-315-50048, #19-33-90149, and #18-29-19003). . - ISSN 2079-4991
РУБ Nanoscience & Nanotechnology + Materials Science, Multidisciplinary
Рубрики:
NATURAL ORGANIC-MATTER
   HUMIC-ACID

   DETOXIFICATION PROCESSES

Кл.слова (ненормированные):
magnetite nanoparticles -- humic acids-coated magnetite nanoparticles -- silica-coated magnetite nanoparticles -- zeta potential -- hydrodynamic -- diameter -- toxicity -- bioluminescence -- bacterial assay -- enzymatic assay -- oxidative stress -- Photobacterium phosphoreum -- NADH -- FMN-oxidoreductase -- luciferase
Аннотация: Current paper presents biological effects of magnetite nanoparticles (MNPs). Relations of MNP' characteristics (zeta-potential and hydrodynamic diameters) with effects on bacteria and their enzymatic reactions were the main focus.Photobacterium phosphoreumand bacterial enzymatic reactions were chosen as bioassays. Three types of MNPs were under study: bare Fe3O4, Fe(3)O(4)modified with 3-aminopropyltriethoxysilane (Fe3O4/APTES), and humic acids (Fe3O4/HA). Effects of the MNPs were studied at a low concentration range (< 2 mg/L) and attributed to availability and oxidative activity of Fe3+, high negative surface charge, and low hydrodynamic diameter of Fe3O4/HA, as well as higher Fe(3+)content in suspensions of Fe3O4/HA. Low-concentration suspensions of bare Fe(3)O(4)provided inhibitory effects in both bacterial and enzymatic bioassays, whereas the MNPs with modified surface (Fe3O4/APTES and Fe3O4/HA) did not affect the enzymatic activity. Under oxidative stress (i.e., in the solutions of model oxidizer, 1,4-benzoquinone), MNPs did not reveal antioxidant activity, moreover, Fe3O4/HA demonstrated additional inhibitory activity. The study contributes to the deeper understanding of a role of humic substances and silica in biogeochemical cycling of iron. Bioluminescence assays, cellular and enzymatic, can serve as convenient tools to evaluate bioavailability of Fe(3+)in natural dispersions of iron-containing nanoparticles, e.g., magnetite, ferrihydrite, etc.

WOS
Держатели документа:
Natl Res Univ, Moscow Aviat Inst, Moscow 125993, Russia.
FRC KSC SB RAS, Inst Phys SB RAS, Krasnoyarsk 660036, Russia.
FRC KSC SB RAS, Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
RAS, Moscow Inst Problems Chem Phys, Chernogolovka 142432, Moscow Region, Russia.
Univ Szeged, H-6720 Szeged, Hungary.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Bondarenko, Lyubov S.; Kovel, Ekaterina S.; Kydralieva, Kamila A.; Dzhardimalieva, Gulzhian, I; Illes, Erzsebet; Tombacz, Etelka; Kicheeva, Arina G.; Kudryasheva, Nadezhda S.; Dzhardimalieva, Gulzhian; Kudryasheva, Nadezhda; Kovel, Ekaterina; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-315-50048, 19-33-90149, 18-29-19003]

Найти похожие
13.


   
    Humic substances mitigate the impact of tritium on luminous marine bacteria. Involvement of reactive oxygen species / T. V. Rozhko, O. V. Kolesnik, G. A. Badun [et al.] // International Journal of Molecular Sciences. - 2020. - Vol. 21, Is. 18. - Ст. 6783. - P1-12, DOI 10.3390/ijms21186783 . - ISSN 1661-6596
Кл.слова (ненормированные):
Adaptive response -- Bioassay -- Detoxification -- Hormesis -- Humic substances -- Luminous marine bacterium -- Reactive oxygen species -- Toxicity -- Tritium
Аннотация: The paper studies the combined effects of beta-emitting radionuclide tritium and Humic Substances (HS) on the marine unicellular microorganism—luminous bacteria—under conditions of low-dose radiation exposures (<0.04 Gy). Tritium was used as a component of tritiated water. Bacterial luminescence intensity was considered as a tested physiological parameter. The bioluminescence response of the marine bacteria to tritium corresponded to the “hormesis” model: it included stages of bioluminescence inhibition and activation, as well as the absence of the effect. HS were shown to decrease the inhibition and activation effects of tritium, similar to those of americium-241, alpha-emitting radionuclide, studied earlier. Correlations between the bioluminescence intensity and the content of Reactive Oxygen Species (ROS) were found in the radioactive bacterial suspensions. The results demonstrate an important role of HS in natural processes in the regions of low radioactive contamination: HS can mitigate radiotoxic effects and adaptive response of microorganisms to low-dose radioactive exposures. The involvement of ROS in these processes was demonstrated. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Krasnoyarsk State Medical Academy, Krasnoyarsk, 660022, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center ‘Krasnoyarsk Science Center SB RAS’, Krasnoyarsk, 660036, Russian Federation
Department of Chemistry, Moscow State University, Moscow, 119991, Russian Federation
Biology Department, Irkutsk State University, Irkutsk, 664003, Russian Federation
Biophysics Department, Siberian Federal University, Svobodny 79, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Rozhko, T. V.; Kolesnik, O. V.; Badun, G. A.; Stom, D. I.; Kudryasheva, N. S.

Найти похожие
14.


   
    Humic Substances Mitigate the Impact of Tritium on Luminous Marine Bacteria. Involvement of Reactive Oxygen Species / T. V. Rozhko, O. V. Kolesnik, G. A. Badun [et al.] // Int. J. Mol. Sci. - 2020. - Vol. 21, Is. 18. - Ст. 6783, DOI 10.3390/ijms21186783. - Cited References:74. - This work was supported by RFBR-Krasnoyarsk Regional Foundation N 18-44-242002, 18-44-240004. . - ISSN 1422-0067
РУБ Biochemistry & Molecular Biology + Chemistry, Multidisciplinary
Рубрики:
IONIZING-RADIATION
   OXIDATIVE STRESS

   DETOXIFICATION PROCESSES

Кл.слова (ненормированные):
tritium -- humic substances -- luminous marine bacterium -- bioassay -- detoxification -- reactive oxygen species -- toxicity -- adaptive response -- hormesis
Аннотация: The paper studies the combined effects of beta-emitting radionuclide tritium and Humic Substances (HS) on the marine unicellular microorganism-luminous bacteria-under conditions of low-dose radiation exposures (<0.04 Gy). Tritium was used as a component of tritiated water. Bacterial luminescence intensity was considered as a tested physiological parameter. The bioluminescence response of the marine bacteria to tritium corresponded to the "hormesis" model: it included stages of bioluminescence inhibition and activation, as well as the absence of the effect. HS were shown to decrease the inhibition and activation effects of tritium, similar to those of americium-241, alpha-emitting radionuclide, studied earlier. Correlations between the bioluminescence intensity and the content of Reactive Oxygen Species (ROS) were found in the radioactive bacterial suspensions. The results demonstrate an important role of HS in natural processes in the regions of low radioactive contamination: HS can mitigate radiotoxic effects and adaptive response of microorganisms to low-dose radioactive exposures. The involvement of ROS in these processes was demonstrated.

WOS
Держатели документа:
Krasnoyarsk State Med Acad, Krasnoyarsk 660022, Russia.
RAS, Inst Biophys, Fed Res Ctr Krasnoyarsk Sci Ctr, SB, Krasnoyarsk 660036, Russia.
Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119991, Russia.
Irkutsk State Univ, Biol Dept, Irkutsk 664003, Russia.
Siberian Fed Univ, Dept Biophys, Svobodny 79, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Rozhko, Tatiana V.; Kolesnik, Olga V.; Badun, Gennadii A.; Stom, Devard I.; Kudryasheva, Nadezhda S.; Kudryasheva, Nadezhda; RFBR-Krasnoyarsk Regional Foundation [N 18-44-242002, 18-44-240004]

Найти похожие
15.


   
    Direct and Indirect Detoxification Effects of Humic Substances / L. Bondareva, N. Kudryasheva // Agronomy-Basel. - 2021. - Vol. 11, Is. 2. - Ст. 198, DOI 10.3390/agronomy11020198. - Cited References:79. - This review was prepared with the partial financial support of the Program of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Russian Federation) 2020-2025. . - ISSN 2073-4395
РУБ Agronomy + Plant Sciences

Кл.слова (ненормированные):
humic substances -- detoxification -- luminous bacteria -- adaptive response
Аннотация: The review summarizes studies on the detoxification effects of water-soluble humic substances (HS), which are products of the natural transformation of organic substances in soils and bottom sediments that serve as natural detoxifying agents in water solutions. The detoxifying effects of HS on microorganisms are quite complex: HS neutralize free pollutants (indirect bioeffects) and also stimulate the protective response of organisms (direct bioeffects). Prospects and potential problems of bioluminescent bacteria-based assay to monitor toxicity of solutions in the presence of HS are discussed. The main criterion for the bioassay application is versatility and ease of use. The detoxification efficiency of HS in different pollutant solutions was evaluated, and the detoxification mechanisms are discussed. Particular attention was paid to the direct and complex direct + indirect effects of HS. The review focuses on the protective function of HS in solutions of radionuclides and salts of stable metals, with special consideration of the antioxidant properties of HS.

WOS
Держатели документа:
Fed Sci Ctr Hyg, Moscow 141014, Russia.
Russian Acad Sci, Inst Biophys, Krasnoyarsk Sci Ctr, Fed Res Ctr,Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Biophys Dept, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Bondareva, Lydia; Kudryasheva, Nadezhda; Program of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Russian Federation) 2020-2025

Найти похожие
16.


   
    Toxicity and Antioxidant Activity of Fullerenol C-60,C-70 with Low Number of Oxygen Substituents / E. S. Kovel, A. G. Kicheeva, N. G. Vnukova [et al.] // Int. J. Mol. Sci. - 2021. - Vol. 22, Is. 12. - Ст. 6382, DOI 10.3390/ijms22126382. - Cited References:93. - This research was funded by RFBR, N18-29-19003; RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, N20-44-243001; and partly supported by the Program of the Federal Service for Surveillance on Consumer Rights Protection and HumanWellbeing, Fundamental Study 2020-2025 (Russian Federation). . - ISSN 1422-0067
РУБ Biochemistry & Molecular Biology + Chemistry, Multidisciplinary
Рубрики:
HUMIC SUBSTANCES
   DETOXIFICATION PROCESSES

   BIOLOGICAL-ACTIVITY

Кл.слова (ненормированные):
fullerenol -- toxicity -- antioxidant activity -- reactive oxygen species -- bioluminescent assay -- hormesis
Аннотация: Fullerene is a nanosized carbon structure with potential drug delivery applications. We studied the bioeffects of a water-soluble fullerene derivative, fullerenol, with 10-12 oxygen groups (F10-12); its structure was characterized by IR and XPS spectroscopy. A bioluminescent enzyme system was used to study toxic and antioxidant effects of F10-12 at the enzymatic level. Antioxidant characteristics of F10-12 were revealed in model solutions of organic and inorganic oxidizers. Low-concentration activation of bioluminescence was validated statistically in oxidizer solutions. Toxic and antioxidant characteristics of F10-12 were compared to those of homologous fullerenols with a higher number of oxygen groups:F24-28 and F40-42. No simple dependency was found between the toxic/antioxidant characteristics and the number of oxygen groups on the fullerene's carbon cage. Lower toxicity and higher antioxidant activity of F24-28 were identified and presumptively attributed to its higher solubility. An active role of reactive oxygen species (ROS) in the bioeffects of F10-12 was demonstrated. Correlations between toxic/antioxidant characteristics of F10-12 and ROS content were evaluated. Toxic and antioxidant effects were related to the decrease in ROS content in the enzyme solutions. Our results reveal a complexity of ROS effects in the enzymatic assay system.

WOS
Держатели документа:
FRC KSC SB RAS, Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
FRC KSC SB RAS, Inst Phys SB RAS, Krasnoyarsk 660036, Russia.
FRC KSC SB RAS, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Kovel, Ekaterina S.; Kicheeva, Arina G.; Vnukova, Natalia G.; Churilov, Grigory N.; Stepin, Evsei A.; Kudryasheva, Nadezhda S.; Kovel, Ekaterina; RFBRRussian Foundation for Basic Research (RFBR) [N18-29-19003]; RFBR, Krasnoyarsk Territory; Krasnoyarsk Regional Fund of Science [N20-44-243001]; Program of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Fundamental Study 2020-2025 (Russian Federation)

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)