Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Eutrophication<.>)
Общее количество найденных документов : 18
Показаны документы с 1 по 18
1.


   
    Challenges and opportunities for integrating lake ecosystem modelling approaches / W. M. Mooij [et al.] // Aquatic Ecology. - 2010. - Vol. 44, Is. 3. - P633-667, DOI 10.1007/s10452-010-9339-3 . - ISSN 1386-2588
Кл.слова (ненормированные):
Adaptive processes -- Analysis -- Aquatic -- Bifurcation -- Biodiversity -- Climate warming -- Community -- Eutrophication -- Fisheries -- Food web dynamics -- Freshwater -- Global change -- Hydrology -- Lake -- Management -- Marine -- Mitigation -- Model integration -- Model limitations -- Non-linear dynamics -- Nutrients -- Plankton -- Population -- Prediction -- Spatial -- Understanding -- adaptive management -- algorithm -- aquatic community -- biodiversity -- ecosystem modeling -- eutrophication -- fishery production -- food web -- fuzzy mathematics -- global warming -- hydrology -- lake ecosystem -- mitigation -- model test -- numerical model -- nutrient availability -- plankton -- prediction -- saline lake -- spatial analysis
Аннотация: A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and trait-based models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models. В© 2010 The Author(s).

Scopus
Держатели документа:
Netherlands Institute of Ecology (NIOO-KNAW), Department of Aquatic Ecology, Rijksstraatweg 6, 3631 AC Nieuwersluis, Netherlands
Aarhus University, National Environmental Research Institute, Department of Freshwater Ecology, 8600 Silkeborg, Denmark
Greenland Climate Research Centre (GCRC), Greenland Institute of Natural Resources, Kivioq 2, P.O. Box 570, 3900 Nuuk, Greenland
University of Toronto, Department of Physical and Environmental Sciences, Toronto, ON M1C 1A4, Canada
Institute of Computational Modelling (SB-RAS), Siberian Federal University, 660036 Krasnoyarsk, Russian Federation
Tanzania Fisheries Research Institute (TAFIRI), Mwanza Centre, P.O. Box 475, Mwanza, Tanzania
Institute of Biophysics (SB-RAS), Akademgorodok, 660036 Krasnoyarsk, Russian Federation
University of Miami, Florida Integrated Science Centre, USGS, Coral Gables, FL 33124, United States
Wageningen University, Department of Aquatic Ecology and Water Quality, P.O. Box 47, 6700 AA Wageningen, Netherlands
Centre for Ecology and Hydrology, Lancaster Environment Centre, Lake Ecosystem Group, Algal Modelling Unit, Bailrigg, Lancaster LA1 4AP England, United Kingdom
Federal University of Alagoas, Centre for Technology, Campus A.C. Simoes, 57072-970 Maceio-AL, Brazil
Institute of Biochemistry and Biology, Department of Ecology and Ecosystem Modelling, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, P.O. Box 7050, 75007 Uppsala, Sweden
University of Waikato, Centre for Biodiversity and Ecology Research, Private Bag 3105, Hamilton, New Zealand
University of Western Australia, School of Earth and Environment, Crawley, WA 6009, Australia
Technische Universitat Dresden, Institute of Hydrobiology, 01062 Dresden, Germany
Technische Universitat Dresden, Neunzehnhain Ecological Station, Neunzehnhainer Str. 14, 09514 Lengefeld, Germany
Deltares, P.O. Box 177, 2600 MH Delft, Netherlands
Technion-Israel Institute of Technology, Faculty of Civil and Environmental Engineering, Technicon City, Haifa 32000, Israel
Helmholtz Centre for Environmental Research, Department of Lake Research, Brueckstrasse 3a, 39114 Magdeburg, Germany
Witteveen and Bos, P.O. Box 233, 7400 AV Deventer, Netherlands
University of Oslo, Department of Biology, P.O. Box 1066, Blindern, 0316 Oslo, Norway
UNESCO-IHE Institute of Water Education, 2601 DA Delft, Netherlands
Portland State University, Department of Civil and Environmental Engineering, Portland, OR 97207, United States
Netherlands Environmental Assessment Agency (PBL), P.O. Box 303, 3720 AH Bilthoven, Netherlands : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Mooij, W.M.; Trolle, D.; Jeppesen, E.; Arhonditsis, G.; Belolipetsky, P.V.; Chitamwebwa, D.B.R.; Degermendzhy, A.G.; DeAngelis, D.L.; De Senerpont Domis, L.N.; Downing, A.S.; Elliott, J.A.; Fragoso Jr., C.R.; Gaedke, U.; Genova, S.N.; Gulati, R.D.; Hakanson, L.; Hamilton, D.P.; Hipsey, M.R.; 't Hoen, J.; Hulsmann, S.; Los, F.H.; Makler-Pick, V.; Petzoldt, T.; Prokopkin, I.G.; Rinke, K.; Schep, S.A.; Tominaga, K.; van Dam, A.A.; van Nes, E.H.; Wells, S.A.; Janse, J.H.

Найти похожие
2.


   
    Degradation of polyhydroxyalkanoates in eutrophic reservoir / T. G. Volova [et al.] // Polymer Degradation and Stability. - 2007. - Vol. 92, Is. 4. - P580-586, DOI 10.1016/j.polymdegradstab.2007.01.011 . - ISSN 0141-3910
Кл.слова (ненормированные):
16S rDNA -- Degradation -- DGGE -- Polyhydroxyalkanoates -- Reservoir -- Biodegradation -- Climate change -- Ecosystems -- Eutrophication -- Genetic engineering -- Physical chemistry -- Eutrophic reservoir -- Phylogenetic analysis -- Physicochemical properties -- Polyhydroxyalkanoates -- Organic polymers
Аннотация: During the summers of 1999-2001 the dynamics of polyhydroxyalkanoate degradation in a small recreational eutrophic reservoir was studied experimentally. It has been shown that biodegradation of polyhydroxyalkanoates in the environment is determined by the structure and physicochemical properties of the polymer and by local weather conditions, which influence the state of the aquatic ecosystem. Species (clones) of bacteria able to utilize polyhydroxyalkanoates in the reservoir were identified using molecular phylogenetic analysis of 16S rRNA genes. В© 2007 Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Siberian Federal University, Svobodny av. 79, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.G.; Gladyshev, M.I.; Trusova, M.Y.; Zhila, N.O.

Найти похожие
3.


   
    Fatty acid content and composition of sediments from Siberian eutrophic water bodies: Implications for biodiesel production / N. N. Sushchik, A. Y. Kuchkina, M. I. Gladyshev // Water Research. - 2013. - Vol. 47, Is. 9. - P3192-3200, DOI 10.1016/j.watres.2013.03.031 . - ISSN 0043-1354
Кл.слова (ненормированные):
Biodiesel -- Bottom sediments -- Fatty acids -- Fuel properties -- Inland water bodies -- Lipids -- Biological conditions -- Bottom sediments -- Environmental characteristic -- Freshwater reservoirs -- Fuel properties -- Inland waters -- Organic matter source -- Transformation process -- Biodiesel -- Eutrophication -- Fatty acids -- Feedstocks -- Fuels -- Lipids -- Reservoirs (water) -- Sedimentology -- Thermochemistry -- Sediments -- biodiesel -- fresh water -- iodine -- organic matter -- biofuel -- bottom water -- combustion -- eutrophic environment -- eutrophication -- fatty acid -- lacustrine deposit -- physicochemical property -- reservoir -- transformation -- article -- estuary -- eutrophication -- fatty acid analysis -- lake -- lipid composition -- priority journal -- sediment -- Khakassia -- Krasnoyarsk [Krasnoyarsk (ADS)] -- Krasnoyarsk [Russian Federation] -- Lake Shira -- Russian Federation
Аннотация: We studied lipids and fatty acids (FA) in bottom sediments from four Siberian water bodies, Bugach, Lesnoi and Krasnoyarsk freshwater reservoirs and brackish Shira lake, that differed in physico-chemical and biological conditions. We considered the potential of the bottom sediments as a feedstock for biodiesel production and estimated properties of the obtained biodiesel as a fuel on the basis of FA composition. Contents of lipids and FA in the sediments moderately varied and were generally close to the reported data from lacustrine and estuarine systems. We confirmed that long-term eutrophication of a water body resulted in the lipid-rich bottom sediments that make them a feedstock for biodiesel production. Each of the studied water bodies had specific FA composition of sediments likely due to different organic matter sources and transformation processes. Despite these differences in FA profiles, calculated key parameters (cetane number, iodine number and heat of combustion) of biodiesel produced from all the studied sediments met the limits established by current biodiesel standards. Thus, the variation in the sediment FA composition due to environmental characteristics of a water body likely has no principal significance for fuel properties of the obtained biodiesel. В© 2013 Elsevier Ltd.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok 50/50, Krasnoyarsk 660036, Russian Federation
Siberian Federal University, Svobodny av. 79, Krasnoyarsk 660041, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Sushchik, N.N.; Kuchkina, A.Y.; Gladyshev, M.I.

Найти похожие
4.


   
    Production of EPA and DHA in aquatic ecosystems and their transfer to the land / M. I. Gladyshev, N. N. Sushchik, O. N. Makhutova // Prostaglandins and Other Lipid Mediators. - 2013, DOI 10.1016/j.prostaglandins.2013.03.002 . - ISSN 1098-8823
Кл.слова (ненормированные):
Aquatic ecosystems -- Docosahexaenoic acid -- Eicosapentaenoic acid -- Trophic transfer efficiency
Аннотация: Most omnivorous animals, including humans, have to some degree relied on physiologically important polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from food. Only some taxa of microalgae, rather than higher plants can synthesize de novo high amounts of EPA and DHA. Once synthesized by microalgae, PUFA are transferred through trophic chain to organisms of higher levels. Thus, aquatic ecosystems play the unique role in the Biosphere as the principal source of EPA and DHA for most omnivorous animals, including inhabitants of terrestrial ecosystems. PUFA are transferred from aquatic to terrestrial ecosystems through riparian predators, drift of carrion and seaweeds, emergence of amphibiotic insects, and water birds. The essential PUFA are transferred through trophic chains with about twice higher efficiency than bulk carbon. Thereby, PUFA are accumulated, rather than diluted in biomass of organisms of higher trophic levels, e.g., in fish. Mankind is faced with a severe deficiency of EPA and DHA in diet. Although additional sources of PUFA supply for humans, such as aquaculture, biotechnology of microorganisms and transgenic terrestrial oil-seed producing plants are developed, natural fish production of aquatic ecosystems will remain one of the main sources of EPA and DHA for humans. Aquatic ecosystems have to be protected from anthropogenic impacts, such as eutrophication, pollution and warming, which reduce PUFA production. В© 2013 Elsevier Inc. All rights reserved.

Scopus,
Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russia
Siberian Federal University, Svobodny av. 79, Krasnoyarsk 660041, Russia : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gladyshev, M.I.; Sushchik, N.N.; Makhutova, O.N.

Найти похожие
5.


   
    Seasonal features of consumption of lysine by uncultivated bacterial plankton of Eutrophic water reservoir / M. Y. Trusova, O. V. Kolmakova, M. I. Gladyshev // Contemporary Problems of Ecology. - 2012. - Vol. 5, Is. 4. - P391-398, DOI 10.1134/S1995425512040154 . - ISSN 1995-4255
Кл.слова (ненормированные):
16S ribosomal RNA -- biogeochemical function -- denaturing gradient gel electrophoresis -- eutrophic water reservoir -- lysine -- microecosystem (MES) -- uncultivated bacterial plankton -- amino acid -- bacterioplankton -- bacterium -- biogeochemistry -- electrokinesis -- eutrophication -- laboratory method -- microbial community -- polymerase chain reaction -- reservoir -- seasonal variation -- specialization -- Bacteria (microorganisms)
Аннотация: Dynamics of bacterial plankton community of eutrophic water reservoir in laboratory microecosystems with amino acid lysine was studied using PCR-DGGE technique. The addition of lysine to the microecosystems resulted in changes in the composition of the bacterial plankton in summer; in particular, a number of Lys1 and Lys2 species (genotypes) that consume this amino acid grew fast in the bacterial community. The plank tonic bacterial communities did not respond to the addition of lysine in spring and late summer. The obtained data confirm the hypothesis for the narrow specialization of bacterial plankton species to the consumption of individual organic substances. В© 2012 Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok 50-50, Krasnoyarsk 660036, Russian Federation
Siberian Federal University, Svobodnii prosp. 79, Krasnoyarsk 660041, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Trusova, M.Y.; Kolmakova, O.V.; Gladyshev, M.I.

Найти похожие
6.


   
    Biodiesel production from sediments of a eutrophic reservoir / A. Kuchkina [et al.] // Biomass and Bioenergy. - 2011. - Vol. 35, Is. 5. - P2280-2284, DOI 10.1016/j.biombioe.2011.02.047 . - ISSN 0961-9534
Кл.слова (ненормированные):
Biodiesel -- Dredging sediments -- Eutrophic reservoir -- Fatty acids -- Lipids -- Bio-diesel fuel -- Biodiesel production -- Cetane number -- Dry weight -- EN 14214 -- Eutrophic reservoirs -- Heat of combustion -- High price -- Iodine number -- IS costs -- Lake restoration -- Lipid content -- Production cost -- SIBERIA -- Anoxic sediments -- Biodiesel -- Costs -- Diesel fuels -- Eutrophication -- Fatty acids -- Iodine -- Lipids -- Reservoirs (water) -- Sedimentology -- Synthetic fuels -- Thermochemistry -- Dredging -- biofuel -- combustion -- dredging -- environmental restoration -- eutrophic environment -- iodine -- lacustrine deposit -- lipid -- production cost -- reservoir -- Bugach Reservoir -- Krasnoyarsk [Russian Federation] -- Russian Federation
Аннотация: Sediments from eutrophic reservoir Bugach (Siberia, Russia) were tested for possibility to produce biodiesel. We supposed that the sediments could be a promising biodiesel producer. The major reason of high price of biodiesel fuel is cost of a raw material. The use of dredging sediments for biodiesel production reduces production costs, because the dredging sediments are by-products which originated during lake restoration actions, and are free of cost raw materials. Lipid content in sediments was 0.24% of dry weight. To assess the potential of from sediments as a substitute of diesel fuel, the properties of the biodiesel such as cetane number, iodine number and heat of combustion were calculated. All of this parameters complied with limits established by EN 14214 and EN 14213 related to biodiesel quality. В© 2011 Elsevier Ltd.

Scopus
Держатели документа:
Siberian Federal University, Svobodny av. 79, Krasnoyarsk 660041, Russian Federation
Institute of Biophysics Siberian Branch of RAS, Akademgorodok, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kuchkina, A.; Gladyshev, M.I.; Sushchik, N.N.; Kravchuk, E.S.; Kalachova, G.S.

Найти похожие
7.


   
    Small lake plankton and its essential polyunsaturated fatty acids content as affected by a colony of the common heron (Ardea cinerea L.) / A. V. Krylov [et al.] // Contemporary Problems of Ecology. - 2011. - Vol. 4, Is. 1. - P42-49, DOI 10.1134/S1995425511010073 . - ISSN 1995-4255
Кл.слова (ненормированные):
Essential polyunsaturated fatty acids -- Heron -- Plankton community -- Shallow lake -- anthropogenic effect -- colony structure -- community structure -- detritus -- diatom -- eutrophication -- fatty acid -- habitat type -- lake -- nutrition -- seston -- wader -- zooplankton -- Ardea cinerea -- Aves -- Bacillariophyta
Аннотация: It is shown that in the area inhabited by a colony of the common heron in a high-trophic shallow lake a number of structure parameters of plankton undergoes changes similar to those observed at anthropogenic eutrophication and indicating an increase in biogenic and organic load. At the same time a number of changes is revealed that are usually not registered when human influence increases. The composition and content of polyunsaturated fatty acids in seston and zooplankton show that diatoms and detritus of land genesis play relatively smaller role in the zooplankton nutrition in the lake area influenced by the birds. The zooplankton developing in this zone is a better food rich in essential docosahexaenoic acid necessary for the growth and development of the fish. В© 2011 Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Papanin Institute of Biology of Inner Waters, Russian Academy of Sciences, Borok, Yaroslavl oblast 152742, Russian Federation
Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russian Federation
Siberian Federal University, pr. Svobodnyi 79, Krasnoyarsk 660041, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Krylov, A.V.; Gladyshev, M.I.; Kosolapov, D.B.; Sushchik, N.N.; Korneva, L.G.; Makhutova, O.N.; Kulakov, D.V.; Kalacheva, G.S.; Dubovskaya, O.P.

Найти похожие
8.


   
    Efficiency of transfer of essential polyunsaturated fatty acids versus organic carbon from producers to consumers in a eutrophic reservoir / M. I. Gladyshev [et al.] // Oecologia. - 2011. - Vol. 165, Is. 2. - P521-531, DOI 10.1007/s00442-010-1843-6 . - ISSN 0029-8549
Кл.слова (ненормированные):
Phytoplankton -- Production -- PUFA -- Trophic level -- Zooplankton -- carbon -- fresh water -- unsaturated fatty acid -- biomass -- eutrophic environment -- fatty acid -- net primary production -- organic carbon -- paradigm shift -- phytoplankton -- reservoir -- secondary production -- trophic level -- zooplankton -- animal -- article -- eutrophication -- food chain -- functional food -- growth, development and aging -- metabolism -- phytoplankton -- season -- zooplankton -- Animals -- Carbon -- Eutrophication -- Fatty Acids, Unsaturated -- Food Chain -- Fresh Water -- Functional Food -- Phytoplankton -- Seasons -- Zooplankton -- Animalia
Аннотация: One of the central paradigms of ecology is that only about 10% of organic carbon production of one trophic level is incorporated into new biomass of organisms of the next trophic level. Many of energy-yielding compounds of carbon are designated as 'essential', because they cannot be synthesized de novo by consumers and must be obtained with food, while they play important structural and regulatory functions. The question arises: are the essential compounds transferred through trophic chains with the same efficiency as bulk carbon? To answer this question, we measured gross primary production of phytoplankton and secondary production of zooplankton and content of organic carbon and essential polyunsaturated fatty acids of ?-3 family with 18-22 carbon atoms (PUFA) in the biomass of phytoplankton and zooplankton in a small eutrophic reservoir during two summers. Transfer efficiency between the two trophic levels, phytoplankton (producers) and zooplankton (consumers), was calculated as ratio of the primary production versus the secondary (zooplankton) production for both carbon and PUFA. We found that the essential PUFA were transferred from the producers to the primary consumers with about twice higher efficiency than bulk carbon. In contrast, polyunsaturated fatty acids with 16 carbon atoms, which are synthesized exclusively by phytoplankton, but are not essential for animals, had significantly lower transfer efficiency than both bulk carbon, and essential PUFA. Thus, the trophic pyramid concept, which implicitly implies that all the energy-yielding compounds of carbon are transferred from one trophic level to the next with the same efficiency of about on average 10%, should be specified for different carbon compounds. В© 2010 Springer-Verlag.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russian Federation
Siberian Federal University, Svobodny av. 79, Krasnoyarsk 660041, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gladyshev, M.I.; Sushchik, N.N.; Anishchenko, O.V.; Makhutova, O.N.; Kolmakov, V.I.; Kalachova, G.S.; Kolmakova, A.A.; Dubovskaya, O.P.

Найти похожие
9.


   
    The use of bioluminescent biotests for study of natural and laboratory aquatic ecosystems / V. A. Kratasyuk [et al.] // Chemosphere. - 2001. - Vol. 42, Is. 8. - P909-915, DOI 10.1016/S0045-6535(00)00177-6 . - ISSN 0045-6535
Кл.слова (ненормированные):
Alcohol dehydrogenase -- Bacterial luciferase -- Bioluminescence -- Blooming -- Pollution -- Trypsin -- Water toxicity -- alcohol dehydrogenase -- benzoquinone -- luciferase -- trypsin -- aquatic ecosystem -- bioluminescence -- water quality -- article -- bacterium culture -- bioluminescence -- blue green alga -- ecosystem -- pond -- seasonal variation -- water pollution -- water quality -- Benzoquinones -- Biological Assay -- Cyanobacteria -- Ecosystem -- Environmental Monitoring -- Eutrophication -- FMN Reductase -- Indicators and Reagents -- Luminescent Measurements -- NADH, NADPH Oxidoreductases -- Water Pollutants -- Russian Federation -- algae -- Bacteria (microorganisms) -- Chlorophyta -- Cyanobacteria -- uncultured cyanobacterium
Аннотация: A set of bioluminescent tests was developed to monitor water quality in natural and laboratory ecosystems. It consisted of four bioluminescent systems: luminous bacteria, coupled enzyme system NADH:FMN-oxidoreductase-luciferase and triplet enzyme systems with alcohol dehydrogenase and trypsin. The set of biotests was applied for a small forest pond (Siberia, Russia), laboratory microecosystems polluted with benzoquinone and a batch culture of blue-green algae. Thereby effects of natural water compared to those of models of heavy pollution and "bloom" of blue-greens on the bioluminescent tests were revealed. The set of biotests was not affected by a natural seasonal variability of water quality in the unpolluted pond, but responded to the heavy pollution and the "bloom" of blue-greens. The set of biotests could be recommended as the alarm test to control the acute toxicity of natural water bodies. В© 2001 Elsevier Science Ltd.

Scopus
Держатели документа:
Krasnoyarsk State University, pr. Svobodnii 79, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Krasnoyarsk State Agricultural University, Mira av., 88, Krasnoyarsk, 660049, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kratasyuk, V.A.; Esimbekova, E.N.; Gladyshev, M.I.; Khromichek, E.B.; Kuznetsov, A.M.; Ivanova, E.A.

Найти похожие
10.


   
    Studies of Hydrochemical and Kinetic Characteristics of Small Water Bodies in the Context of Their Eutrophication / I. V. Gribovskaya [et al.] // Water Resources. - 2003. - Vol. 30, Is. 1. - P68-71, DOI 10.1023/A:1022055802258 . - ISSN 0097-8078
Кл.слова (ненормированные):
eutrophication -- hydrodynamics -- phytoplankton -- pond -- water quality -- Eurasia -- Krasnoyarsk [Russian Federation] -- Russian Federation
Аннотация: Comparison study data on the hydrochemical parameters, bacterio- and phytoplankton, and reduction-oxidation characteristics of two ponds in Krasnoyarsk are presented. These water bodies are of interest due to the fact that the ecosystems of these natural model objects respond to eutrophication in different ways. It is assumed that the reason for this difference is in the hydrophysical characteristics depending on the morphology of the basins of the water bodies rather than in the hydrochemical characteristics.

Scopus
Держатели документа:
Siberian Branch, Russian Academy of Sciences, Academgorodok, Krasnoyarsk 660036, Russian Federation
Krasnoyarsk Stt. Agrarian University, prosp. Mira 88, Krasnoyarsk 660049, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gribovskaya, I.V.; Ivanova, E.A.; Kalacheva, G.S.; Kravchuk, E.S.

Найти похожие
11.


   
    Production of EPA and DHA in aquatic ecosystems and their transfer to the land [Text] / M. I. Gladyshev, N. N. Sushchik, O. N. Makhutova // Prostaglandins Other Lipid Mediat. - 2013. - Vol. 107. - P117-126, DOI 10.1016/j.prostaglandins.2013.03.002. - Cited References: 129. - This work was supported by grants of Russian Foundation for Basic Research (RFBR) No. 11-04-00168 and No. 12-05-00298, and also by the project B-15 of Siberian Federal University, carried out according to Federal Tasks of Ministry of Education and Science of Russian Federation. We are grateful to two anonymous reviewers for their helpful comments to improve the manuscript. . - 10. - ISSN 1098-8823
РУБ Biochemistry & Molecular Biology + Cell Biology
Рубрики:
POLYUNSATURATED FATTY-ACIDS
   FRESH-WATER FISH

   EICOSAPENTAENOIC ACID

   DOCOSAHEXAENOIC ACID

   YENISEI RIVER

   BIOTECHNOLOGICAL PRODUCTION

   ARBUSCULAR MYCORRHIZAL

   CAENORHABDITIS-ELEGANS

   MICROBIAL COMMUNITY

   THYMALLUS-ARCTICUS

Кл.слова (ненормированные):
Eicosapentaenoic acid -- Docosahexaenoic acid -- Aquatic ecosystems -- Trophic transfer efficiency
Аннотация: Most omnivorous animals, including humans, have to some degree relied on physiologically important polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from food. Only some taxa of microalgae, rather than higher plants can synthesize de novo high amounts of EPA and DHA. Once synthesized by microalgae, PUFA are transferred through trophic chain to organisms of higher levels. Thus, aquatic ecosystems play the unique role in the Biosphere as the principal source of EPA and DHA for most omnivorous animals, including inhabitants of terrestrial ecosystems. PUFA are transferred from aquatic to terrestrial ecosystems through riparian predators, drift of carrion and seaweeds, emergence of amphibiotic insects, and water birds. The essential PUFA are transferred through trophic chains with about twice higher efficiency than bulk carbon. Thereby, PUFA are accumulated, rather than diluted in biomass of organisms of higher trophic levels, e.g., in fish. Mankind is faced with a severe deficiency of EPA and DHA in diet. Although additional sources of PUFA supply for humans, such as aquaculture, biotechnology of microorganisms and transgenic terrestrial oil-seed producing plants are developed, natural fish production of aquatic ecosystems will remain one of the main sources of EPA and DHA for humans. Aquatic ecosystems have to be protected from anthropogenic impacts, such as eutrophication, pollution and warming, which reduce PUFA production. (C) 2013 Elsevier Inc. All rights reserved.

WOS,
Scopus
Держатели документа:
[Gladyshev, Michail I.
Sushchik, Nadezhda N.
Makhutova, Olesia N.] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
[Gladyshev, Michail I.
Sushchik, Nadezhda N.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gladyshev, M.I.; Sushchik, N.N.; Makhutova, O.N.; Russian Foundation for Basic Research (RFBR) [11-04-00168, 12-05-00298]; project B-15 of Siberian Federal University

Найти похожие
12.


   
    Fatty acid and elemental composition of littoral “green tide” algae from the Gulf of Finland, the Baltic Sea / Y. I. Gubelit [et al.] // J. Appl. Phycol. - 2014. - Vol. 27, Is. 1. - P375-386, DOI 10.1007/s10811-014-0349-8 . - ISSN 0921-8971
Кл.слова (ненормированные):
Cladophora glomerata -- Coastal eutrophication -- Essential PUFA -- Green tides -- Ulva intestinalis
Аннотация: Coastal eutrophication leads to a shift in primary producer communities from perennial species to ephemeral fast-growing species of macroalgae, which is known as “green tides” phenomenon. In brackish water habitats of the Baltic Sea, the opportunistic green algae, Cladophora glomerata and Ulva intestinalis, replaced the brown alga Fucus vesiculosus, while in freshwater estuarine parts they replaced epilithic microalgae. We studied Baltic populations of the macroalgae, C. glomerata and U. intestinalis, and epilithic and epiphytic microalgae, with respect to their nutritive quality, such as content of essential polyunsaturated fatty acids (PUFAs) and elemental composition. Fatty acid profiles of the two macroalgae were significantly different, including levels of essential PUFAs. We found a relatively high content of eicosapentaenoic acid (EPA; 20:5n−3) in C. glomerata biomass (4.14 mg g−1 C), whereas U. intestinalis had a lower value (0.45 mg g−1 C). Comparison with literature data showed that C. glomerata appeared to be a more valuable food for potential invertebrate consumers in respect to EPA content and stoichiometric C/P ratio than perennial F. vesiculosus and U. intestinalis. Thus, replacement of F. vesiculosus and epilithic microalgae by C. glomerata would not decrease the potential nutritive value of coastal algal communities for invertebrates. In turn, if U. intestinalis dominate in algal community, the nutritive value of primary producers in coastal zone would decrease. However, in following works, other important indicators of nutritive value, such as sterols and amino acids, should be included in the estimations of green tide algae species. © 2014, Springer Science+Business Media Dordrecht.

Scopus
Держатели документа:
Zoological Institute of the Russian Academy of Science, Universitetskaya emb. 1, Saint Petersburg, Russian Federation
Institute of Biophysics of Siberian Branch of the Russian Academy of Science, Akademgorodok, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodny av. 79, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Gubelit, Y. I.; Makhutova, O. N.; Sushchik, N. N.; Kolmakova, A. A.; Kalachova, G. S.; Gladyshev, M. I.

Найти похожие
13.


   
    Green Tides: New Consequences of the Eutrophication of Natural Waters (Invited Review) / M. I. Gladyshev, Y. I. Gubelit // Contemp. Probl. Ecol. - 2019. - Vol. 12, Is. 2. - P109-125, DOI 10.1134/S1995425519020057. - Cited References:134. - This study was supported by a state task as part of fundamental research program of the Russian Federation no. VI. 51.1.9, no. 6.1504.2017/PCh, and no. AAAA-A19-119020690091-0. . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology
Рубрики:
CLADOPHORA-GLOMERATA CHLOROPHYTA
   BENTHIC ALGAL COMMUNITY

   MACROALGAL

Кл.слова (ненормированные):
nuisance algal blooms -- Ulva -- Cladophora -- Spirogyra -- metaphyton -- benthification
Аннотация: In recent decades, alongside the comparatively well-studied bloom caused by phytoplankton, a bloom of marine and fresh waters caused by littoral benthic macroalgae of three generaUlva, Cladophora, and Spirogyrahave become a global phenomenon. In the present review, an attempt is made to gain an understanding of why it is these taxa of green filamentous algae that start to grow rapidly in the spring in many water bodies and streams, including oligotrophic waters, and then float up from the bottom, forming floating mats (metaphyton); then their decaying masses are washed ashore and cause substantial ecological and economical losses. Peculiar and common ecological and physiological features of Ulva, Cladophora, and Spirogyra favorable for the formation of green tides are considered. Although eutrophication (the supply of nitrogen and phosphorus from agricultural lands, industrial and domestic wastewaters, and aquaculture) is the evident cause of the increase in algal biomass, it is suggested that the location of external fluxes of inorganic nutrients (surface runoff or groundwater discharge), as well as the biogenic redirection of internal fluxes of nitrogen and phosphorus from pelagial to littoral (benthification), play a key role in the formation of green tides. Measures for controlling green tides are discussed. The necessity for detailed studies of the metaphytonic form of vegetation of benthic macroalgae is emphasized. Obviously, a revision of the present concept of oligotrophic/eutrophic waters which considers only the pelagic compartments of aquatic ecosystems is required.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Zool Inst, St Petersburg 199034, Russia.

Доп.точки доступа:
Gladyshev, M. I.; Gubelit, Y. I.; state task as part of fundamental research program of the Russian Federation [51.1.9, 6.1504.2017/PCh, AAAA-A19-119020690091-0]

Найти похожие
14.


   
    Long-chain Omega-3 Polyunsaturated Fatty Acids in Natural Ecosystems and the Human Diet: Assumptions and Challenges / M. I. Gladyshev, N. N. Sushchik // Biomolecules. - 2019. - Vol. 9, Is. 9. - Ст. 485, DOI 10.3390/biom9090485 . - ISSN 2218-273X
Кл.слова (ненормированные):
culinary treatments -- docosahexaenoic acid -- eicosapentaenoic acid -- eutrophication -- fish -- nutritive quality
Аннотация: Over the past three decades, studies of essential biomolecules, long-chain polyunsaturated fatty acids of the omega-3 family (LC-PUFAs), namely eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), have made considerable progress, resulting in several important assumptions. However, new data, which continue to appear, challenge these assumptions. Based on the current literature, an attempt is made to reconsider the following assumptions: 1. There are algal classes of high and low nutritive quality. 2. EPA and DHA decrease with increasing eutrophication in aquatic ecosystems. 3. Animals need EPA and DHA. 4. Fish are the main food source of EPA and DHA for humans. 5. Culinary treatment decreases EPA and DHA in products. As demonstrated, some of the above assumptions need to be substantially specified and changed.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Svobodny av. 79, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Gladyshev, M. I.; Sushchik, N. N.

Найти похожие
15.


   
    Spatial and temporal variation in Arctic freshwater chemistry-Reflecting climate-induced landscape alterations and a changing template for biodiversity / B. J. Huser, M. N. Futter, D. Bogan [et al.] // Freshw. Biol. - 2020, DOI 10.1111/fwb.13645. - Cited References:98. - Environment and Climate Change Canada; Cumulative Impact Monitoring Program, Government of Northwest Territories . - Article in press. - ISSN 0046-5070. - ISSN 1365-2427
РУБ Ecology + Marine & Freshwater Biology
Рубрики:
DISSOLVED ORGANIC-CARBON
   PERMAFROST THAW

   CHEMICAL LIMNOLOGY

Кл.слова (ненормированные):
biogeochemistry -- eutrophication -- lakes -- oligotrophication -- rivers
Аннотация: Freshwater chemistry across the circumpolar region was characterised using a pan-Arctic data set from 1,032 lake and 482 river stations. Temporal trends were estimated for Early (1970-1985), Middle (1986-2000), and Late (2001-2015) periods. Spatial patterns were assessed using data collected since 2001. Alkalinity, pH, conductivity, sulfate, chloride, sodium, calcium, and magnesium (major ions) were generally higher in the northern-most Arctic regions than in the Near Arctic (southern-most) region. In particular, spatial patterns in pH, alkalinity, calcium, and magnesium appeared to reflect underlying geology, with more alkaline waters in the High Arctic and Sub Arctic, where sedimentary bedrock dominated. Carbon and nutrients displayed latitudinal trends, with lower levels of dissolved organic carbon (DOC), total nitrogen, and (to a lesser extent) total phosphorus (TP) in the High and Low Arctic than at lower latitudes. Significantly higher nutrient levels were observed in systems impacted by permafrost thaw slumps. Bulk temporal trends indicated that TP was higher during the Late period in the High Arctic, whereas it was lower in the Near Arctic. In contrast, DOC and total nitrogen were both lower during the Late period in the High Arctic sites. Major ion concentrations were higher in the Near, Sub, and Low Arctic during the Late period, but the opposite bulk trend was found in the High Arctic. Significant pan-Arctic temporal trends were detected for all variables, with the most prevalent being negative TP trends in the Near and Sub Arctic, and positive trends in the High and Low Arctic (mean trends ranged from +0.57%/year in the High/Low Arctic to -2.2%/year in the Near Arctic), indicating widespread nutrient enrichment at higher latitudes and oligotrophication at lower latitudes. The divergent P trends across regions may be explained by changes in deposition and climate, causing decreased catchment transport of P in the south (e.g. increased soil binding and trapping in terrestrial vegetation) and increased P availability in the north (deepening of the active layer of the permafrost and soil/sediment sloughing). Other changes in concentrations of major ions and DOC were consistent with projected effects of ongoing climate change. Given the ongoing warming across the Arctic, these region-specific changes are likely to have even greater effects on Arctic water quality, biota, ecosystem function and services, and human well-being in the future.

WOS
Держатели документа:
Swedish Univ Agr Sci, Dept Aquat Sci & Assessment, Box 7050, S-75007 Uppsala, Sweden.
Univ Alaska Anchorage, Alaska Ctr Conservat Sci, Anchorage, AK USA.
Norwegian Water Resources & Energy Directorate, Oslo, Norway.
Univ Oslo, Nat Hist Museum, Oslo, Norway.
Wilfrid Laurier Univ, Cold Regions Res Ctr, Waterloo, ON, Canada.
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk, Russia.
Umea Univ, Climate Impacts Res Ctr, Dept Ecol & Environm Sci, Umea, Sweden.
Queens Univ, Dept Biol, Paleoecol Environm Assessment & Res Lab PEARL, Kingston, ON, Canada.
Norwegian Inst Nat Res, Oslo, Norway.
Univ New Brunswick, Canadian Rivers Inst, Fredericton, NB, Canada.
Univ New Brunswick, Dept Biol, Fredericton, NB, Canada.

Доп.точки доступа:
Huser, Brian J.; Futter, Martyn N.; Bogan, Daniel; Brittain, John E.; Culp, Joseph M.; Goedkoop, Willem; Gribovskaya, Iliada; Karlsson, Jan; Lau, Danny C. P.; Ruhland, Kathleen M.; Schartau, Ann Kristin; Shaftel, Rebecca; Smol, John P.; Vrede, Tobias; Lento, Jennifer; Environment and Climate Change Canada; Cumulative Impact Monitoring Program, Government of Northwest Territories

Найти похожие
16.


   
    Spatial and temporal variation in Arctic freshwater chemistry—Reflecting climate-induced landscape alterations and a changing template for biodiversity / B. J. Huser, M. N. Futter, D. Bogan [et al.] // Freshw. Biol. - 2020, DOI 10.1111/fwb.13645 . - Article in press. - ISSN 0046-5070
Кл.слова (ненормированные):
biogeochemistry -- eutrophication -- lakes -- oligotrophication -- rivers
Аннотация: Freshwater chemistry across the circumpolar region was characterised using a pan-Arctic data set from 1,032 lake and 482 river stations. Temporal trends were estimated for Early (1970–1985), Middle (1986–2000), and Late (2001–2015) periods. Spatial patterns were assessed using data collected since 2001. Alkalinity, pH, conductivity, sulfate, chloride, sodium, calcium, and magnesium (major ions) were generally higher in the northern-most Arctic regions than in the Near Arctic (southern-most) region. In particular, spatial patterns in pH, alkalinity, calcium, and magnesium appeared to reflect underlying geology, with more alkaline waters in the High Arctic and Sub Arctic, where sedimentary bedrock dominated. Carbon and nutrients displayed latitudinal trends, with lower levels of dissolved organic carbon (DOC), total nitrogen, and (to a lesser extent) total phosphorus (TP) in the High and Low Arctic than at lower latitudes. Significantly higher nutrient levels were observed in systems impacted by permafrost thaw slumps. Bulk temporal trends indicated that TP was higher during the Late period in the High Arctic, whereas it was lower in the Near Arctic. In contrast, DOC and total nitrogen were both lower during the Late period in the High Arctic sites. Major ion concentrations were higher in the Near, Sub, and Low Arctic during the Late period, but the opposite bulk trend was found in the High Arctic. Significant pan-Arctic temporal trends were detected for all variables, with the most prevalent being negative TP trends in the Near and Sub Arctic, and positive trends in the High and Low Arctic (mean trends ranged from +0.57%/year in the High/Low Arctic to ?2.2%/year in the Near Arctic), indicating widespread nutrient enrichment at higher latitudes and oligotrophication at lower latitudes. The divergent P trends across regions may be explained by changes in deposition and climate, causing decreased catchment transport of P in the south (e.g. increased soil binding and trapping in terrestrial vegetation) and increased P availability in the north (deepening of the active layer of the permafrost and soil/sediment sloughing). Other changes in concentrations of major ions and DOC were consistent with projected effects of ongoing climate change. Given the ongoing warming across the Arctic, these region-specific changes are likely to have even greater effects on Arctic water quality, biota, ecosystem function and services, and human well-being in the future. © 2020 The Authors. Freshwater Biology published by John Wiley & Sons Ltd.

Scopus
Держатели документа:
Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
Alaska Center for Conservation Science, University of Alaska Anchorage, Anchorage, AK, United States
Norwegian Water Resources & Energy Directorate, Oslo, Norway
Natural History Museum, University of Oslo, Oslo, Norway
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, ON, Canada
Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Department of Ecology and Environmental Science, Climate Impacts Research Centre, Umea University, Abisko, Sweden
Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of Biology, Queen’s University, Kingston, ON, Canada
Norwegian Institute for Nature Research, Oslo, Norway
Canadian Rivers Institute and Department of Biology, University of New Brunswick, Fredericton, NB, Canada

Доп.точки доступа:
Huser, B. J.; Futter, M. N.; Bogan, D.; Brittain, J. E.; Culp, J. M.; Goedkoop, W.; Gribovskaya, I.; Karlsson, J.; Lau, D. C.P.; Ruhland, K. M.; Schartau, A. K.; Shaftel, R.; Smol, J. P.; Vrede, T.; Lento, J.

Найти похожие
17.


   
    Transfer efficiency of carbon, nutrients, and polyunsaturated fatty acids in planktonic food webs under different environmental conditions / M. Karpowicz, I. Feniova, M. I. Gladyshev [et al.] // Ecology and Evolution. - 2021, DOI 10.1002/ece3.7651 . - Article in press. - ISSN 2045-7758
Кл.слова (ненормированные):
biogeochemical cycle -- dystrophication -- essential substances -- eutrophication -- food quality -- phytoplankton -- zooplankton
Аннотация: The trophic transfer efficiency (TTE) is an important indicator of ecosystem functioning. However, TTE data from freshwater food webs are ambiguous due to differences in time scales and methods. We investigated the transfer of essential substances (carbon, nutrients, and polyunsaturated fatty acids) through plankton communities in 30 Polish lakes with different trophic status in the middle of summer. The results of our study revealed that different essential substances were transferred from phytoplankton to zooplankton with varying efficiencies. The average TTE of C, N, P, and the sum of ?-3 PUFA were 6.55%, 9.82%, 15.82%, and 20.90%, respectively. Our results also show a large mismatch between the elemental and biochemical compositions of zooplankton and their food during the peak of the summer stagnation, which may further promote the accumulation of essential substances. There were also large differences in TTEs between trophic conditions, with the highest efficiencies in oligotrophic lakes and the lowest in dystrophic and eutrophic lakes. Therefore, our study indicates that disturbances like eutrophication and dystrophication similarly decrease the TTE of essential substances between phytoplankton and zooplankton in freshwater food webs. © 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Scopus
Держатели документа:
Department of Hydrobiology, Faculty of Biology, University of Bialystok, Bialystok, Poland
Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
Institute of Biophysics of Federal Research Centre, Krasnoyarsk Science Centre of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Research Station in Mikolajki, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States

Доп.точки доступа:
Karpowicz, M.; Feniova, I.; Gladyshev, M. I.; Ejsmont-Karabin, J.; Gorniak, A.; Sushchik, N. N.; Anishchenko, O. V.; Dzialowski, A. R.

Найти похожие
18.


   
    Transfer efficiency of carbon, nutrients, and polyunsaturated fatty acids in planktonic food webs under different environmental conditions / M. Karpowicz, I. Feniova, M. I. Gladyshev [et al.] // Ecol. Evol. - 2021, DOI 10.1002/ece3.7651. - Cited References:62. - This research was supported by the Polish National Science Centre (2016/21/B/NZ8/00434). The research was also supported by Federal Tasks for Institute of Biophysics SB RAS No. 51.1.1 and Federal Tasks for Siberian Federal University No. FSRG-2020-0019. The authors are thankful to Joanna Kozowska for her help in the collection of samples. . - Article in press. - ISSN 2045-7758
РУБ Ecology + Evolutionary Biology
Рубрики:
PHOSPHORUS STOICHIOMETRY
   LIGHT-INTENSITY

   ZOOPLANKTON

   TEMPERATURE

Кл.слова (ненормированные):
biogeochemical cycle -- dystrophication -- essential substances -- eutrophication -- food quality -- phytoplankton -- zooplankton
Аннотация: The trophic transfer efficiency (TTE) is an important indicator of ecosystem functioning. However, TTE data from freshwater food webs are ambiguous due to differences in time scales and methods. We investigated the transfer of essential substances (carbon, nutrients, and polyunsaturated fatty acids) through plankton communities in 30 Polish lakes with different trophic status in the middle of summer. The results of our study revealed that different essential substances were transferred from phytoplankton to zooplankton with varying efficiencies. The average TTE of C, N, P, and the sum of omega-3 PUFA were 6.55%, 9.82%, 15.82%, and 20.90%, respectively. Our results also show a large mismatch between the elemental and biochemical compositions of zooplankton and their food during the peak of the summer stagnation, which may further promote the accumulation of essential substances. There were also large differences in TTEs between trophic conditions, with the highest efficiencies in oligotrophic lakes and the lowest in dystrophic and eutrophic lakes. Therefore, our study indicates that disturbances like eutrophication and dystrophication similarly decrease the TTE of essential substances between phytoplankton and zooplankton in freshwater food webs.

WOS
Держатели документа:
Univ Bialystok, Dept Hydrobiol, Fac Biol, Ciolkowskiego 1J, PL-15245 Bialystok, Poland.
Russian Acad Sci, Inst Ecol & Evolut, Moscow, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Siberian Branch, Inst Biophys,Fed Res Ctr, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Polish Acad Sci, Nencki Inst Expt Biol, Res Stn Mikolajki, Warsaw, Poland.
Oklahoma State Univ, Dept Integrat Biol, Stillwater, OK 74078 USA.

Доп.точки доступа:
Karpowicz, Maciej; Feniova, Irina; Gladyshev, Michail I.; Ejsmont-Karabin, Jolanta; Gorniak, Andrzej; Sushchik, Nadezhda N.; Anishchenko, Olesya V.; Dzialowski, Andrew R.; Polish National Science Centre [2016/21/B/NZ8/00434]; Federal Tasks for Institute of Biophysics SB RAS [51.1.1]; Federal Tasks for Siberian Federal University [FSRG-2020-0019]

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)