Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Extrusion<.>)
Общее количество найденных документов : 4
Показаны документы с 1 по 4
1.


   
    Constructing Slow-Release Metribuzin Formulations by Co-extrusion of the Pesticide with Poly-?-Caprolactone / A. N. Boyandin, E. A. Kazantseva // Macromol. Sympos. - 2021. - Vol. 395, Is. 1. - Ст. 2000283, DOI 10.1002/masy.202000283 . - ISSN 1022-1360
Кл.слова (ненормированные):
extrusion -- herbicides -- long-term -- pesticides -- polycaprolactone -- Biodegradable polymers -- Biodegradation -- Degradation -- Extrusion -- Melting -- Soils -- Weed control -- Biodegradable polyesters -- Caprolactone -- Degradation rate -- Long-term release -- Low cost methods -- Pesticide formulations -- Soil applications -- Soil degradation -- Herbicides
Аннотация: A simple and low-cost method of obtaining slow-release pesticide formulations is proposed by co-extrusion of a herbicide metribuzin with a low-melting biodegradable polyester poly-?-caprolactone, at a temperature above the melting points of both components. Formulations containing 10%, 20%, and 40% herbicide are prepared. Metribuzin release in water during 7 days of exposition reached 81% from the formulations with the 10% loading and 96% from the specimens with the 40% herbicide loading. Biodegradation and pesticide release from the polymer constructs are studied in the model soil for 14 weeks. Degradation rates of the specimens increased with an increase in pesticide content: between 9% for the 10%-loaded specimen and 20% for the 40%-loaded specimen over 14 weeks. The release of metribuzin from the specimens with the 10–20% and 40% loadings reached 37–38% and 55%, respectively; thus, taking into account soil degradation of the herbicide, the herbicide content in soil reached 23–25% and 33%, respectively, of the initially loaded into the polymer matrix. The used approach is promising to obtain long-term release formulations for soil application. © 2021 Wiley-VCH GmbH

Scopus
Держатели документа:
Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Boyandin, A. N.; Kazantseva, E. A.

Найти похожие
2.


   
    Constructing Slow-Release Metribuzin Formulations by Co-extrusion of the Pesticide with Poly-epsilon-Caprolactone / A. N. Boyandin, E. A. Kazantseva // Macromol. Symp. - 2021. - Vol. 395: 4th International Conference on Progress on Polymers and Composites (NOV 26-28, 2020, ELECTR NETWORK), Is. 1. - Ст. 2000283, DOI 10.1002/masy.202000283. - Cited References:6. - This study was financially supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning". . - ISSN 1022-1360. - ISSN 1521-3900
РУБ Polymer Science

Кл.слова (ненормированные):
extrusion -- herbicides -- long‐ -- term -- pesticides -- polycaprolactone
Аннотация: A simple and low-cost method of obtaining slow-release pesticide formulations is proposed by co-extrusion of a herbicide metribuzin with a low-melting biodegradable polyester poly-epsilon-caprolactone, at a temperature above the melting points of both components. Formulations containing 10%, 20%, and 40% herbicide are prepared. Metribuzin release in water during 7 days of exposition reached 81% from the formulations with the 10% loading and 96% from the specimens with the 40% herbicide loading. Biodegradation and pesticide release from the polymer constructs are studied in the model soil for 14 weeks. Degradation rates of the specimens increased with an increase in pesticide content: between 9% for the 10%-loaded specimen and 20% for the 40%-loaded specimen over 14 weeks. The release of metribuzin from the specimens with the 10-20% and 40% loadings reached 37-38% and 55%, respectively; thus, taking into account soil degradation of the herbicide, the herbicide content in soil reached 23-25% and 33%, respectively, of the initially loaded into the polymer matrix. The used approach is promising to obtain long-term release formulations for soil application.

WOS
Держатели документа:
Russian Acad Sci, Krasnoyarsk Sci Ctr, Inst Biophys, Siberian Branch,Fed Res Ctr, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Boyandin, Anatoly Nikolayevich; Kazantseva, Eugenia Andreevna; Government of the Russian Federation [220, 074-02-2018-328]

Найти похожие
3.


   
    Constructing slow-release formulations of herbicide metribuzin using its co-extrusion with biodegradable polyester poly-epsilon-caprolactone / A. N. Boyandin, E. A. Kazantseva // J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes. - 2021, DOI 10.1080/03601234.2021.1911206. - Cited References:43. - This study was financially supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning". . - Article in press. - ISSN 0360-1234. - ISSN 1532-4109
РУБ Environmental Sciences + Public, Environmental & Occupational Health

Кл.слова (ненормированные):
Polycaprolactone -- herbicide -- pesticide -- long-term -- extrusion
Аннотация: Different technologies to prepare long term pesticide forms include polymer coating, preparing composites and encapsulating pesticides in nanoparticles. A simple and low-cost method was proposed to obtain slow-release formulations by co-extrusion of a pesticide with a biodegradable polymer at a temperature above the melting points of both components. A herbicide metribuzin and low-melting polyester poly-epsilon-caprolactone were chosen for this work. Formulations containing 10%, 20%, and 40% herbicide were prepared. During 7 days of their exposition in water, it was released from 81% to 96% of initially loaded metribuzin; the highest release was detected for 40%-loaded forms. Biodegradation of the constructs and pesticide release were further studied in the model soil. Degradation rates of the specimens increased with an increase in pesticide content, from 9% to 20% over 14 weeks for the 10%/20%-loaded and the 40%-loaded specimens, respectively. The release of metribuzin reached, respectively, 37-38% and 55%. The herbicide content in soil was lower due to its partial degradation in soil; it reached 23-25% and 33%, respectively, from initially loaded into the polymer matrix. Release kinetics of metribuzin in water as in soil best fitted the First-order model. The used approach is promising for obtaining long-term release formulations for soil applications.

WOS
Держатели документа:
Russian Acad Sci, Krasnoyarsk Sci Ctr SB RAS, Fed Res Ctr, Inst Biophys,Siberian Branch, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.

Доп.точки доступа:
Boyandin, Anatoly N.; Kazantseva, Eugenia A.; Boyandin, Anatoly; Project "Agropreparations of the new generation: a strategy of construction and realization" [074-02-2018-328]; Government of the Russian Federation [220]

Найти похожие
4.


   
    Constructing slow-release formulations of herbicide metribuzin using its co-extrusion with biodegradable polyester poly-ε-caprolactone / A. N. Boyandin, E. A. Kazantseva // J. Environ. Sci. Health Part B Pestic. Food Contamin. Agric. Wastes. - 2021, DOI 10.1080/03601234.2021.1911206 . - Article in press. - ISSN 0360-1234
Кл.слова (ненормированные):
extrusion -- herbicide -- long-term -- pesticide -- Polycaprolactone -- Biodegradable polymers -- Biodegradation -- Degradation -- Extrusion -- Melting -- Plastic coatings -- Polyesters -- Soils -- Weed control -- Biodegradable polyesters -- Degradation rate -- First-order models -- Long-term release -- Low cost methods -- Partial degradation -- Release kinetics -- Soil applications -- Herbicides
Аннотация: Different technologies to prepare long term pesticide forms include polymer coating, preparing composites and encapsulating pesticides in nanoparticles. A simple and low-cost method was proposed to obtain slow-release formulations by co-extrusion of a pesticide with a biodegradable polymer at a temperature above the melting points of both components. A herbicide metribuzin and low-melting polyester poly-?-caprolactone were chosen for this work. Formulations containing 10%, 20%, and 40% herbicide were prepared. During 7 days of their exposition in water, it was released from 81% to 96% of initially loaded metribuzin; the highest release was detected for 40%-loaded forms. Biodegradation of the constructs and pesticide release were further studied in the model soil. Degradation rates of the specimens increased with an increase in pesticide content, from 9% to 20% over 14 weeks for the 10%/20%-loaded and the 40%-loaded specimens, respectively. The release of metribuzin reached, respectively, 37–38% and 55%. The herbicide content in soil was lower due to its partial degradation in soil; it reached 23–25% and 33%, respectively, from initially loaded into the polymer matrix. Release kinetics of metribuzin in water as in soil best fitted the First-order model. The used approach is promising for obtaining long-term release formulations for soil applications. © 2021 Taylor & Francis Group, LLC.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Boyandin, A. N.; Kazantseva, E. A.

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)