Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Humic<.>)
Общее количество найденных документов : 20
Показаны документы с 1 по 20
1.


   
    Speciation of artificial radionuclides 60Co, 137Cs, 152Eu, and 241Am in bottom sediments of the Yenisei river / L. G. Bondareva, A. Ya. Bolsunovskii // Radiochemistry. - 2008. - Vol. 50, Is. 5. - P547-552, DOI 10.1134/S1066362208050196 . - ISSN 1066-3622
Аннотация: The speciation of artificial radionuclides 60Co, 137Cs, 152Eu, and 241Am in surface layers of bottom sediments of the Yenisei river, collected within the near zone of impact of the Mining and Chemical Combine (Rosatom), was studied. In these samples the radionuclides 60Co, 152Eu, and 241Am are mainly associated with fractions of humic and fulvic acids. The fraction of 152Eu associated with nonsilicate iron is approximately 92%. The migration capability of radionuclides collected near the Atamanovo settlement decreases in the order 152Eu > 241Am > 60Co > 137Cs. For samples collected near Bol'shoi Balchug settlement, this order is as follows: 152Eu ? 241Am > 60Co > 137Cs. The presence of radionuclide-bearing micro-particles in bottom sediments considerably complicates the distribution of radionuclides, in particular, of 241Am and 137Cs, among migration forms. В© 2008 MAIK Nauka.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Bondareva, L.G.; Bolsunovskii, A.Ya.

Найти похожие
2.


   
    Effect of humic acid on absorption-release processes in the bottom sediments-Yenisei river water system as studied by dual-column ion chromatography and ?-ray spectrometry / L. G. Bondareva, O. P. Kalyakina, A. Ya. Bolsunovskii // Journal of Analytical Chemistry. - 2006. - Vol. 61, Is. 4. - P354-358, DOI 10.1134/S1061934806040101 . - ISSN 1061-9348
Кл.слова (ненормированные):
Absorption -- Chromatographic analysis -- Complexation -- Gamma ray spectrometers -- Radioisotopes -- ?-ray spectrometry -- Absorption-release processes -- Dual-column ion chromatography -- Humic acid -- Organic acids
Аннотация: The effect of humic acid on absorption-release processes in the bottom sediments-Yenisei river water system was studied by dual-column ion chromatography and ?-ray spectrometry. With the use of ion chromatography, it was found that processes related to the absorption of SO 42- and Cl- anions by a solid phase with the release of NO 3- , PO 43- , and F- to a liquid phase competed in the test systems as the concentration of water-soluble organic carbon (WSOC) was increased. Only the test anions were released in the systems without the introduction of an additional amount of WSOC as humic acid. With the use of ?-ray spectrometry, it was found that the release of 60Co, 152Eu, and 241Am radionuclides to the liquid phase in the systems with added humic acid began much earlier than in the system without the addition of humic acid. In this case, the amount of released radionuclides was greater than the amount of radioisotopes released in the system without the addition of humic acid: ?25% 241Am, ?3% 152Eu, and ?0.8% 60Co in the system with added humic acid or 0.8% 152Eu and <0.1% 60Co in the system without the addition of humic acid. The 241Am radionuclide was not determined in the system without the addition of humic acid. An increase in the concentration of WSOC in the experimental system of bottom sediments-Yenisei river water initiated the release of 60Co, 152Eu, and 241Am anthropogenic radionuclides from bottom sediments because of the formation of soluble complexes capable of migration. An increase in the concentration of WSOC had almost no effect on the release of 40K and 137Cs radionuclides. В© Pleiades Publishing, Inc., 2006.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Faculty of Chemistry, Krasnoyarsk State University, Svobodnyi pr. 79, Krasnoyarsk, 660041, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Bondareva, L.G.; Kalyakina, O.P.; Bolsunovskii, A.Ya.

Найти похожие
3.


   
    Detoxification of AM-241 solutions by humic substances: Bioluminescent monitoring / T. Rozhko [et al.] // Analytical and Bioanalytical Chemistry. - 2011. - Vol. 400, Is. 2. - P329-334, DOI 10.1007/s00216-010-4442-9 . - ISSN 1618-2642
Кл.слова (ненормированные):
Detoxification -- Humic substances -- Ionizing radiation -- Luminous bacteria -- Bacterial cells -- Bottom sediments -- Humic substances -- Luminescent intensity -- Luminous bacteria -- Natural transformations -- Organic substances -- Photobacterium phosphoreum -- Physiological activity -- Protecting agent -- Water solutions -- Anoxic sediments -- Bacteriology -- Bioluminescence -- Detoxification -- Ionizing radiation -- Luminance -- Radiation shielding -- Radioactivity -- Bacteria -- americium -- radioisotope -- article -- bioremediation -- chemistry -- environmental monitoring -- evaluation -- humic substance -- instrumentation -- luminescence -- metabolism -- methodology -- Photobacterium -- water pollutant -- Americium -- Biodegradation, Environmental -- Environmental Monitoring -- Humic Substances -- Luminescence -- Photobacterium -- Radioisotopes -- Water Pollutants, Chemical -- Bacteria (microorganisms) -- Photobacterium phosphoreum
Аннотация: The study addresses the effect of humic substances on marine luminous bacteria Photobacterium phosphoreum exposed to Am-241 (3,000 Bq L -1, water solution). Luminescent intensity of the bacteria was applied as a marker of their physiological activity. Humic substances have been found to reduce the effect of Am-241 on luminescence, decrease damage to cells, and change distribution of Am-241 between bacterial cells and intercellular media. It was shown that water-soluble humic substances, being products of natural transformation of organic substances in soil and bottom sediments, can serve as protecting agents for water microorganisms exposed to alpha radionuclides. В© 2010 Springer-Verlag.

Scopus
Держатели документа:
Siberian Federal University, Krasnoyarsk 660041, Russian Federation
Institute of Biophysics SB RAS, Krasnoyarsk 660036, Russian Federation
Irkutsk State University, Irkutsk 664003, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Rozhko, T.; Bondareva, L.; Mogilnaya, O.; Vydryakova, G.; Bolsunovsky, A.; Stom, D.; Kudryasheva, N.

Найти похожие
4.


   
    Testing soil-like substrate for growing plants in bioregenerative life support systems / J. B. Gros [et al.] // Advances in Space Research. - 2005. - Vol. 36, Is. 7. - P1312-1318, DOI 10.1016/j.asr.2005.05.079 . - ISSN 0273-1177
Кл.слова (ненормированные):
Life support system -- Matter recycling -- Plants -- Soil-like substrate -- Biodiversity -- Correlation methods -- Growth kinetics -- Hormones -- Plants (botany) -- Recycling -- Soils -- Bioregeneration -- Life support system -- Matter recycling -- Soil-like substrate -- Space research
Аннотация: We studied soil-like substrate (SLS) as a potential candidate for plant cultivation in bioregenerative life support systems (BLSS). The SLS was obtained by successive conversion of wheat straw by oyster mushrooms and worms. Mature SLS contained 9.5% humic acids and 4.9% fulvic acids. First, it was shown that wheat, bean and cucumber yields as well as radish yields when cultivated on mature SLS were comparable to yields obtained on a neutral substrate (expanded clay aggregate) under hydroponics. Second, the possibility of increasing wheat and radish yields on the SLS was assessed at three levels of light intensity: 690, 920 and 1150 ?mol m-2 s-1 of photosynthetically active radiation (PAR). The highest wheat yield was obtained at 920 ?mol m-2 s-1, while radish yield increased steadily with increasing light intensity. Third, long-term SLS fertility was tested in a BLSS model with mineral and organic matter recycling. Eight cycles of wheat and 13 cycles of radish cultivation were carried out on the SLS in the experimental system. Correlation coefficients between SLS nitrogen content and total wheat biomass and grain yield were 0.92 and 0.97, respectively, and correlation coefficients between nitrogen content and total radish biomass and edible root yield were 0.88 and 0.87, respectively. Changes in hormone content (auxins, gibberellins, cytokinins and abscisic acid) in the SLS during matter recycling did not reduce plant productivity. Quantitative and species compositions of the SLS and irrigation water microflora were also investigated. Microbial community analysis of the SLS showed bacteria from Bacillus, Pseudomonas, Proteus, Nocardia, Mycobacterium, Arthrobacter and Enterobacter genera, and fungi from Trichoderma, Penicillium, Fusarium, Aspergillus, Mucor, Botrytis, and Cladosporium genera. В© 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
LGCB, Universite B. Pascal, CUST, BP206, 63174 Aubiere cedex, France
Environmental Control and Life Support Section, ESA-Estec, Postbus 299, 2200 AG, Noordwijk, Netherlands
Institute of Biophysics (Russian Academy of Sciences, Siberian Branch), Academgorodok, Krasnoyarsk 660036, Russian Federation
Department of Plant Physiology and Biotechnology, Tomsk State University, Lenin av. 36, Tomsk 634050, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gros, J.B.; Lasseur, Ch.; Tikhomirov, A.A.; Manukovsky, N.S.; Kovalev, V.S.; Ushakova, S.A.; Zolotukhin, I.G.; Tirranen, L.S.; Karnachuk, R.A.; Dorofeev, V.Yu.

Найти похожие
5.


   
    Soil-like substrate for plant growing derived from inedible plant mass: Preparing, composition, fertility / J. -B. Gros [et al.] // Acta Horticulturae. - 2004. - Vol. 644. - P151-155
Кл.слова (ненормированные):
Fertility -- Hydroponics -- Oyster mushroom -- Phytomass yield -- Wheat straw -- Worms
Аннотация: Fertility of soil-like substrate (SLS) made by successive conversion of wheat straw by oyster mushrooms and worms has been evaluated. Soil-like substrate of different degree of maturity has been tested. The most ready SLS provided the higher yields of wheat. It comprised 9.5% of humic acids, 4.9% of fulvic acids and 15.2% of nonhydrolyzable substances. At atmospheric concentration of carbon dioxide the soil-like substrate decreased its mass over the vegetation period by 14- 21%. The yield of wheat, beans and cucumbers grown on the soil-like substrate was compared to that on hydroponics.

Scopus
Держатели документа:
LGCB, Universte B. Pascal, BP206, FR-63 174 Aubiere Cedex, France
ESA Estec, 2200 AG Noordwijk, Netherlands
Academgorodok, Institute of Biophysics, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gros, J.-B.; Lasseur, C.; Tikhomirov, A.A.; Manukovsky, N.S.; Ushakova, S.A.; Zolotukhin, I.G.; Gribovskaya, I.V.; Kovalev, V.S.

Найти похожие
6.


   
    Effect of humic acid on absorption-release processes in the bottom sediments-Yenisei river water system as studied by dual-column ion chromatography and gamma-ray spectrometry [Text] / L. G. Bondareva, O. P. Kalyakina, A. Y. Bolsunovskii // J. Anal. Chem. - 2006. - Vol. 61, Is. 4. - P354-358, DOI 10.1134/S1061934806040101. - Cited References: 11 . - 5. - ISSN 1061-9348
РУБ Chemistry, Analytical

Аннотация: The effect of humic acid on absorption-release processes in the bottom sediments-Yenisei river water system was studied by dual-column ion chromatography and gamma-ray spectrometry. With the use of ion chromatography, it was found that processes related to the absorption of SO42- and Cl- anions by a solid phase with the release of NO3-, PO43-, and F- to a liquid phase competed in the test systems as the concentration of water-soluble organic carbon (WSOC) was increased. Only the test anions were released in the systems without the introduction of an additional amount of WSOC as humic acid. With the use of gamma-ray spectrometry, it was found that the release of Co-60, Eu-152, and Am-241 radionuclides to the liquid phase in the systems with added humic acid began much earlier than in the system without the addition of humic acid. In this case, the amount of released radionuclides was greater than the amount of radioisotopes released in the system without the addition of humic acid: similar to 25% Am-241, similar to 3% Eu-152, and similar to 0.8% Co-60 in the system with added humic acid or 0.8% Eu-152 and 0.1% Co-60 in the system without the addition of humic acid. The Am-241 radionuclide was not determined in the system without the addition of humic acid. An increase in the concentration of WSOC in the experimental system of bottom sediments-Yenisei river water initiated the release of Co-60, Eu-152, and Am-241 anthropogenic radionuclides from bottom sediments because of the formation of soluble complexes capable of migration. An increase in the concentration of WSOC had almost no effect on the release of K-40 and Cs-137 radionuclides.

Держатели документа:
Russian Acad Sci, Siberian Div, Inst Biophys, Krasnoyarsk 660036, Russia
Krasnoyarsk State Univ, Fac Chem, Krasnoyarsk 660041, Russia : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Bondareva, L.G.; Kalyakina, O.P.; Bolsunovskii, A.Y.

Найти похожие
7.


   
    Pollutant toxicity and detoxification by humic substances: mechanisms and quantitative assessment via luminescent biomonitoring [Text] / N. S. Kudryasheva, A. S. Tarasova // Environ. Sci. Pollut. Res. - 2015. - Vol. 22, Is. 1. - P155-167, DOI 10.1007/s11356-014-3459-6. - Cited References:120. - The work was supported by the Russian Foundation for Basic Research,Grant No. 13-04-98072-sibir-a. Part of the work (analysis ofdetoxification of radioactive solutions) was supported by the RussianScience Foundation, Grant No. 14-14-00076. . - ISSN 0944-1344. - ISSN 1614-7499
РУБ Environmental Sciences
Рубрики:
PHOTOBACTERIUM-LEIOGNATHI LUCIFERASE
   DISSOLVED ORGANIC-MATTER

Кл.слова (ненормированные):
Detoxification mechanisms -- Humic substances -- Pollutants -- Bioassays -- Bioluminescence
Аннотация: The paper considers mechanisms of detoxification of pollutant solutions by water-soluble humic substances (HSs), natural detoxifying agents. The problems and perspectives of bioassay application for toxicity monitoring of complex solutions are discussed from ecological point of view. Bioluminescence assays based on marine bacteria and their enzymes are of special attention here; they were shown to be convenient tools to study the detoxifying effects on cellular and biochemical levels. The advantages of bioluminescent enzymatic assay for monitoring both integral and oxidative toxicities in complex solutions of model pollutants and HS were demonstrated. The efficiencies of detoxification of the solutions of organic oxidizers and salts of metals (including radioactive ones) by HS were analyzed. The dependencies of detoxification efficiency on time of exposure to HS and HS concentrations were demonstrated. Antioxidant properties of HS were considered in detail. The detoxifying effects of HS were shown to be complex and regarded as 'external' (binding and redox processes in solutions outside the organisms) and/or 'internal' organismal processes. The paper demonstrates that the HS can stimulate a protective response of bacterial cells as a result of (1) changes of rates of biochemical reactions and (2) stabilization of mucous layers outside the cell walls. Acceleration of auto-oxidation of NADH, endogenous reducer, by HS was suggested as a reason for toxicity increase in the presence of HS due to abatement of reduction ability of intracellular media.

WOS
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
RAS, Inst Biophys, SB, Krasnoyarsk 660036, Russia.
ИБФ СО РАН

Доп.точки доступа:
Kudryasheva, N.S.; Tarasova, A.S.; Russian Foundation for Basic Research [13-04-98072-sibir-a]; RussianScience Foundation [14-14-00076]

Найти похожие
8.


   
    Antioxidant activity of humic substances via bioluminescent monitoring in vitro [Text] / A. S. Tarasova, D. I. Stom, N. S. Kudryasheva // Environ. Monit. Assess. - 2015. - Vol. 187, Is. 3. - Ст. 89, DOI 10.1007/s10661-015-4304-1. - Cited References:51. - This work was supported by the Russian Foundation for Basic Research, Grant No. 15-03-06786a, the Program "Molecular and Cellular Biology" of the Russian Academy of Sciences, project VI 57.1.1. . - ISSN 0167-6369. - ISSN 1573-2959
РУБ Environmental Sciences
Рубрики:
DETOXIFICATION PROCESSES
   TOXICITY

   BIOASSAYS

   BACTERIA

   ASSAY

Кл.слова (ненормированные):
Antioxidant activity -- Oxidative toxicity -- General toxicity -- Humic -- substances -- Bioassay -- Bioluminescence
Аннотация: This work considers antioxidant properties of natural detoxifying agents-humic substances (HS) in solutions of model inorganic and organic compounds of oxidative nature-complex salt K-3[Fe(CN)(6)] and 1,4-benzoquinone. Bioluminescent system of coupled enzymatic reactions catalyzed by NAD(P) H:FMN-oxidoreductase and bacterial luciferase was used as a bioassay in vitro to monitor toxicity of the oxidizer solutions. Toxicities of general and oxidative types were evaluated using bioluminescent kinetic parameters-bioluminescence intensity and induction period, respectively. Antioxidant activity of HS was attributed to their ability to decrease both general and oxidative toxicities; the HS antioxidant efficiency was characterized with detoxification coefficients D-GT and D-OxT, respectively. Dependencies of D-GT and D-OxT on HS concentration and time of preliminary incubation of the oxidizers with HS were demonstrated. The optimal conditions for detoxification of the oxidizers were >20-min incubation time and 0.5x10(-4) to 2x10(-4) M of HS concentration. The present study promotes application of the enzymatic luminescent bioassay to monitor toxicity of pollutants of oxidative nature in environmental and waste waters in remediation procedures.

WOS
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
Irkutsk State Univ, Irkutsk 664003, Russia.
ИБФ СО РАН

Доп.точки доступа:
Tarasova, A.S.; Stom, D.I.; Kudryasheva, N.S.; Russian Foundation for Basic Research [15-03-06786a]; Russian Academy of Sciences [VI 57.1.1]

Найти похожие
9.


   
    Applications of Luminous Bacteria Enzymes in Toxicology [Text] / V. A. Kratasyuk, E. N. Esimbekova // Comb. Chem. High Throughput Screen. - 2015. - Vol. 18, Is. 10. - P952-959, DOI 10.2174/1386207318666150917100257. - Cited References:88. - The research was supported by the Russian Science Foundation, project No. 15-19-10041. . - ISSN 1386-2073. - ISSN 1875-5402
РУБ Biochemical Research Methods + Chemistry, Applied + Pharmacology &
Рубрики:
NADHFMN-OXIDOREDUCTASE-LUCIFERASE
   HUMIC SUBSTANCES

   BIOLUMINESCENT

Кл.слова (ненормированные):
Bioluminescence -- bioluminescent toxicity enzymatic assay -- immobilization -- of enzymes -- luciferase -- total toxicity
Аннотация: This review describes the principle and applications of bioluminescent enzymatic toxicity bioassays. This type of assays uses bacterial coupled enzyme systems: NADH: FMN-oxidoreductase and luciferase to replace living organisms in developing cost-competitive biosensors for environmental, medical and industrial applications. These biosensors instantly signal chemical and biological hazards and allow for detecting a great amount of toxic compounds with advantages associated with fast results, high sensitivity, simplicity, low cost and safety of the procedure.

WOS
Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Inst Biophys, Siberian Branch, Photobiol Lab, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kratasyuk, Valentina A.; Esimbekova, Elena N.; Russian Science Foundation [15-19-10041]

Найти похожие
10.


   
    Bioluminescent Enzymatic Assay as a Tool for Studying Antioxidant Activity and Toxicity of Bioactive Compounds / N. S. Kudryasheva [et al.] // Photochem. Photobiol. - 2017. - Vol. 93, Is. 2. - P536-540, DOI 10.1111/php.12639. - Cited References:40. - The work was supported by the Russian Foundation for Basic Research, Grants 15-03-06786 and 15-43-04377-sibir; the state budget allocated to the fundamental research at the Russian Academy of Sciences (project 01201351504). . - ISSN 0031-8655. - ISSN 1751-1097
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
LUMINOUS MARINE-BACTERIA
   HUMIC SUBSTANCES

   DETOXIFICATION PROCESSES

Аннотация: A bioluminescent assay based on a system of coupled enzymatic reactions catalyzed by bacterial luciferase and NADH:FMN-oxidoreductase was developed to monitor toxicity and antioxidant activity of bioactive compounds. The assay enables studying toxic effects at the level of biomolecules and physicochemical processes, as well as determining the toxicity of general and oxidative types. Toxic and detoxifying effects of bioactive compounds were studied. Fullerenols, perspective pharmaceutical agents, nanosized particles, water-soluble polyhydroxylated fullerene-60 derivatives were chosen as bioactive compounds. Two homologous fullerenols with different number and type of substituents, C60O2-4(OH)(20-24) and Fe0.5C60(OH) O-x(y) (x + y = 40-42), were used. They suppressed bioluminescent intensity at concentrations 0.01 g L-1 and 0.001 g L-1 for C60O2-4(OH)(20-24) and Fe0.5C60(OH)(x)O-y, respectively; hence, a lower toxicity of C60O2-4(OH)(20-24) was demonstrated. Antioxidant activity of fullerenols was studied in model solutions of organic and inorganic oxidizers; changes in toxicities of general and oxidative type were determined; detoxification coefficients were calculated. Fullerenol C60O2-4(OH)(20-24) revealed higher antioxidant ability at concentrations 10(-17)-10(-5) g L-1. The difference in the toxicity and antioxidant activity of fullerenols was explained through their electron donor/acceptor properties and different catalytic activity. Principles of bioluminescent enzyme assay application for evaluating the toxic effect and antioxidant activity of bioactive compounds were summarized and the procedure steps were described.

WOS,
Смотреть статью
Держатели документа:
Inst Biophys SB RAS, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Natl Res Tomsk Polytech Univ, Tomsk, Russia.
Inst Phys SB RAS, Krasnoyarsk, Russia.

Доп.точки доступа:
Kudryasheva, Nadezhda S.; Kovel, Ekaterina S.; Sachkova, Anna S.; Vorobeva, Anna A.; Isakova, Viktoriya G.; Churilov, Grigoriy N.; Russian Foundation for Basic Research [15-03-06786, 15-43-04377-sibir]; Russian Academy of Sciences [01201351504]

Найти похожие
11.


   
    Organic Trace Components Extractable by Chloroform from Swamp and River Waters in the Middle Ob Basin / T. T. Efremova, S. P. Efremov, G. S. Kalacheva // Water Resour. - 2018. - Vol. 45, Is. 5. - P757-766, DOI 10.1134/S0097807818050068. - Cited References:20. - This study was carried out under project no. 45 "Interrelationships between Climatic and Ecosystem Processes in the Territories of Forest-Bog Complexes in Western Siberia" in the Integrated Program of Basic Researches of Siberian Branch, Russian Academy of Sciences "Interdiscilpinary Integration Studies". . - ISSN 0097-8078. - ISSN 1608-344X
РУБ Water Resources
Рубрики:
SURFACE WATERS
   MATTER

Кл.слова (ненормированные):
bog water -- taiga rivers -- organic trace components -- chromate-mass-spectroscopy
Аннотация: For the first time in the Middle Ob Basin, new data of importance for evaluating the quality of swamp and river water were obtained, characterizing the microcomponent composition of extractive organic compounds. More than 150 compounds of natural genesis were identified. The water of oligotrophic and mesotrophic bogs shows widest diversity and maximal, almost equal masses of extractable organic substances, averaging 13 357 ng/L. In the water of eutrophic bogs and taiga rivers, this characteristic is five times lower; and that in lakes is lower by more than an order of magnitude. The amount of extractive trace components is closely correlated with the concentration of water-soluble carbon of humic nature. It was established that the natural water of taiga zone identical in terms of the fulvate type differs in the composition of organic trace components and can be grouped into four clusters: (a) water of oligotrophic bogs, (b) water of mesotrophic bogs, (c) river water, and (d) water of eutrophic bogs and bog lakes.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Div Fed Res Ctr, Siberian Branch,Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Inst Biophys, Div Fed Res Ctr, Siberian Branch,Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Efremova, T. T.; Efremov, S. P.; Kalacheva, G. S.; Integrated Program of Basic Researches of Siberian Branch, Russian Academy of Sciences "Interdiscilpinary Integration Studies" [45]

Найти похожие
12.


   
    Biological activity of carbonic nano-structures—comparison via enzymatic bioassay / A. S. Sachkova [et al.] // J. Soils Sed. - 2018, DOI 10.1007/s11368-018-2134-9 . - Article in press. - ISSN 1439-0108
Кл.слова (ненормированные):
Antioxidant activity -- Bioactive compounds -- Fullerenol -- Humic substances -- Reactive oxygen species -- Toxicity
Аннотация: Purpose: The aim of the work is to compare the biological activity of carbonic nano-structures of natural and artificial origination, namely, humic substances (HS) and fullerenols. Materials and methods: The representative of the fullerenol group, С60Оy(OH)x where у + x = 20–22, was chosen. Enzyme-based luminescent bioassay was applied to evaluate toxicity and antioxidant properties of HS and fullerenol (F); chemiluminescent luminol method was used to study a content of reactive oxygen species (ROS) in the solutions. Toxicity of the bioactive compounds was evaluated using effective concentrations ЕС50; detoxification coefficients DOxT were applied to study and compare antioxidant activity of the compounds. Antioxidant activity and ranges of active concentrations of the bioactive compounds were determined in model solutions of organic and inorganic oxidizers—1,4-benzoquinone and potassium ferricianide. Results and discussion: Values of ЕС50 revealed higher toxicity of HS than F (0.005 and 0.108 g L?1, respectively); detoxifying concentrations of F were found to be lower. Antioxidant ability of HS was demonstrated to be time-dependent; the 50-min preliminary incubation in oxidizer solutions was suggested as optimal for the detoxification procedure. On the contrary, F’ antioxidant effect demonstrated independency on time. Antioxidant effect of HS did not depend on amphiphilic characteristics of the media (values of DOxT were 1.3 in the solutions of organic and inorganic oxidizers), while this of F was found to depend: it was maximal (DOxT = 2.0) in solutions of organic oxidizer, 1,4-benzoquinone. Conclusions: Both HS and F demonstrated toxicity and low-concentration antioxidant ability; however, quantitative characteristics of their effects were different. The differences were explained with HS polyfunctionality, higher ability to decrease ROS content, non-rigidity, and diffusion restrictions in their solutions. Antioxidant effect of the bioactive compounds was presumably attributed to catalytic redox activity of their ?-fragments. The paper demonstrates a high potential of luminescent enzymatic bioassay to study biological activity of nano-structures of natural and artificial origination. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

Scopus,
Смотреть статью,
WOS
Держатели документа:
National Research Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
Institute of Biophysics FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Physics FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Irkutsk National Research Technical University, Irkutsk, 664074, Russian Federation

Доп.точки доступа:
Sachkova, A. S.; Kovel, E. S.; Churilov, G. N.; Stom, D. I.; Kudryasheva, N. S.

Найти похожие
13.


   
    Effects of zooplankton carcasses degradation on freshwater bacterial community composition and implications for carbon cycling / O. V. Kolmakova [et al.] // Environ. Microbiol. - 2018, DOI 10.1111/1462-2920.14418 . - Article in press. - ISSN 1462-2912
Аннотация: Non-predatory mortality of zooplankton provides an abundant, yet, little studied source of high quality labile organic matter (LOM) in aquatic ecosystems. Using laboratory microcosms, we followed the decomposition of organic carbon of fresh 13C-labelled Daphnia carcasses by natural bacterioplankton. The experimental setup comprised blank microcosms, that is, artificial lake water without any organic matter additions (B), and microcosms either amended with natural humic matter (H), fresh Daphnia carcasses (D) or both, that is, humic matter and Daphnia carcasses (HD). Most of the carcass carbon was consumed and respired by the bacterial community within 15 days of incubation. A shift in the bacterial community composition shaped by labile carcass carbon and by humic matter was observed. Nevertheless, we did not observe a quantitative change in humic matter degradation by heterotrophic bacteria in the presence of LOM derived from carcasses. However, carcasses were the main factor driving the bacterial community composition suggesting that the presence of large quantities of dead zooplankton might affect the carbon cycling in aquatic ecosystems. Our results imply that organic matter derived from zooplankton carcasses is efficiently remineralized by a highly specific bacterial community, but does not interfere with the bacterial turnover of more refractory humic matter. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Siberian Federal University, Institute of Fundamental Biology and Biotechnology, Krasnoyarsk, Russian Federation
Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
GFZ German Research Centre for Geosciencess, Section 5.3 Geomicrobiology, Potsdam, Germany
Experimental Phycology and Culture Collection of Algae (SAG), University of Gottingen, Gottingen, Germany
Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany

Доп.точки доступа:
Kolmakova, O. V.; Gladyshev, M. I.; Fonvielle, J. A.; Ganzert, L.; Hornick, T.; Grossart, H. -P.

Найти похожие
14.


   
    Monitoring of Low-Intensity Exposures via Luminescent Bioassays of Different Complexity: Cells, Enzyme Reactions, and Fluorescent Proteins / N. S. Kudryasheva, E. S. Kovel // Int J Mol Sci. - 2019. - Vol. 20, Is. 18. - Ст. 4451, DOI 10.3390/ijms20184451 . - ISSN 1422-0067
Кл.слова (ненормированные):
antioxidant activity -- bacterial cells, enzymes -- bioactive compounds -- fluorescent protein -- hormesis -- low-intensity factors -- luminescence bioassays -- radiation
Аннотация: The current paper reviews the applications of luminescence bioassays for monitoring the results of low-intensity exposures which produce a stimulative effect. The impacts of radioactivity of different types (alpha, beta, and gamma) and bioactive compounds (humic substances and fullerenols) are under consideration. Bioassays based on luminous marine bacteria, their enzymes, and fluorescent coelenteramide-containing proteins were used to compare the results of the low-intensity exposures at the cellular, biochemical, and physicochemical levels, respectively. High rates of luminescence response can provide (1) a proper number of experimental results under comparable conditions and, therefore, proper statistical processing, with this being highly important for "noisy" low-intensity exposures; and (2) non-genetic, i.e., biochemical and physicochemical mechanisms of cellular response for short-term exposures. The results of cellular exposures were discussed in terms of the hormesis concept, which implies low-dose stimulation and high-dose inhibition of physiological functions. Dependencies of the luminescence response on the exposure time or intensity (radionuclide concentration/gamma radiation dose rate, concentration of the bioactive compounds) were analyzed and compared for bioassays of different organization levels.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics, Federal Research Center "Krasnoyarsk Science Center, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Physics, Federal Research Center "Krasnoyarsk Science Center, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Kudryasheva, N. S.; Kovel, E. S.

Найти похожие
15.


   
    Effects of modified magnetite nanoparticles on bacterial cells and enzyme reactions / L. S. Bondarenko, E. S. Kovel, K. A. Kydralieva [et al.] // Nanomaterials. - 2020. - Vol. 10, Is. 8. - Ст. 1499. - P1-20, DOI 10.3390/nano10081499 . - ISSN 2079-4991
Кл.слова (ненормированные):
Bacterial assay -- Bioluminescence -- Enzymatic assay -- Humic acids-coated magnetite nanoparticles -- Hydrodynamic diameter -- Luciferase -- Magnetite nanoparticles -- NADH:FMN-oxidoreductase -- Oxidative stress -- Photobacterium phosphoreum -- Silica-coated magnetite nanoparticles -- Toxicity -- Zeta potential
Аннотация: Current paper presents biological effects of magnetite nanoparticles (MNPs). Analyzing effects of MNP’ characteristics (zeta-potential and hydrodynamic diameters) on bacteria and their enzyme reactions was the main focus. Photobacterium phosphoreum and bacterial enzymatic reactions were chosen as bioassays. Three types of MNPs were under study: bare Fe3O4, Fe3O4 modified with 3-aminopropyltriethoxysilane (Fe3O4/APTES), and humic acids (Fe3O4/HA). Effects of the MNPs were studied at a low concentration range (< 2 mg/L) and attributed to availability and oxidative activity of Fe3+, high negative surface charge, and low hydrodynamic diameter of Fe3O4/HA, as well as higher Fe3+ content in suspensions of Fe3O4/HA. Low-concentration suspensions of bare Fe3O4 provided inhibitory effects in both bacterial and enzymatic bioassays, whereas the MNPs with modified surface (Fe3O4/APTES and Fe3O4/HA) did not affect the enzymatic activity. Under oxidative stress (i.e., in the solutions of model oxidizer, 1,4-benzoquinone), MNPs did not reveal antioxidant activity, moreover, Fe3O4/HA demonstrated additional inhibitory activity. The study contributes to the deeper understanding of a role of humic substances and silica in biogeochemical cycling of iron. Bioluminescence assays, cellular and enzymatic, can serve as convenient tools to evaluate bioavailability of Fe3+ in natural dispersions of iron-containing nanoparticles, e.g., magnetite, ferrihydrite, etc. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Moscow Aviation Institute (National Research University), Moscow, 125993, Russian Federation
Institute of Physics SB RAS, FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Biophysics SB RAS, FRC KSC SB RAS, Krasnoyarsk, 660036, Russian Federation
Institute of Problems of Chemical Physics RAS, Moscow Region, Chernogolovka, 142432, Russian Federation
University of Szeged, Szeged, H-6720, Hungary
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Bondarenko, L. S.; Kovel, E. S.; Kydralieva, K. A.; Dzhardimalieva, G. I.; Illes, E.; Tombacz, E.; Kicheeva, A. G.; Kudryasheva, N. S.

Найти похожие
16.


   
    Effects of Modified Magnetite Nanoparticles on Bacterial Cells and Enzyme Reactions / L. S. Bondarenko, E. S. Kovel, K. A. Kydralieva [et al.] // Nanomaterials. - 2020. - Vol. 10, Is. 8. - Ст. 1499, DOI 10.3390/nano10081499. - Cited References:83. - This research was funded by the Russian Foundation for Basic Research (#19-315-50048, #19-33-90149, and #18-29-19003). . - ISSN 2079-4991
РУБ Nanoscience & Nanotechnology + Materials Science, Multidisciplinary
Рубрики:
NATURAL ORGANIC-MATTER
   HUMIC-ACID

   DETOXIFICATION PROCESSES

Кл.слова (ненормированные):
magnetite nanoparticles -- humic acids-coated magnetite nanoparticles -- silica-coated magnetite nanoparticles -- zeta potential -- hydrodynamic -- diameter -- toxicity -- bioluminescence -- bacterial assay -- enzymatic assay -- oxidative stress -- Photobacterium phosphoreum -- NADH -- FMN-oxidoreductase -- luciferase
Аннотация: Current paper presents biological effects of magnetite nanoparticles (MNPs). Relations of MNP' characteristics (zeta-potential and hydrodynamic diameters) with effects on bacteria and their enzymatic reactions were the main focus.Photobacterium phosphoreumand bacterial enzymatic reactions were chosen as bioassays. Three types of MNPs were under study: bare Fe3O4, Fe(3)O(4)modified with 3-aminopropyltriethoxysilane (Fe3O4/APTES), and humic acids (Fe3O4/HA). Effects of the MNPs were studied at a low concentration range (< 2 mg/L) and attributed to availability and oxidative activity of Fe3+, high negative surface charge, and low hydrodynamic diameter of Fe3O4/HA, as well as higher Fe(3+)content in suspensions of Fe3O4/HA. Low-concentration suspensions of bare Fe(3)O(4)provided inhibitory effects in both bacterial and enzymatic bioassays, whereas the MNPs with modified surface (Fe3O4/APTES and Fe3O4/HA) did not affect the enzymatic activity. Under oxidative stress (i.e., in the solutions of model oxidizer, 1,4-benzoquinone), MNPs did not reveal antioxidant activity, moreover, Fe3O4/HA demonstrated additional inhibitory activity. The study contributes to the deeper understanding of a role of humic substances and silica in biogeochemical cycling of iron. Bioluminescence assays, cellular and enzymatic, can serve as convenient tools to evaluate bioavailability of Fe(3+)in natural dispersions of iron-containing nanoparticles, e.g., magnetite, ferrihydrite, etc.

WOS
Держатели документа:
Natl Res Univ, Moscow Aviat Inst, Moscow 125993, Russia.
FRC KSC SB RAS, Inst Phys SB RAS, Krasnoyarsk 660036, Russia.
FRC KSC SB RAS, Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
RAS, Moscow Inst Problems Chem Phys, Chernogolovka 142432, Moscow Region, Russia.
Univ Szeged, H-6720 Szeged, Hungary.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Bondarenko, Lyubov S.; Kovel, Ekaterina S.; Kydralieva, Kamila A.; Dzhardimalieva, Gulzhian, I; Illes, Erzsebet; Tombacz, Etelka; Kicheeva, Arina G.; Kudryasheva, Nadezhda S.; Dzhardimalieva, Gulzhian; Kudryasheva, Nadezhda; Kovel, Ekaterina; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-315-50048, 19-33-90149, 18-29-19003]

Найти похожие
17.


   
    Humic substances mitigate the impact of tritium on luminous marine bacteria. Involvement of reactive oxygen species / T. V. Rozhko, O. V. Kolesnik, G. A. Badun [et al.] // International Journal of Molecular Sciences. - 2020. - Vol. 21, Is. 18. - Ст. 6783. - P1-12, DOI 10.3390/ijms21186783 . - ISSN 1661-6596
Кл.слова (ненормированные):
Adaptive response -- Bioassay -- Detoxification -- Hormesis -- Humic substances -- Luminous marine bacterium -- Reactive oxygen species -- Toxicity -- Tritium
Аннотация: The paper studies the combined effects of beta-emitting radionuclide tritium and Humic Substances (HS) on the marine unicellular microorganism—luminous bacteria—under conditions of low-dose radiation exposures (<0.04 Gy). Tritium was used as a component of tritiated water. Bacterial luminescence intensity was considered as a tested physiological parameter. The bioluminescence response of the marine bacteria to tritium corresponded to the “hormesis” model: it included stages of bioluminescence inhibition and activation, as well as the absence of the effect. HS were shown to decrease the inhibition and activation effects of tritium, similar to those of americium-241, alpha-emitting radionuclide, studied earlier. Correlations between the bioluminescence intensity and the content of Reactive Oxygen Species (ROS) were found in the radioactive bacterial suspensions. The results demonstrate an important role of HS in natural processes in the regions of low radioactive contamination: HS can mitigate radiotoxic effects and adaptive response of microorganisms to low-dose radioactive exposures. The involvement of ROS in these processes was demonstrated. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Krasnoyarsk State Medical Academy, Krasnoyarsk, 660022, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center ‘Krasnoyarsk Science Center SB RAS’, Krasnoyarsk, 660036, Russian Federation
Department of Chemistry, Moscow State University, Moscow, 119991, Russian Federation
Biology Department, Irkutsk State University, Irkutsk, 664003, Russian Federation
Biophysics Department, Siberian Federal University, Svobodny 79, Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Rozhko, T. V.; Kolesnik, O. V.; Badun, G. A.; Stom, D. I.; Kudryasheva, N. S.

Найти похожие
18.


   
    Humic Substances Mitigate the Impact of Tritium on Luminous Marine Bacteria. Involvement of Reactive Oxygen Species / T. V. Rozhko, O. V. Kolesnik, G. A. Badun [et al.] // Int. J. Mol. Sci. - 2020. - Vol. 21, Is. 18. - Ст. 6783, DOI 10.3390/ijms21186783. - Cited References:74. - This work was supported by RFBR-Krasnoyarsk Regional Foundation N 18-44-242002, 18-44-240004. . - ISSN 1422-0067
РУБ Biochemistry & Molecular Biology + Chemistry, Multidisciplinary
Рубрики:
IONIZING-RADIATION
   OXIDATIVE STRESS

   DETOXIFICATION PROCESSES

Кл.слова (ненормированные):
tritium -- humic substances -- luminous marine bacterium -- bioassay -- detoxification -- reactive oxygen species -- toxicity -- adaptive response -- hormesis
Аннотация: The paper studies the combined effects of beta-emitting radionuclide tritium and Humic Substances (HS) on the marine unicellular microorganism-luminous bacteria-under conditions of low-dose radiation exposures (<0.04 Gy). Tritium was used as a component of tritiated water. Bacterial luminescence intensity was considered as a tested physiological parameter. The bioluminescence response of the marine bacteria to tritium corresponded to the "hormesis" model: it included stages of bioluminescence inhibition and activation, as well as the absence of the effect. HS were shown to decrease the inhibition and activation effects of tritium, similar to those of americium-241, alpha-emitting radionuclide, studied earlier. Correlations between the bioluminescence intensity and the content of Reactive Oxygen Species (ROS) were found in the radioactive bacterial suspensions. The results demonstrate an important role of HS in natural processes in the regions of low radioactive contamination: HS can mitigate radiotoxic effects and adaptive response of microorganisms to low-dose radioactive exposures. The involvement of ROS in these processes was demonstrated.

WOS
Держатели документа:
Krasnoyarsk State Med Acad, Krasnoyarsk 660022, Russia.
RAS, Inst Biophys, Fed Res Ctr Krasnoyarsk Sci Ctr, SB, Krasnoyarsk 660036, Russia.
Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119991, Russia.
Irkutsk State Univ, Biol Dept, Irkutsk 664003, Russia.
Siberian Fed Univ, Dept Biophys, Svobodny 79, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Rozhko, Tatiana V.; Kolesnik, Olga V.; Badun, Gennadii A.; Stom, Devard I.; Kudryasheva, Nadezhda S.; Kudryasheva, Nadezhda; RFBR-Krasnoyarsk Regional Foundation [N 18-44-242002, 18-44-240004]

Найти похожие
19.


   
    Direct and Indirect Detoxification Effects of Humic Substances / L. Bondareva, N. Kudryasheva // Agronomy-Basel. - 2021. - Vol. 11, Is. 2. - Ст. 198, DOI 10.3390/agronomy11020198. - Cited References:79. - This review was prepared with the partial financial support of the Program of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Russian Federation) 2020-2025. . - ISSN 2073-4395
РУБ Agronomy + Plant Sciences

Кл.слова (ненормированные):
humic substances -- detoxification -- luminous bacteria -- adaptive response
Аннотация: The review summarizes studies on the detoxification effects of water-soluble humic substances (HS), which are products of the natural transformation of organic substances in soils and bottom sediments that serve as natural detoxifying agents in water solutions. The detoxifying effects of HS on microorganisms are quite complex: HS neutralize free pollutants (indirect bioeffects) and also stimulate the protective response of organisms (direct bioeffects). Prospects and potential problems of bioluminescent bacteria-based assay to monitor toxicity of solutions in the presence of HS are discussed. The main criterion for the bioassay application is versatility and ease of use. The detoxification efficiency of HS in different pollutant solutions was evaluated, and the detoxification mechanisms are discussed. Particular attention was paid to the direct and complex direct + indirect effects of HS. The review focuses on the protective function of HS in solutions of radionuclides and salts of stable metals, with special consideration of the antioxidant properties of HS.

WOS
Держатели документа:
Fed Sci Ctr Hyg, Moscow 141014, Russia.
Russian Acad Sci, Inst Biophys, Krasnoyarsk Sci Ctr, Fed Res Ctr,Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Biophys Dept, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Bondareva, Lydia; Kudryasheva, Nadezhda; Program of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Russian Federation) 2020-2025

Найти похожие
20.


   
    Toxicity and Antioxidant Activity of Fullerenol C-60,C-70 with Low Number of Oxygen Substituents / E. S. Kovel, A. G. Kicheeva, N. G. Vnukova [et al.] // Int. J. Mol. Sci. - 2021. - Vol. 22, Is. 12. - Ст. 6382, DOI 10.3390/ijms22126382. - Cited References:93. - This research was funded by RFBR, N18-29-19003; RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, N20-44-243001; and partly supported by the Program of the Federal Service for Surveillance on Consumer Rights Protection and HumanWellbeing, Fundamental Study 2020-2025 (Russian Federation). . - ISSN 1422-0067
РУБ Biochemistry & Molecular Biology + Chemistry, Multidisciplinary
Рубрики:
HUMIC SUBSTANCES
   DETOXIFICATION PROCESSES

   BIOLOGICAL-ACTIVITY

Кл.слова (ненормированные):
fullerenol -- toxicity -- antioxidant activity -- reactive oxygen species -- bioluminescent assay -- hormesis
Аннотация: Fullerene is a nanosized carbon structure with potential drug delivery applications. We studied the bioeffects of a water-soluble fullerene derivative, fullerenol, with 10-12 oxygen groups (F10-12); its structure was characterized by IR and XPS spectroscopy. A bioluminescent enzyme system was used to study toxic and antioxidant effects of F10-12 at the enzymatic level. Antioxidant characteristics of F10-12 were revealed in model solutions of organic and inorganic oxidizers. Low-concentration activation of bioluminescence was validated statistically in oxidizer solutions. Toxic and antioxidant characteristics of F10-12 were compared to those of homologous fullerenols with a higher number of oxygen groups:F24-28 and F40-42. No simple dependency was found between the toxic/antioxidant characteristics and the number of oxygen groups on the fullerene's carbon cage. Lower toxicity and higher antioxidant activity of F24-28 were identified and presumptively attributed to its higher solubility. An active role of reactive oxygen species (ROS) in the bioeffects of F10-12 was demonstrated. Correlations between toxic/antioxidant characteristics of F10-12 and ROS content were evaluated. Toxic and antioxidant effects were related to the decrease in ROS content in the enzyme solutions. Our results reveal a complexity of ROS effects in the enzymatic assay system.

WOS
Держатели документа:
FRC KSC SB RAS, Inst Biophys SB RAS, Krasnoyarsk 660036, Russia.
FRC KSC SB RAS, Inst Phys SB RAS, Krasnoyarsk 660036, Russia.
FRC KSC SB RAS, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Kovel, Ekaterina S.; Kicheeva, Arina G.; Vnukova, Natalia G.; Churilov, Grigory N.; Stepin, Evsei A.; Kudryasheva, Nadezhda S.; Kovel, Ekaterina; RFBRRussian Foundation for Basic Research (RFBR) [N18-29-19003]; RFBR, Krasnoyarsk Territory; Krasnoyarsk Regional Fund of Science [N20-44-243001]; Program of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Fundamental Study 2020-2025 (Russian Federation)

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)