Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (1)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=LSS<.>)
Общее количество найденных документов : 29
Показаны документы с 1 по 20
 1-20    21-29 
1.


   
    Use of human wastes oxidized to different degrees in cultivation of higher plants on the soil-like substrate intended for closed ecosystems / A. A. Tikhomirov [et al.] // Advances in Space Research. - 2010. - Vol. 46, Is. 6. - P744-750, DOI 10.1016/j.asr.2010.02.024 . - ISSN 0273-1177
Кл.слова (ненормированные):
Life support systems -- Microflora -- Mineralized human wastes -- Phototrophic unit -- Wet incineration -- Alternating electromagnetic field -- Bioregenerative life support systems -- Degree of oxidations -- Denitrifying microorganisms -- Growth and development -- Higher plants -- Human waste -- Life support systems -- Mass exchange -- Microbiotas -- Microflora -- Microscopic fungi -- Mineralized human wastes -- Nutrient solution -- Oxidation level -- Phytopathogenic bacteria -- Plant productivity -- Soil-like substrate -- Wheat plants -- Biomolecules -- Electromagnetic fields -- Irrigation -- Magnetic field effects -- Metabolism -- Metabolites -- Oxidation -- Plants (botany) -- Soils -- Solvent extraction -- Wastes -- Waste incineration
Аннотация: To close mass exchange loops in bioregenerative life support systems more efficiently, researchers of the Institute of Biophysics SB RAS (Krasnoyarsk, Russia) have developed a procedure of wet combustion of human wastes and inedible parts of plants using H2O2 in alternating electromagnetic field. Human wastes pretreated in this way can be used as nutrient solutions to grow plants in the phototrophic unit of the LSS. The purpose of this study was to explore the possibilities of using human wastes oxidized to different degrees to grow plants cultivated on the soil-like substrate (SLS). The treated human wastes were analyzed to test their sterility. Then we investigated the effects produced by human wastes oxidized to different degrees on growth and development of wheat plants and on the composition of microflora in the SLS. The irrigation solution contained water, substances extracted from the substrate, and certain amounts of the mineralized human wastes. The experiments showed that the human wastes oxidized using reduced amounts of 30% H2O2: 1 ml/g of feces and 0.25 ml/ml of urine were still sterile. The experiments with wheat plants grown on the SLS and irrigated by the solution containing treated human wastes in the amount simulating 1/6 of the daily diet of a human showed that the degree of oxidation of human wastes did not significantly affect plant productivity. On the other hand, the composition of the microbiota of irrigation solutions was affected by the oxidation level of the added metabolites. In the solutions supplemented with partially oxidized metabolites yeast-like microscopic fungi were 20 times more abundant than in the solutions containing fully oxidized metabolites. Moreover, in the solutions containing incompletely oxidized human wastes the amounts of phytopathogenic bacteria and denitrifying microorganisms were larger. Thus, insufficiently oxidized sterile human wastes added to the irrigation solutions significantly affect the composition of the microbiological component of these solutions, which can ultimately unbalance the system as a whole. В© 2010 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, Akademgorodok, 50/50, Krasnoyarsk 660036, Russian Federation
Universite Blaise Pascal, 24 avenue des Landais, 63174 Aubiere cedex, France
ESA/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, Netherlands : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Kudenko, Y.A.; Ushakova, S.A.; Tirranen, L.S.; Gribovskaya, I.A.; Gros, J.-B.; Lasseur, C.

Найти похожие
2.


   
    Tolerance of plants grown on human mineralized waste to changes in air temperature / A. A. Tikhomirov [et al.] // International Astronautical Federation - 59th International Astronautical Congress 2008, IAC 2008. - 2008. - Vol. 1: 59th International Astronautical Congress 2008, IAC 2008 (29 September 2008 through 3 October 2008, Glasgow) Conference code: 79748. - P311-320
Кл.слова (ненормированные):
Air temperature -- Alternating electromagnetic field -- Biological life support systems -- Closedness -- Controlled process -- Fluorescence measurements -- Gas exchange -- Heat stress -- High temperature -- Human waste -- Nutrient solution -- Old plants -- Photosynthetic apparatus -- Photosynthetically active radiation -- Plant components -- Plant growth -- Plant wastes -- Protective action -- Reproductive organs -- Temperature changes -- Temperature conditions -- Atmospheric temperature -- Electromagnetic field effects -- Electromagnetic fields -- Gas plants -- Heat resistance -- Hydrogen peroxide -- Oxygen supply -- Plant life extension -- Productivity -- Specific heat -- Thermal stress -- Waste utilization -- Plant shutdowns
Аннотация: The main objective of an LSS is to supply a crew with food, water and oxygen, and to eliminate its waste. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closedness of biological life support systems (BLSS) including plants relies on increased regeneration of gas, water and plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of an LSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of plants grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an alternating electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat resistance of the plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At ages 15 and 25 days, plants were subjected to a rise in air temperature (from 22-24В°C to 44В°C) under different PAR intensities for 4 hours. The status of the photosynthetic apparatus of the plants was assessed by external CO2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W/m2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved. The heat resistance of the reproductive organs of 25-day-old plants was significantly lower than that of 15-day-old plants subjected to similar light and temperature conditions.

Scopus
Держатели документа:
SB RAS Institute of Biophysics, 660036, Akademgorodok, Krasnoyarsk, Russian Federation
LGCB, Universite Blaise Pascal, Clermont-Ferrand, France
Institute of Biology Komi SC of UrB RAS, Syktyvkar, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Shikhov, V.N.; Gros, J.-B.; Golovko, T.K.; Dal'Ke, I.V.; Zakhozhii, I.G.

Найти похожие
3.


   
    Biological and physicochemical methods for utilization of plant wastes and human exometabolites for increasing internal cycling and closure of life support systems / I. G. Zolotukhin [et al.] // Advances in Space Research. - 2005. - Vol. 35, Is. 9 SPEC. ISS. - P1559-1562, DOI 10.1016/j.asr.2005.01.006 . - ISSN 0273-1177
Кл.слова (ненормированные):
BLSS -- Desalting -- Higher plants -- NaCl utilization -- SLS -- Biomass -- Crops -- Decomposition -- Electrodialysis -- Harvesting -- Metabolites -- Soils -- Wastes -- BLSS -- Higher plants -- NaCl utilization -- SLS -- Plants (botany) -- Biomass -- Decay -- Deionization -- Harvesting -- Plants -- Soil -- Wastes -- Wheat -- sodium chloride -- article -- biomass -- bioremediation -- culture medium -- feces -- growth, development and aging -- human -- metabolism -- methodology -- microbiology -- microclimate -- urine -- waste management -- wheat -- Biodegradation, Environmental -- Biomass -- Culture Media -- Ecological Systems, Closed -- Feces -- Humans -- Life Support Systems -- Sodium Chloride -- Soil Microbiology -- Triticum -- Urine -- Waste Management
Аннотация: Wheat was cultivated on soil-like substrate (SLS) produced by the action of worms and microflora from the inedible biomass of wheat. After the growth of the wheat crop, the inedible biomass was restored in SLS and exposed to decomposition ("biological" combustion) and its mineral compounds were assimilated by plants. Grain was returned to the SLS in the amount equivalent to human solid waste produced by consumption of the grain. Human wastes (urine and feces) after physicochemical processing turned into mineralized form (mineralized urine and mineralized feces) and entered the plants' nutrient solution amounts equal to average daily production. Periodically (once every 60-70 days) the nutrient solution was partly (up to 50%) desalinated by electrodialysis. Due to this NaCl concentration in the nutrient solution was sustained at a fixed level of about 0.26%. The salt concentrate obtained could be used in the human nutrition through NaCl extraction and the residuary elements were returned through the mineralized human liquid wastes into matter turnover. The control wheat cultivation was carried out on peat with use of the Knop nutrient solution. Serial cultivation of several wheat vegetations within 280 days was conducted during the experiment. Grain output varied and yield/harvest depended, in large part, upon the amount of inedible biomass returned to SLS and the speed of its decomposition. After achieving a stationary regime, (when the quantity of wheat inedible biomass utilized during vegetation in SLS is equal to the quantity of biomass introduced into SLS before vegetation) grain harvest in comparison with the control was at most 30% less, and in some cases was comparable to the control harvest values. The investigations carried out on the wheat example demonstrated in principle the possibility of long-term functioning of the LSS photosynthesizing link based on optimizations of biological and physicochemical methods of utilization of the human and plants wastes. The possibilities for the use of these technologies for the creation integrated biological-physicochemical LSS with high closure degree of internal matter turnover are discussed in this paper. В© 2005 Published by Elsevier Ltd on behalf of COSPAR.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Akademgorodok, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Zolotukhin, I.G.; Tikhomirov, A.A.; Kudenko, Yu.A.; Gribovskaya, I.V.

Найти похожие
4.


   
    Influence of high concentrations of mineral salts on production process and NaCl accumulation by Salicornia europaea plants as a constituent of the LSS phototroph link / N. A. Tikhomirova [et al.] // Advances in Space Research. - 2005. - Vol. 35, Is. 9 SPEC. ISS. - P1589-1593, DOI 10.1016/j.asr.2005.01.055 . - ISSN 0273-1177
Кл.слова (ненормированные):
BLSS -- Intensity of PAR -- Mineral nutrition -- Productivity -- Salicornia europaea -- Biomass -- Concentration (process) -- Nitrogen -- Nutrition -- Photosynthesis -- Productivity -- Sodium chloride -- Bioregenerative life support systems (BLSS) -- Intensity of PAR -- Mineral nutrition -- Salicornia europaea -- Plants (botany) -- calcium -- magnesium -- nitrogen -- phosphorus -- potassium -- sodium chloride -- sulfur -- urea -- biomass -- conference paper -- culture medium -- dose response -- drug effect -- goosefoot -- growth, development and aging -- human -- light -- metabolism -- microclimate -- radiation exposure -- urine -- Biomass -- Calcium -- Chenopodiaceae -- Culture Media -- Dose-Response Relationship, Drug -- Ecological Systems, Closed -- Humans -- Life Support Systems -- Light -- Magnesium -- Nitrogen -- Phosphorus -- Potassium -- Sodium Chloride -- Sulfur -- Urea -- Urine
Аннотация: Use of halophytes (salt-tolerant vegetation), in a particular vegetable Salicornia europaea plants which are capable of utilizing NaCl in rather high concentrations, is one of possible means of NaCl incorporation into mass exchange of bioregenerative life support systems. In preliminary experiments it was shown that S. europaea plants, basically, could grow on urine pretreated with physicochemical processing and urease-enzyme decomposing of urea with the subsequent ammonia distillation. But at the same time inhibition of the growth process of the plants was observed. The purpose of the given work was to find out the influence of excessive quantities of some mineral elements contained in products of physicochemical processing of urine on the production process and NaCl accumulation by S. europaea plants. As the content of mineral salts in the human liquid wastes (urine) changed within certain limits, two variants of experimental solutions were examined. In the first variant, the concentration of mineral salts was equivalent to the minimum salt content in the urine and was: K - 1.5 g/l, P - 0.5 g/l, S - 0.5 g/l, Mg - 0.07 g/l, Ca - 0.2 g/l. In the second experimental variant, the content of mineral salts corresponded to the maximum salt content in urine and was the following: K - 3.0 g/l, P - 0.7 g/l, S - 1.2 g/l, Mg - 0.2 g/l, Ca - 0.97 g/l. As the control, the Tokarev nutrient solution containing nitrogen in the form of a urea, and the Knop nutrient solution with nitrogen in the nitrate form were used. N quantity in all four variants made up 177 mg/l. Air temperature was 24 В°C, illumination was continuous. Light intensity was 690 ?mol/m2s of photosynthetically active radiation. NaCl concentration in solutions was 1%. Our researches showed that the dry aboveground biomass of an average plant of the first variant practically did not differ from the control and totaled 11 g. In the second variant, S. europaea productivity decreased and the dry aboveground biomass of an average plant totaled 8 g. The increase of K quantity in the experimental solutions resulted in an elevated content of the element in the plants. The increase of K uptake in the second experimental variant was accompanied by a 30-50% decrease of Na content in comparison with the other variants. Comparative Na content in the other variants was practically identical. N, Mg and P content in the control and experimental variants was also practically identical. The increase of S quantity in the second experimental variant also increased S uptake by the plants. But Ca quantity, accumulated in aboveground plants biomass in the experimental variants was lower than in the control. NaCl uptake by plants, depending on the concentration of mineral salts in the experimental solutions, ranged from 8 g (maximum salt content) up to 15 g (minimum salt content) on a plant growth area that totaled 0.032 m2. Thus, high concentrations of mineral salts simulating the content of mineral salts contained in urine did not result in a significant decrease of S. europaea productivity. The present work also considers the influence of higher light intensity concentrations on productivity and NaCl accumulation by S. europaea plants grown on experimental solutions with high salt content. В© 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Akademgorodok, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirova, N.A.; Ushakova, S.A.; Kovaleva, N.P.; Gribovskaya, I.V.; Tikhomirov, A.A.

Найти похожие
5.


   
    Synthesis of biomass and utilization of plants wastes in a physical model of biological life-support system / A. A. Tikhomirov [et al.] // Acta Astronautica. - 2003. - Vol. 53, Is. 4-10. - P249-257, DOI 10.1016/S0094-5765(03)00137-1 . - ISSN 0094-5765
Кл.слова (ненормированные):
Ecosystems -- Microorganisms -- pH -- Photosynthesis -- Plants (botany) -- Synthesis (chemical) -- Waste utilization -- Biological life support systems (BLLS) -- Gas exchange -- Plant respiration -- Biomass -- carbon dioxide -- Agaricales -- article -- biomass -- bioremediation -- growth, development and aging -- hydroponics -- incineration -- metabolism -- methodology -- microbiology -- microclimate -- photosynthesis -- plant physiology -- radish -- space flight -- waste management -- weightlessness -- wheat -- Agaricales -- Biodegradation, Environmental -- Biomass -- Carbon Dioxide -- Ecological Systems, Closed -- Environmental Microbiology -- Hydroponics -- Incineration -- Life Support Systems -- Photosynthesis -- Plant Physiology -- Raphanus -- Space Flight -- Triticum -- Waste Management -- Weightlessness
Аннотация: The paper considers problems of biosynthesis of higher plants' biomass and "biological incineration" of plant wastes in a working physical model of biological LSS. The plant wastes are "biologically incinerated" in a special heterotrophic block involving Califomian worms, mushrooms and straw. The block processes plant wastes (straw, haulms) to produce soil-like substrate (SLS) on which plants (wheat, radish) are grown. Gas exchange in such a system consists of respiratory gas exchange of SLS and photosynthesis and respiration of plants. Specifics of gas exchange dynamics of high plants - SLS complex has been considered. Relationship between such a gas exchange and PAR irradiance and age of plants has been established. Nitrogen and iron were found to the first to limit plants' growth on SLS when process conditions are deranged. The SLS microflora has been found to have different kinds of ammonifying and denitrifying bacteria which is indicative of intensive transformation of nitrogen-containing compounds. The number of physiological groups of microorganisms in SLS was, on the whole, steady. As a result, organic substances - products of exchange of plants and microorganisms were not accumulated in the medium, but mineralized and assimilated by the biocenosis. Experiments showed that the developed model of a man-made ecosystem realized complete utilization of plant wastes and involved them into the intrasystem turnover. В© 2003 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russian Federation
Universite B. Pascal, Clermont-Ferrand, France
Environ. Contr. Life Support Sect., ESA, Estec Noonvijk, Netherlands : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Manukovsky, N.S.; Lisovsky, G.M.; Kudenko, Yu.A.; Koyalev, V.S.; Gribovskaya, I.V.; Tirranen, L.S.; Zolotukhin, I.G.; Gros, J.B.; Lasseur, Ch.

Найти похожие
6.


   
    Tolerance of LSS plant component to elevated temperatures / S. A. Ushakova, A. A. Tikhomirov // Acta Astronautica. - 2002. - Vol. 50, Is. 12. - P759-764, DOI 10.1016/S0094-5765(02)00010-3 . - ISSN 0094-5765
Кл.слова (ненормированные):
Metabolism -- Photosynthesis -- Rate constants -- Thermal effects -- Thermoanalysis -- Thermal tolerance -- Life support systems (spacecraft) -- carbon dioxide -- adaptation -- article -- Brassicaceae -- comparative study -- heat -- instrumentation -- light -- metabolism -- microclimate -- photosynthesis -- physiology -- plant physiology -- wheat -- Adaptation, Physiological -- Brassicaceae -- Carbon Dioxide -- Ecological Systems, Closed -- Heat -- Life Support Systems -- Light -- Photosynthesis -- Plant Physiology -- Triticum
Аннотация: Stability of LSS based on biological regeneration of water, air and food subject to damaging factors is largely dependent on the behavior of the photosynthesizing component represented, mainly, by higher plants. The purpose of this study is to evaluate the tolerance of uneven-aged wheat and radish cenoses to temperature effects different in time and value. Estimation of thermal tolerance of plants demonstrated that exposure for 20 h to the temperature increasing to 45В°C brought about irreversible damage both in photosynthetic processes (up to 80% of initial value) and the processes of growth and development. Kinetics of visible photosynthesis during exposure to elevated temperatures can be used to evaluate critical exposure time within the range of which the damage of metabolic processes is reversible. With varying light intensity and air temperature it is possible to find a time period admissible for the plants to stay under adverse conditions without considerable damage of metabolic processes. В© 2002 Elsevier Science Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics (Russian Academy of Sciences, Siberian Branch) Academgorodok, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Ushakova, S.A.; Tikhomirov, A.A.

Найти похожие
7.


   
    Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS / S. A. Ushakova [et al.] // Advances in Space Research. - 2005. - Vol. 36, Is. 7. - P1349-1353, DOI 10.1016/j.asr.2004.09.017 . - ISSN 0273-1177
Кл.слова (ненормированные):
Life support system -- NaCl -- Salicornia europaea -- Space biology -- Calcium -- Concentration (process) -- Minerals -- Photosynthesis -- Plants (botany) -- Salinity measurement -- Sodium chloride -- Vegetation -- Life support systems -- Liquid wastes -- NaCl -- Salicornea europea -- Space biology -- Space research
Аннотация: The accumulation of solid and liquid wastes in manmade ecosystems presents a problem that has not been efficiently solved yet. Urine, containing NaCl, are part of these products. This is an obstacle to the creation of biological systems with a largely closed material cycling, because the amount of solid and liquid wastes in them must be reduced to a minimum. A possible solution to the problem is to select plant species capable of utilizing sufficiently high concentrations of NaCl, edible for humans, and featuring high productivity. Until recently, the life support systems have included the higher plants that were either sensitive to salinization (wheat, many of the legumes, carrot, potato, maize) or relatively salt-resistant (barley, sugar beet, spinach). Salicomia europaea, whose above-ground part is fully edible for humans, is one of the most promising candidates to be included in life support systems. It is reported in the literature that this plant is capable of accumulating up to 50% NaCl (dry basis). Besides, excessive accumulation of sodium ions should bring forth a decrease in the uptake of potassium ions and other biogenic elements. The aim of this work is to study the feasibility of using S. europaea plants in growth chambers to involve NaCl into material cycling. Plants were grown in vegetation chambers at the irradiance of 100 or 150 W/m2 PAR (photosynthetically active radiation) and the air temperature 24 В°C, by two methods. The first method was to grow the plants on substrate - peat. The peat was supplemented with either 3% NaCl (Variant 1) or 6% NaCl (Variant 2) of the oven-dry mass of the peat. The second method was to grow the plants in water culture, using the solution with a full complement of nutrients, which contained 0.0005% of NaCl, 1% or 2%. The study showed that the addition of NaCl to the substrate or to the solution resulted in the formation of more succulent plants, which considerably increased their biomass. The amount of NaCl uptake was the highest in the plants grown in water culture, 2.6 g per plant. As the sodium uptake increased, the consumption of potassium and the sum of the reduced N forms decreased twofold. The uptake of calcium and magnesium by plants decreased as the NaCl concentration increased; the smallest amounts were taken up by S. europaea grown in water culture. Salinity had practically no effect on the uptake of phosphorus and sulfur. Thus, S. europaea is a promising candidate to be included in life support systems; of special interest is further research on growing these plants in water culture. В© 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Science, Siberian Branch, Akademgorodok, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Ushakova, S.A.; Kovaleva, N.P.; Gribovskaya, I.V.; Dolgushev, V.A.; Tikhomirova, N.A.

Найти похожие
8.


   
    An alternative approach to solar system exploration providing safety of human mission to Mars / J. I. Gitelson [et al.] // Advances in Space Research. - 2003. - Vol. 31, Is. 1. - P17-24, DOI 10.1016/S0273-1177(02)00657-9 . - ISSN 0273-1177
Кл.слова (ненормированные):
Health care -- Parameter estimation -- Planets -- Radiation -- Safety factor -- Mars exploration -- Solar system -- space technology -- Electricity -- Feasibility Studies -- Human Engineering -- Humans -- Life Support Systems -- Man-Machine Systems -- Mars -- Radiation Protection -- Robotics -- Safety -- Solar System -- Space Flight -- Spacecraft
Аннотация: For systematic human Mars exploration, meeting crew safety requirements, it seems perspective to assemble into a spacecraft: an electrical rocket, a well-shielded long-term life support system, and a manipulator-robots operating in combined "presence effect" and "master-slave" mode. The electrical spacecraft would carry humans to the orbit of Mars, providing short distance (and low signal time delay) between operator and robot-manipulators, which are landed on the surface of the planet. Long-term hybrid biological and physical/chemical LSS could provide environment supporting human health and well being. Robot-manipulators operating in "presence effect" and "master-slave" mode exclude necessity of human landing on Martian surface decreasing the level of risk for crew. Since crewmen would not have direct contact with the Martian environment then the problem of mutual biological protection is essentially reduced. Lightweight robot-manipulators, without heavy life support systems and without the necessity of returning to the mother vessel, could be sent as scouts to different places on the planet surface, scanning the most interesting for exobiological research site. Some approximate estimations of electric spacecraft, long-term hybrid LSS, radiation protection and mission parameters are conducted and discussed. В© 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch Russian Acad. Sci., Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gitelson, J.I.; Bartsev, S.I.; Mezhevikin, V.V.; Okhonin, V.A.

Найти похожие
9.


   
    Biological-physical-chemical aspects of a human life support system for a lunar base / J. I. Gitelson [et al.] // Acta Astronautica. - 1995. - Vol. 37, Is. C. - P385-394 . - ISSN 0094-5765
Кл.слова (ненормированные):
animal -- aquaculture -- article -- biomass -- construction work and architectural phenomena -- Cyprinodontiformes -- filtration -- growth, development and aging -- human -- microbiology -- microclimate -- moon -- nutritional value -- photoperiodicity -- plant -- space flight -- standard -- Tilapia -- waste management -- water management -- wheat -- Animals -- Aquaculture -- Biomass -- Cyprinodontiformes -- Ecological Systems, Closed -- Facility Design and Construction -- Filtration -- Humans -- Life Support Systems -- Moon -- Nutritive Value -- Photoperiod -- Plants, Edible -- Space Flight -- Tilapia -- Triticum -- Waste Management -- Water Microbiology -- Water Purification
Аннотация: To create a life support system based on biological and physical-chemical processes is the optimum solution providing full-valued condidtions for existence and efficient work of people at a lunar base. Long-standing experinece in experimental research or closed ecosystems and their components allows us to suggest a realistic functional structure of the lunar base and to estimate qualitatively its parameters. The original restrictions are as follows: 1) the basic source of energy to support the biological processes has to be the solar radiation; 2) the initial amount of basic biological elelments forming the turnover of substances (C, O, H, P, K, N) has to be delivered from Earth; 3). Moon materials are not to be used in the biological turnover inside the base; 4) the base is to supply the crew fully with atmosphere and water, and with 90% (A scenario) or 40% (B scenario) of food. Experimental data about the plant productivity under the "Moon" rhythm of light and darkness allow us to suggest that the A scenario requires per one human: plant area - 40 m2 irradiated during the lunar day by 250-300 W/m2 PAR producing 1250 g of dry biomass a terrestrial day; a heterotrophic component of "biological incineration" of inedible plant biomass (800 g/day) including the aquaculture of fish to produce animal products and contaminating the environment less than birds and mammals, and the culture of edible mushrooms; a component of physical-chemical correction for the LSS envi ronment including the subsystems of: deep oxidation of organic impurities in the atmosphere and of water, organic wastes of human activity and that biological components (420 g/day) Co2 concentration in "Moon" nights, damping O2 in "Moon" days, etc. The stock of presotred or delivered from Earth substances (food additions, seeds, etc.) to be involved in biological turnover is to be about 50 kg/year per man. Increase of the mass of prestored substances per man up to 220 kg/year would reduce twice the plant area and consumed amount of radiant energy to exclude the components of "biological incineration" and physical-chemical destruction of organic wastes. В© 1995.

Scopus
Держатели документа:
Institute of Biophysics (Russian Academy of Sciences, Siberian Branch) Krasnoyarsk, Russian Federation
Ruhr-University of Bochum, C.E.B.A.S. Center of Excellence., Bochum, Germany
Institute of Medical-Biological Problems, Moscow, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gitelson, J.I.; V, B.; Grigoriev, A.I.; Lisovsky, G.M.; Manukovsky, N.S.; Sinyak, Y.u.E.; Ushakova, S.A.

Найти похожие
10.


   
    Perspectives of different type biological life support systems (BLSS) usage in space missions / S. I. Bartsev [et al.] // Acta Astronautica. - 1996. - Vol. 39, Is. 8. - P617-622, DOI 10.1016/S0094-5765(97)00012-X . - ISSN 0094-5765
Кл.слова (ненормированные):
article -- bacterium -- comparative study -- construction work and architectural phenomena -- environmental planning -- green alga -- human -- instrumentation -- mathematics -- microclimate -- moon -- plant -- quality of life -- space flight -- standard -- weightlessness -- Algae, Green -- Bacteria -- Ecological Systems, Closed -- Environment Design -- Environment, Controlled -- Facility Design and Construction -- Humans -- Life Support Systems -- Mathematics -- Moon -- Plants -- Quality of Life -- Space Flight -- Weightlessness -- Biology -- Life support systems (spacecraft) -- Spreadsheets -- Biological life support systems (BLSS) -- Lunar missions
Аннотация: In the paper an attempt is made to combine three important criteria of LSS comparison: minimum mass, maximum safety and maximum quality of life. Well-known types of BLSS were considered: with higher plant, higher plants and mushrooms, microalgae, and hydrogen-oxidizing bacteria. These BLSSs were compared in terms of "integrated" mass for the case of a vegetarian diet and a "normal" one (with animal proteins and fats). It was shown that the BLSS with higher plants and incineration of wastes becomes the best when the exploitation period is more than 1 yr. The dependence of higher plants' LSS structure on operation time was found. Comparison of BLSSs in terms of integral reliability (this criterion includes mass and quality of life criteria) for a lunar base scenario showed that BLSSs with higher plants are advantageous in reliability and comfort. This comparison was made for achieved level of technology of closing and for perspective one. В© 1997 Elsevier Science Ltd.

Scopus
Держатели документа:
Biophys. Inst. of SB RAS, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Bartsev, S.I.; Gitelson, J.I.; Lisovsky, G.M.; Mezhevikin, V.V.; Okhonin, V.A.

Найти похожие
11.


   
    The influence of microbial associations on germination of wheat seeds and growth of seedlings under impact of zinc salts / L. A. Somova, N. S. Pechurkin // Advances in Space Research. - 2009. - Vol. 43, Is. 8. - P1224-1228, DOI 10.1016/j.asr.2008.12.008 . - ISSN 0273-1177
Кл.слова (ненормированные):
Heavy metals -- Life support system -- Microbial associations -- Microorganisms -- Wheat seeds -- Concentration (process) -- Heavy metals -- Metals -- Microorganisms -- Recycling -- Salts -- Seed -- Zinc -- Adverse effects -- Biological recycling -- Growth and development -- Heavy metal salts -- Higher plants -- Investigate effects -- Life support system -- Long-term missions -- Maximum permissible concentrations -- Microbial associations -- Pathogenic organisms -- Plantlets -- Recycling systems -- Root systems -- Wheat seeds -- Zinc salts -- Grain (agricultural product)
Аннотация: The life support systems (LSS) for long-term missions are to use cycling-recycling systems, including biological recycling. Higher plants are the traditional regenerator of air and producer of food. They should be used in many successive generations of their reproduction in LSS. Studies of influence of microbial associations on germination of wheat seeds and on growth of seedlings under impact of heavy metals are necessary because of migration of heavy metals in LSS. Microbial associations are able to stimulate growth of plants, to protect them from pathogenic organisms and from toxicity of heavy metal salts. The goal of this work was to investigate effect of microbial associations on the germination of wheat seeds and on the growth of seedlings under impact of different concentrations of ZnSO4. The results of investigations showed that:(1)Zinc salt had an adverse effect on germination of wheat seeds, beginning with concentrations of 8 MPC (Maximum Permissible Concentration) and higher.(2)Microbial associations (concentrations -104 to 107 cells/ml) were able to decrease (partly or completely) the adverse effect of ZnSO4 on germination of wheat seeds.(3)Concentrations (104-107 cells/ml) of microbial associations were able to decrease partly the adverse effect of zinc salts (intervals: from 1 to 32 MPS{cyrillic}) on the growth and development of wheat plantlets during heterotrophic phase.(4)The root system of plants was more sensitive to the adverse effect of ZnSO4 than shoots of plants. В© 2008 COSPAR.

Scopus
Держатели документа:
Institute of Biophysics SB, Russian Academy of Sciences, Akademgorodok, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Somova, L.A.; Pechurkin, N.S.

Найти похожие
12.


   
    Management and control of microbial populations' development in LSS of missions of different durations / L. A. Somova, N. S. Pechurkin // Advances in Space Research. - 2005. - Vol. 35, Is. 9 SPEC. ISS. - P1621-1625, DOI 10.1016/j.asr.2004.12.046 . - ISSN 0273-1177
Кл.слова (ненормированные):
Long-term missions -- LSS -- Macro- and microorganism -- Microbial populations -- Ecosystems -- Population statistics -- Probability -- Recycling -- Life support systems (LSS) -- Long-term mission -- Macro-and microorganism -- Microbial populations -- Microorganisms -- aerospace medicine -- bioreactor -- bioremediation -- Chlorella -- conference paper -- drug resistance -- human -- hygiene -- immune system -- instrumentation -- methodology -- microbiology -- microclimate -- physiology -- space flight -- waste management -- weightlessness -- Aerospace Medicine -- Biodegradation, Environmental -- Bioreactors -- Chlorella -- Drug Resistance -- Ecological Systems, Closed -- Environmental Microbiology -- Humans -- Hygiene -- Immune System -- Life Support Systems -- Space Flight -- Waste Management -- Weightlessness
Аннотация: The problem of interaction between man and microorganisms in closed habitats is an inextricable part of the whole problem of co-existence between macro- and microorganisms. Concerning the support of human life in closed habitat, we can, conventionally, divide microorganisms, acting in life support system (LSS) into three groups: useful, neutral and harmful. The tasks, for human beings for optimal coexistence with microhabitants seem to be trivial: (1) to increase the activity of useful forms, (2) decrease the activity harmful forms, (3) not allow the neutral forms to become the harmful ones and even to help them to gain useful activity. The task of efficient management and control of microbial population's development in LSS highly depends on mission duration. As for short-term missions without recycling, the proper hygienic procedures are developed. For longer missions, the probability of transformation of the neutral forms into the harmful ones is becoming more dangerous. The LSS for long-term missions are to use cycling-recycling systems, including system with biological recycling. In these systems, microbial populations as regenerative link should be useful and active agents. Some problems of microbial populations control and management are discussed in the paper. В© 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, SB, RAS, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Somova, L.A.; Pechurkin, N.S.

Найти похожие
13.


   
    Functional, regulatory and indicator features of microorganisms in man-made ecosystems / L. A. Somova, N. S. Pechurkin // Advances in Space Research. - 2001. - Vol. 27, Is. 9. - P1563-1570, DOI 10.1016/S0273-1177(01)00247-2 . - ISSN 0273-1177
Кл.слова (ненормированные):
Biomass -- Carbon dioxide -- Ecosystems -- Life support systems (spacecraft) -- Photosynthesis -- Sewage treatment -- Soils -- Human microfloras -- Microorganisms -- carbon -- carbon dioxide -- artificial ecosystem -- article -- biomass -- bioreactor -- ecosystem -- human -- intestine -- metabolism -- microbiology -- microclimate -- plant root -- sewage -- wheat -- Biomass -- Bioreactors -- Carbon -- Carbon Dioxide -- Ecological Systems, Closed -- Ecosystem -- Environmental Microbiology -- Humans -- Intestines -- Life Support Systems -- Plant Roots -- Sewage -- Triticum -- Waste Disposal, Fluid
Аннотация: Functional, regulatory and indicator features of microorganisms in development and functioning of the systems and sustaining stability of three man-made ecosystem types has been studied. 1) The functional (metabolic) feature was studied in aquatic ecosystems of biological treatment of sewage waters for the reducer component. 2) The regulatory feature of bacteria for plants (producer component) was studied in simple terrestrial systems "wheat plants-rhizospheric microorganisms - artificial soil" where the behavior of the system varied with activity of the microbial component. For example with atmospheric carbon dioxide content elevated microbes promote intensification of photosynthesis processes, without binding the carbon in the plant biomass. 3) The indicator feature for the humans (consumer component) was studied in Life Support Systems (LSS). High sensitivity of human microflora to system conditions allowed its use as an indicator of the state of both system components and the entire ecosystem. В© 2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Somova, L.A.; Pechurkin, N.S.

Найти похожие
14.


   
    Key factors in development of man-made and natural ecosystems / N. S. Pechurkin // Advances in Space Research. - 1999. - Vol. 24, Is. 3. - P377-381, DOI 10.1016/S0273-1177(99)00321-X . - ISSN 0273-1177
Кл.слова (ненормированные):
artificial ecosystem -- ecosystem function -- article -- ecosystem -- microbiology -- microclimate -- Ecological Systems, Closed -- Ecosystem -- Environmental Microbiology -- Life Support Systems -- Soil Microbiology
Аннотация: Key factors of ecosystem functioning are of the same nature for artificial and natural types. An hierarchical approach gives the opportunity for estimation of the quantitative behavior of both individual links and the system as a whole. At the organismic level we can use interactions of studied macroorganisms (man, animal, higher plant) with selected microorganisms as key indicating factors of the organisms immune status. The most informative factor for the population/community level is an age structure of populations and relationships of domination/elimination. The integrated key factors of the ecosystems level are productivity and rates of cycling of the limiting substances. The key factors approach is of great value for growth regulations and monitoring the state of any ecosystem, including the life support system (LSS)-type.

Scopus
Держатели документа:
Institute of Biophysics, Academgorodok, 660036, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Pechurkin, N.S.

Найти похожие
15.


   
    Hydrogen bacteria as a potential regenerative LSS component and producer of ecologically clean degradable plastic. / T. Volova [et al.] // Life support & biosphere science : international journal of earth space. - 1999. - Vol. 6, Is. 3. - P209-213 . - ISSN 1069-9422
Кл.слова (ненормированные):
carbon dioxide -- hydroxybutyric acid -- polymer -- air conditioning -- article -- biomass -- catering service -- chemistry -- metabolism -- methodology -- microclimate -- urine -- waste management -- water management -- Wautersia eutropha -- Air Conditioning -- Biomass -- Carbon Dioxide -- Cupriavidus necator -- Ecological Systems, Closed -- Food Supply -- Hydroxybutyrates -- Life Support Systems -- Polymers -- Urine -- Waste Management -- Water Purification

Scopus
Держатели документа:
Institute of Biophysics (Russian Academy of Sciences, Siberian Branch) Krasnoyarsk, Russia. : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.; Gitelson, J.; Terskov, I.; Sidko, F.

Найти похожие
16.


   
    The role of volatile metabolites in microbial communities of the LSS higher plant link / L. S. Tirranen, I. I. Gitelson // Advances in Space Research. - 2006. - Vol. 38, Is. 6. - P1227-1232, DOI 10.1016/j.asr.2006.02.038 . - ISSN 0273-1177
Кл.слова (ненормированные):
Inhibiting, bactericidal, stimulating effect -- Microbial interaction -- Type of interaction -- Volatile and non-volatile metabolites -- Growth kinetics -- Microbiology -- Microorganisms -- Plants (botany) -- Sensitivity analysis -- Toxic materials -- Inhibiting, bactericidal, stimulating effect -- Microbial interaction -- Type of interaction -- Volatile and non-volatile metabolites -- Metabolites
Аннотация: The paper addresses the possibility of controlling the microbial community composition through metabolites produced by microbes. The comparative analysis of experimental data has shown that volatile metabolites make a much greater contribution to the microbial interactions than nonvolatile ones. It has been found that interaction of microorganisms via the volatiles they release occurs frequently and is typical of a number of microorganisms. Volatile metabolites released by microorganisms produce an inhibitory, sometimes bactericidal, effect on the vital functions of bacteria. The stimulating action occurs 6-8 times less frequently. The range of action on the growth of the test cultures and the range of sensitivity to the effect of volatile metabolites of the study microbes have been found to be individual. Comparative cluster analysis of the ranges of action of 100 study cultures has shown that in the investigated set of microorganism species interaction was performed via a set of volatiles of an inhibiting action (82) and of a stimulating action (52). It has been found that release of volatile metabolites by the studied microorganisms depends upon the culture age, concentrations of components of the nutrient medium, and volatile by-products released by other microorganisms. This production can be increased or decreased by the action of volatile metabolites of other microbes. This is related to strain features and culture age. The prospects of using these regulating metabolites depend on the "range", specificity and safety for other members of the microbial community in insufficient concentrations. Volatiles produced by plants and microorganisms as well as by other components of the system - humans and processing equipment installed inside the closed ecosystem - could influence the formation not only of the microbial community but also of the gas composition of the system's atmosphere, through which they could affect the state of the plants. Specially performed experiments have shown that volatile metabolites of microorganisms can accumulate in their habitat, dissolve in the atmospheric water, and maintain their biological activity for days. It has been determined that volatile metabolites of some microorganisms are toxic for plants. Growth of seedling roots is inhibited more than growth of stems. В© 2006 COSPAR.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, Akademgorodok, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tirranen, L.S.; Gitelson, I.I.

Найти похожие
17.


   
    Effects of mineral nutrition conditions on heat tolerance of chufa (Cyperus esculentus L.) plant communities to super optimal air temperatures in the BTLSS [Text] / E. S. Shklavtsova [et al.] // Adv. Space Res. - 2014. - Vol. 54, Is. 6. - P1135-1145, DOI 10.1016/j.asr.2014.05.031. - Cited References: 26. - The study was performed within the framework of the program of fundamental research for the Russian academies of sciences for 2013-2020, subject No. 56.1.4. . - ISSN 0273-1177. - ISSN 1879-1948
РУБ Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences
Рубрики:
LIFE-SUPPORT-SYSTEMS
   CHLOROPHYLL FLUORESCENCE

   STRESS

   WASTE

   WHEAT

   LSS

Кл.слова (ненормированные):
Bioregenerative life support system -- Cyperus esculentus L. -- Heat shock -- Mineralized human wastes -- Chlorophyll fluorescence -- Lipid peroxidation
Аннотация: The use of mineralized human wastes as a basis for nutrient solutions will increase the degree of material closure of bio-technical human life support systems. As stress tolerance of plants is determined, among other factors, by the conditions under which they have been grown before exposure to a stressor, the purpose of the study is to investigate the level of tolerance of chufa (Cyperus esculentus L.) plant communities grown in solutions based on mineralized human wastes to a damaging air temperature, 45 degrees C. Experiments were performed with 30-day-old chufa plant communities grown hydroponically, on expanded clay aggregate, under artificial light, at 690 mu mol m(-2) s(-1) PAR and at a temperature of 25 degrees C. Plants were grown in Knop's solution and solutions based on human wastes mineralized according to Yu.A. Kudenko's method, which contained nitrogen either as ammonium and urea or as nitrates. The heat shock treatment lasted 20 h at 690 and 1150 mu mol m(-2) s(-1) PAR. Chufa heat tolerance was evaluated based on parameters of CO2 gas exchange, the state of its photosynthetic apparatus (PSA), and intensity of peroxidation of leaf lipids. Chufa plants grown in the solutions based on mineralized human wastes that contained ammonium and urea had lower heat tolerance than plants grown in standard mineral solutions. Heat tolerance of the plants grown in the solutions based on mineralized human wastes that mainly contained nitrate nitrogen was insignificantly different from the heat tolerance of the plants grown in standard mineral solutions. A PAR intensity increase from 690 mu mol m(-2) s(-1) to 1150 mu mol m(-2) s(-1) enhanced heat tolerance of chufa plant communities, irrespective of the conditions of mineral nutrition under which they had been grown. (C) 2014 COSPAR. Published by Elsevier Ltd. All rights reserved.

WOS
Держатели документа:
[Shklavtsova, E. S.
Ushakova, S. A.
Shikhov, V. N.
Anishchenko, O. V.] SB RAS Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shklavtsova, E.S.; Ushakova, S.A.; Shikhov, V.N.; Anishchenko, O.V.; program of fundamental research for the Russian academies of sciences [56.1.4]

Найти похожие
18.


   
    BIOS-4 AS AN EMBODIMENT OF CELSS DEVELOPMENT CONCEPTION [Text] / S. I. BARTSEV, V. V. MEZHEVIKIN, V. A. OKHONIN ; ed. G Kraft [et al.] // PHYSICAL, CHEMICAL, BIOCHEMICAL AND BIOLOGICAL TECHNIQUES AND PROCESSES. Ser. ADVANCES IN SPACE RESEARCH-SERIES : PERGAMON PRESS LTD, 1996. - Vol. 18: F2.2, F2.3, F2.5, F4.3, F4.4, F4.9, F4.10 Meetings of COSPAR Scientific Commission F, at the 13th COSPAR Scientific Assembly (JUL 11-21, 1994, HAMBURG, GERMANY), Is. 01.02.2013. - P. 201-204, DOI 10.1016/0273-1177(95)00809-S. - Cited References: 3 . - ISBN 0273-1177. - ISBN 0-08-042664-6
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Chemistry, Multidisciplinary

Аннотация: Any attempt to create LSS for practical applications must take into account the possibility of catastrophic consequences if the problem of LSS reliability and stability is not solved. An integrated conception of CELSS studies development as a possible way to increase its reliability is considered. The BIOS-4 facility project is developed in the context of the conception. Three principles of highly effective experimental CELSS facility design are proposed. Some details of BIOS-4 design and its exploitation features are presented.

WOS : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
BARTSEV, S.I.; MEZHEVIKIN, V.V.; OKHONIN, V.A.; Kraft, G \ed.\; Carr, KE \ed.\; Goodwin, EH \ed.\; Ting, KC \ed.\; Finn, CK \ed.\; Tsai, KC \ed.\; Volk, T \ed.\; Henninger, DL \ed.\; Mitchell, CA \ed.\; MacElroy, RD \ed.\

Найти похожие
19.


   
    Mineralization of wastes of human vital activity and plants to be used in a life support system [Text] / Y. A. Kudenko, I. V. Gribovskaya, R. A. Pavlenko // Acta Astronaut. - 1997. - Vol. 41, Is. 3. - P. 193-196, DOI 10.1016/S0094-5765(97)00215-4. - Cited References: 8 . - ISSN 0094-5765
РУБ Engineering, Aerospace

Аннотация: Available methods for mineralizing wastes of human activity and inedible biomass of plants used in this country and abroad are divided into two types: dry mineralization at high temperatures up to 1270 K with subsequent partial dissolution of the ash and the other-wet oxidation by acids. In this case mineralization is performed at a temperature of 470-460 K and a pressure of 220-270 atmospheres in pure oxygen with the output of mineral solution and dissoluble sediments in the form of scale. The drawback of the first method is the formation of dioxins, CO, SO2, NO2 and other toxic compounds. The latter method is too sophisticated and is presently confined to bench testing. The here proposed method to mineralize the wastes is in mid-position between the thermal and physical chemical methods. At a temperature of 89-90 degrees C the mixture was exposed to a controlled electromagnetic field at normal atmospheric pressure. The method merits simplicity, reliability, produces no dissoluble sediment or emissions noxious for human and plants. The basic difference from the above said methods is to employ as an oxidizer atomic oxygen, its active forms including OH-radicals with hydrogen peroxide as the sourer. Hydrogen peroxide can be produced with electric power from water inside the Life Support System (LSS). (C) 1998 Elsevier Science Ltd. All rights reserved.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kudenko, Y.A.; Gribovskaya, I.V.; Pavlenko, R.A.

Найти похожие
20.


   
    Mineralization of wastes of human vital activity and plants in LSS [Text] / Y. A. Kudenko, I. V. Gribovskaya, R. A. Pavlenko ; ed. ya, IV Gribovs // SIXTH EUROPEAN SYMPOSIUM ON SPACE ENVIRONMENTAL CONTROL SYSTEMS, VOLS 1 AND 2. Ser. ESA SPECIAL PUBLICATIONS : EUROPEAN SPACE AGENCY, 1997. - Vol. 400: 6th European Symposium on Space Environmental Control Systems (MAY 20-22, 1997, NOORDWIJK, NETHERLANDS). - P. 803-806. - Cited References: 0 . - ISBN 0379-6566. - ISBN 92-9092-283-4
РУБ Engineering, Aerospace

Аннотация: Available methods for mineralizing wastes of human activity and inedible biomass of plants used in this country and abroad are divided into two types: dry mineralization at high temperatures up to 1270 degrees K with subsequent partial dissolution of the ash and the other wet oxidation by acids. In this case mineralization is performed at the temperature of 470-460 degrees K and the pressure of 220-270 atmospheres in pure oxygen with the output of mineral solution and dissoluble sediments in the form of scale. The drawback of the former method is formation of dioxins, CO, SO2, NO2 and other toxic compounds. The latter method is too sophisticated and presently is confined to bench testing. The proposed method to mineralize the wastes is in mid-position between the thermal and physical chemical methods. At the temperature of 80-90 degrees C the mixture was exposed to controlled electromagnetic field at normal atmospheric pressure. The method merits simplicity, reliability, produces no dissoluble sediment, emissions noxious for humans and plants. The basic difference from the above said methods is to employ for oxidizer atomic oxygen, its active forms including OH-radicals with hydrogen peroxide as the source. Hydrogen peroxide can be produced with electric power from water inside LSS.

WOS : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kudenko, Y.A.; Gribovskaya, I.V.; Pavlenko, R.A.; Gribovs, ya, IV \ed.\

Найти похожие
 1-20    21-29 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)