Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Meiobenthos<.>)
Общее количество найденных документов : 6
Показаны документы с 1 по 6
1.


   
    Biogeographic patterns of planktonic and meiobenthic fauna diversity in inland waters of the Russian Arctic / E. Fefilova, O. Dubovskaya, L. Frolova [et al.] // Freshw. Biol. - 2020, DOI 10.1111/fwb.13624 . - Article in press. - ISSN 0046-5070
Кл.слова (ненормированные):
cladocerans -- copepods -- rotifers -- spatial and temporal trends -- species richness
Аннотация: Broad-scale assessment of biodiversity is needed for detection of future changes across substantial regions of the Arctic. Presently, there are large data and information gaps in species composition and richness of the freshwater planktonic and meiobenthos communities of the Russian Arctic. Analysis of these data is very important for identifying the spatial distribution and temporal changes in species richness and diversity of rotifers, cladocerans, and copepods in the continental Russian Arctic. We investigated biogeographic patterns of freshwater plankton and meiobenthos from c. 67° to 73°N by analysing data over the period 1960–2017. These data include information on the composition of rotifers, cladocerans, and copepods obtained from planktonic and meiobenthic samples, as well as from subfossil remains in bottom sediments of seven regions from the Kola Peninsula in the west, to the Indigirka River Basin (east Siberia) in the east. Total richness included 175 species comprised of 49 rotifer genera, 81 species from 40 cladoceran genera, and 101 species from 42 genera of calanoid, cyclopoid, and harpacticoid copepods. Longitudinal trends in rotifer and micro-crustacean diversity were revealed by change in species composition from Europe to eastern Siberia. The most common and widespread species were 19 ubiquitous taxa that included Kellicottia longispina (Rotifera), Chydorus sphaericus s. lat. (Cladocera), Heterocope borealis, Acanthocyclops vernalis, and Moraria duthiei (Copepoda). The highest number of rare species was recorded in the well-studied region of the Bolshezemelskaya tundra and in the Putorana Plateau. The total number of copepod and rotifer species in both Arctic lakes and ponds tended to increase with latitude. Relative species richness of copepods was positively associated with waterbody area, elevation, and precipitation, while relative species richness of cladocerans was positively related to temperature. This result is consistent with known thermophilic characteristics of cladocerans and the cold tolerance properties of copepods, with the former being dominant in shallow, warmer waterbodies of some western regions, and the latter being dominant in large cold lakes and waterbodies of eastern regions. Rotifers showed a negative association with these factors. Alpha- and ?-diversity of zooplankton in the Russian Arctic were strongly related to waterbody type. Lake zooplankton communities were more diverse than those in pond and pool systems. Moreover, the highest ?-diversity values were observed in regions that showed a greater breadth in latitude and highly heterogeneous environmental conditions and waterbody types (Bolshezemelskaya tundra and Putorana Plateau). Redistribution of freshwater micro-fauna caused by human activities occurred in the 1990s and 2000s. As a result of climate warming, a few cladoceran species appear to have extended their range northward. Nevertheless, the rotifer and micro-crustacean fauna composition and diversity of the majority of Arctic regions generally remain temporally conservative, and spatial differences in composition and species richness are chiefly associated with the differences between the warmer European and colder east Siberian climates. © 2020 John Wiley & Sons Ltd.

Scopus
Держатели документа:
Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russian Federation
Institute of Biophysics of Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Geology and Petroleum Technologies, Kazan Federal University, Kazan, Russian Federation
Lena Delta Nature Reserve, Tiksi, Sakha Republic, Russian Federation
Finnish Natural History Museum LUOMUS University of Helsinki, Helsinki, Finland

Доп.точки доступа:
Fefilova, E.; Dubovskaya, O.; Frolova, L.; Abramova, E.; Kononova, O.; Nigamatzyanova, G.; Zuev, I.; Kochanova, E.

Найти похожие
2.


   
    Biogeographic patterns of planktonic and meiobenthic fauna diversity in inland waters of the Russian Arctic / E. Fefilova, O. Dubovskaya, L. Frolova [et al.] // Freshw. Biol. - 2020, DOI 10.1111/fwb.13624. - Cited References:63. - We would like to thank A. Kotov, N. Korovchinsky, A. Sinev, E. Bekker, N. Smirnov (all from Severtsov Institute of Ecology and Evolution of RAS) for their assistance in Cladocera identification. We are very grateful to Jennifer Lento (University of New Brunswick, Canada) for helping us obtain elevation, temperature, and precipitation data from World Climate and ArcticDEM (NGA-NSF). We are also grateful to Willem Goedkoop for helpful comments on an earlier version of the manuscript. The study was performed in part as Federal Tasks of Department of Animals Ecology of the Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (AAAA-A17-117112850235-2), and also of Institute of Biophysics of Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of Russian Academy of Sciences (project No. 51.1.1) and the Siberian Federal University (project No. FSRZ-2020-0006). Monitoring investigations in the Lena River Delta were conducted under the framework of Russian-German, "Lena" expeditions (Alfred Wegener Institute, Potsdam, Germany) with logistic and technical support of Scientific Research Station "Samoylov Island" (Trofimuk Institute of Petroleum-Gas, Geology and Geophysics SB RAS, Novosibirsk). We are grateful to three anonymous reviewers, Guest Editor, Dr Joseph Culp, and the Chief Editor, Prof. Belinda Robson for their useful comments to improve the manuscript. . - Article in press. - ISSN 0046-5070. - ISSN 1365-2427
РУБ Ecology + Marine & Freshwater Biology
Рубрики:
GLOBAL DIVERSITY
   CRUSTACEAN ZOOPLANKTON

   CLADOCERA

   ANOMOPODA

Кл.слова (ненормированные):
cladocerans -- copepods -- rotifers -- spatial and temporal trends -- species -- richness
Аннотация: Broad-scale assessment of biodiversity is needed for detection of future changes across substantial regions of the Arctic. Presently, there are large data and information gaps in species composition and richness of the freshwater planktonic and meiobenthos communities of the Russian Arctic. Analysis of these data is very important for identifying the spatial distribution and temporal changes in species richness and diversity of rotifers, cladocerans, and copepods in the continental Russian Arctic. We investigated biogeographic patterns of freshwater plankton and meiobenthos fromc. 67 degrees to 73 degrees N by analysing data over the period 1960-2017. These data include information on the composition of rotifers, cladocerans, and copepods obtained from planktonic and meiobenthic samples, as well as from subfossil remains in bottom sediments of seven regions from the Kola Peninsula in the west, to the Indigirka River Basin (east Siberia) in the east. Total richness included 175 species comprised of 49 rotifer genera, 81 species from 40 cladoceran genera, and 101 species from 42 genera of calanoid, cyclopoid, and harpacticoid copepods. Longitudinal trends in rotifer and micro-crustacean diversity were revealed by change in species composition from Europe to eastern Siberia. The most common and widespread species were 19 ubiquitous taxa that includedKellicottia longispina(Rotifera),Chydorus sphaericuss. lat. (Cladocera),Heterocope borealis,Acanthocyclops vernalis, andMoraria duthiei(Copepoda). The highest number of rare species was recorded in the well-studied region of the Bolshezemelskaya tundra and in the Putorana Plateau. The total number of copepod and rotifer species in both Arctic lakes and ponds tended to increase with latitude. Relative species richness of copepods was positively associated with waterbody area, elevation, and precipitation, while relative species richness of cladocerans was positively related to temperature. This result is consistent with known thermophilic characteristics of cladocerans and the cold tolerance properties of copepods, with the former being dominant in shallow, warmer waterbodies of some western regions, and the latter being dominant in large cold lakes and waterbodies of eastern regions. Rotifers showed a negative association with these factors. Alpha- and beta-diversity of zooplankton in the Russian Arctic were strongly related to waterbody type. Lake zooplankton communities were more diverse than those in pond and pool systems. Moreover, the highest beta-diversity values were observed in regions that showed a greater breadth in latitude and highly heterogeneous environmental conditions and waterbody types (Bolshezemelskaya tundra and Putorana Plateau). Redistribution of freshwater micro-fauna caused by human activities occurred in the 1990s and 2000s. As a result of climate warming, a few cladoceran species appear to have extended their range northward. Nevertheless, the rotifer and micro-crustacean fauna composition and diversity of the majority of Arctic regions generally remain temporally conservative, and spatial differences in composition and species richness are chiefly associated with the differences between the warmer European and colder east Siberian climates.

WOS
Держатели документа:
Russian Acad Sci, Inst Biol, Komi Sci Ctr, Ural Branch, Kommunisticheskaya 28, Syktyvkar 167982, Russia.
Russian Acad Sci, Inst Biophys, Fed Res Ctr, Krasnoyarsk Sci Ctr,Siberian Branch, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Kazan Fed Univ, Inst Geol & Petr Technol, Kazan, Russia.
Lena Delta Nat Reserve, Tiksi, Sakha Republic, Russia.
Univ Helsinki, Finnish Nat Hist Museum LUOMUS, Helsinki, Finland.

Доп.точки доступа:
Fefilova, Elena; Dubovskaya, Olga; Frolova, Larisa; Abramova, Ekaterina; Kononova, Olga; Nigamatzyanova, Gulnara; Zuev, Ivan; Kochanova, Elena; Federal Tasks of Department of Animals Ecology of the Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences [AAAA-A17-117112850235-2]; Institute of Biophysics of Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of Russian Academy of Sciences [51.1.1]; Siberian Federal University [FSRZ-2020-0006]

Найти похожие
3.


   
    Data on taxa composition of freshwater zooplankton and meiobenthos across Arctic regions of Russia / E. Fefilova, O. Dubovskaya, O. Kononova [et al.] // Data Brief. - 2021. - Vol. 36. - Ст. 107112, DOI 10.1016/j.dib.2021.107112 . - ISSN 2352-3409
Кл.слова (ненормированные):
Arctic -- Cladocerans -- Copepods -- Fresh waters -- Meiobenthos -- Rotifers -- Species list -- Zooplankton
Аннотация: We present the presence/absence species list (Table 1) of rotifer, cladoceran, and copepod (Calanoida, Harpacticoida, and Cyclopoida) fauna from seven Arctic regions of Russia (the Kola Peninsula, the Pechora River Delta, the Bolshezemelskaya tundra, the Polar Ural, the Putorana Plateau, the Lena River Delta, and the Indigirka River Basin) based on our own and literature data. Our own records were obtained by analyzing samples of zooplankton, meiobenthos, and two cores of bottom sediments (from the Kola Peninsula and the Bolshezemelskaya tundra lakes) that we collected once in July or August in 1992, 1995–2017. To supplement the list, we used relevant literature with periods of research from the 1960s to the 2010s. The list is almost identical to “Dataset 2: Zooplankton and Meiofauna across Arctic Regions of Russia”, which was analyzed but not published in [1]. The detailed analysis of this list revealed the specific composition of the aquatic fauna associated with the climatic and geographical factors [1]. The data provide information on the current state of biodiversity and species richness in Arctic fresh waters and can serve as the basis for monitoring these environments and predicting how they are likely to change in the future. © 2021

Scopus
Держатели документа:
Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Kommunisticheskaya 28, Syktyvkar, 167982, Russian Federation
Institute of Biophysics of Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, Akademgorodok 50/50, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Svobodny av. 79, Krasnoyarsk, 660041, Russian Federation
Institute of Geology and Petroleum Technologies, Kazan Federal University, Kremlyovskaya 18, Kazan, 420008, Russian Federation
Lena Delta Nature Reserve, Ak. Fedorova 28, Sakha Republic, Tiksi 678400, Russian Federation

Доп.точки доступа:
Fefilova, E.; Dubovskaya, O.; Kononova, O.; Frolova, L.; Abramova, E.; Nigamatzyanova, G.

Найти похожие
4.


   
    Data on taxa composition of freshwater zooplankton and meiobenthos across Arctic regions of Russia / E. Fefilova, O. Dubovskaya, O. Kononova [et al.] // Data Brief. - 2021. - Vol. 36. - Ст. 107112, DOI 10.1016/j.dib.2021.107112. - Cited References:17. - The work was performed in part as Federal Tasks to the Department of Animal Ecology of the Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (AAAA-A17-117112850235-2) (to EF and OK), to the Institute of Biophysics of the Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch of the Russian Academy of Sciences (project No. 51.1.1) and the Siberian Federal University (project No. FSRZ-2020-0006) (to OD). The paleolimnological part of this work was supported by grant from Russian Science Foundation (project 20-17-00135). L. Frolova and G. Nigamatzyanova were supported by the subsidy allocated to Kazan Federal University for the state assignment #671-2020-0049 in the sphere of scientific activities and by the Russian Foundation for Basic Research (grant 18-05-00406). The work was partly financially supported by the Russian Foundation for Basic Research (RFBR) grant: 20-04-00145_a (to EF). Monitoring investigations in the Lena River Delta were conducted under the framework of Russian-German, "Lena" expeditions (Alfred Wegener Institute, Potsdam, Germany) with logistic and technical support of Scientific Research Station "Samoylov Island" (the Trofimuk Institute of Petroleum-Gas, Geology and Geophysics SB RAS, Novosibirsk) (to EA). . - ISSN 2352-3409
РУБ Multidisciplinary Sciences
Рубрики:
CRUSTACEA
   RECORDS

   LAKES

Кл.слова (ненормированные):
Arctic -- Fresh waters -- Rotifers -- Cladocerans -- Copepods -- Zooplankton -- Meiobenthos -- Species list
Аннотация: We present the presence/absence species list (Table 1) of rotifer, cladoceran, and copepod (Calanoida, Harpacticoida, and Cyclopoida) fauna from seven Arctic regions of Russia (the Kola Peninsula, the Pechora River Delta, the Bolshezemelskaya tundra, the Polar Ural, the Putorana Plateau, the Lena River Delta, and the Indigirka River Basin) based on our own and literature data. Our own records were obtained by analyzing samples of zooplankton, meiobenthos, and two cores of bottom sediments (from the Kola Peninsula and the Bolshezemelskaya tundra lakes) that we collected once in July or August in 1992, 1995-2017. To supplement the list, we used relevant literature with periods of research from the 1960s to the 2010s. The list is almost identical to "Dataset 2: Zooplankton and Meiofauna across Arctic Regions of Russia", which was analyzed but not published in [1]. The detailed analysis of this list revealed the specific composition of the aquatic fauna associated with the climatic and geographical factors [1]. The data provide information on the current state of biodiversity and species richness in Arctic fresh waters and can serve as the basis for monitoring these environments and predicting how they are likely to change in the future. (C) 2021 The Author(s). Published by Elsevier Inc.

WOS
Держатели документа:
Russian Acad Sci, Ural Branch, Komi Sci Ctr, Inst Biol, Kommunist Skaya 28, Syktyvkar 167982, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Fed Res Ctr, Inst Biophys,Siberian Branch, Akademgorodok 50-50, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodny Av 79, Krasnoyarsk 660041, Russia.
Kazan Fed Univ, Inst Geol & Petr Technol, Kremlyovskaya 18, Kazan 420008, Russia.
Lena Delta Nat Reserve, Ak Fedorova 28, Tiksi 678400, Sakha Republic, Russia.

Доп.точки доступа:
Fefilova, Elena; Dubovskaya, Olga; Kononova, Olga; Frolova, Larisa; Abramova, Ekaterina; Nigamatzyanova, Gulnara; Institute of Biophysics of the Federal Research Center "Krasnoyarsk Science Center" of the Siberian Branch of the Russian Academy of Sciences [51.1.1]; Siberian Federal University [FSRZ-2020-0006]; Russian Science FoundationRussian Science Foundation (RSF) [20-17-00135]; Kazan Federal University [671-2020-0049]; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [18-05-00406]; Russian Foundation for Basic Research (RFBR)Russian Foundation for Basic Research (RFBR) [20-04-00145_a]

Найти похожие
5.


   
    Ecological Role of Cyprideis torosa and Heterocypris salina (Crustacea, Ostracoda) in Saline Rivers of the Lake Elton Basin: Abundance, Biomass, Production, Fatty Acids / V. A. Gusakov, O. N. Makhutova, M. I. Gladyshev [et al.] // Zool. Stud. - 2021. - Vol. 60. - Ст. 53, DOI 10.6620/ZS.2021.60-53. - Cited References:84. - This research was performed in the framework of State Assignments No. 121051100109-1 and AAAA-A17-117112040039-7, and it was also supported by the grants from Russian Foundation for Basic Research (RFBR) (projects numbers 13-04-00740, 15-04-03341, 17-04-00135), State Assignment within the framework of the basic research program of the Russian Federation (topic No. 51.1.1), State Assignment of the Ministry of Science and Higher Education of the Russian Federation to Siberian Federal University in 2020 (project No. FSRZ-2020-0006 "Biologically active substances in environmental, biotechnological and medical systems"). The authors are grateful to Elena Krasova for linguistic check and improvements of the manuscript. We would also like to thank two anonymous reviewers for their constructive comments, recommendations as well as extra corrections of the paper's language and style. . - ISSN 1021-5506. - ISSN 1810-522X
РУБ Zoology
Рубрики:
JONES 1850 CRUSTACEA
   MACROZOOBENTHIC COMMUNITIES

   INVERTEBRATES

Кл.слова (ненормированные):
Saline rivers -- Ostracods -- Diet -- Fatty acid markers
Аннотация: Saline rivers are highly productive ecosystems in arid regions. The meiobenthic community (bottom meiofauna) and its dominant representatives are one of the least studied components of these aquatic ecosystems. Ostracods Cyprideis torosa and Heterocypris salina are major consumers among the species of bottom meiofauna in saline rivers flowing into the hyperhaline Lake Elton (Volgograd Region, Russia). We estimated the abundance, biomass and production of C. torosa, the dominant species at the mouth of the polyhaline Chernavka River (average salinity is similar to 30 g l(-1)), and H. salina, the dominant species at the mouth of the mesohaline Bolshaya Samoroda River (similar to 13 g l(-1)), in spring (May) and summer (August). Additionally, we studied the composition and content of fatty acids of the ostracods and their potential food sources (bottom sediments with bacterial-algal mats). We found that the abundance and biomass (wet weight with shells) of C. torosa in the Chernavka River and H. salina in the Bolshaya Samoroda River reached 3.5 x 10(6) ind. m(-2) and 117 g m(-2), and 1.1 x 10(5) ind. m(-2) and 12 g m(-2), respectively. The first species formed on average about 85% of the total abundance and 96% of the total biomass of the meiobenthos, and the second one, about 13% and 31%, respectively. The daily production of C. torosa and H. salina can reach 249 and 36 mg m(-2) ash-free dry weight, respectively. The results indicate that these species may play an important role in the total flow of matter and energy in the studied habitats. Based on the fatty acid (FA) composition of the ostracods and their food sources, it was found that C. torosa mainly consumed diatoms, while H. salina preferred bacteria, cyanobacteria, and green algae. Differences between the species were greater than differences between the bottom sediments from the rivers. It may mean that the ostracods selectively consumed different food items that may be related to the different nutrient requirements of the species. Seasonal changes in the FA compositions of the ostracods were higher than in their food sources (bottom sediments), which also indicates selective feeding of the species.

WOS
Держатели документа:
Inland Waters Russian Acad Sci, Papanin Inst Biol, 109, Borok 152742, Russia.
Russian Acad Sci, Fed Res Ctr, Krasnoyarsk Sci Ctr, Inst Biophys,Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodny av. 79, Krasnoyarsk 660041, Russia.
Samara Fed Res Sci Ctr RAS, Inst Ecol Volga River Basin RAS, Komzina str. 10, Tolyatti 445003, Russia.

Доп.точки доступа:
Gusakov, Vladimir A.; Makhutova, Olesia N.; Gladyshev, Michail I.; Golovatyuk, L. V.; Zinchenko, Tatiana D.; Russian Foundation for Basic Research (RFBR)Russian Foundation for Basic Research (RFBR) [13-04-00740, 15-04-03341, 17-04-00135]; Russian FederationRussian Federation [51.1.1]; Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0006]

Найти похожие
6.


   
    Ecological role of cyprideis torosa and heterocypris salina (Crustacea, ostracoda) in saline rivers of the lake elton basin: Abundance, biomass, production, fatty acids / V. A. Gusakov, O. N. Makhutova, M. I. Gladyshev [et al.] // Zool. Stud. - 2021. - Vol. 60. - P60-53, DOI 10.6620/ZS.2021.60-53 . - ISSN 1021-5506
Кл.слова (ненормированные):
Diet -- Fatty acid markers -- Ostracods -- Saline rivers
Аннотация: Saline rivers are highly productive ecosystems in arid regions. The meiobenthic community (bottom meiofauna) and its dominant representatives are one of the least studied components of these aquatic ecosystems. Ostracods Cyprideis torosa and Heterocypris salina are major consumers among the species of bottom meiofauna in saline rivers flowing into the hyperhaline Lake Elton (Volgograd Region, Russia). We estimated the abundance, biomass and production of C. torosa, the dominant species at the mouth of the polyhaline Chernavka River (average salinity is ~30 g l-1), and H. salina, the dominant species at the mouth of the mesohaline Bolshaya Samoroda River (~13 g l-1), in spring (May) and summer (August). Additionally, we studied the composition and content of fatty acids of the ostracods and their potential food sources (bottom sediments with bacterial-algal mats). We found that the abundance and biomass (wet weight with shells) of C. torosa in the Chernavka River and H. salina in the Bolshaya Samoroda River reached 3.5 ? 106 ind. m-2 and 117 g m-2, and 1.1 ? 105 ind. m-2 and 12 g m-2, respectively. The first species formed on average about 85% of the total abundance and 96% of the total biomass of the meiobenthos, and the second one, about 13% and 31%, respectively. The daily production of C. torosa and H. salina can reach 249 and 36 mg m-2 ash-free dry weight, respectively. The results indicate that these species may play an important role in the total flow of matter and energy in the studied habitats. Based on the fatty acid (FA) composition of the ostracods and their food sources, it was found that C. torosa mainly consumed diatoms, while H. salina preferred bacteria, cyanobacteria, and green algae. Differences between the species were greater than differences between the bottom sediments from the rivers. It may mean that the ostracods selectively consumed different food items that may be related to the different nutrient requirements of the species. Seasonal changes in the FA compositions of the ostracods were higher than in their food sources (bottom sediments), which also indicates selective feeding of the species. © 2021 Academia Sinica, Taiwan.

Scopus
Держатели документа:
Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 109, Borok, Nekouzskii raion, Yaroslavl oblast, 152742, Russian Federation
Institute of Biophysics of Federal Research Center “Krasnoyarsk Science Center” of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Svobodny av. 79, Krasnoyarsk, 660041, Russian Federation
Samara Federal Research Scientific Center RAS, Institute of Ecology of Volga River Basin RAS, Komzina str. 10, Togliatti, 445003, Russian Federation

Доп.точки доступа:
Gusakov, V. A.; Makhutova, O. N.; Gladyshev, M. I.; Golovatyuk, L. V.; Zinchenko, T. D.

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)