Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (1)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Metabolites<.>)
Общее количество найденных документов : 18
Показаны документы с 1 по 18
1.


   
    Infochemical-mediated trophic interactions between the rotifer Brachionus calyciflorus and its food algae / A. M. Verschoor, Y. S. Zadereev, W. M. Mooij // Limnology and Oceanography. - 2007. - Vol. 52, Is. 5. - P2109-2119 . - ISSN 0024-3590
Кл.слова (ненормированные):
alga -- aquatic ecosystem -- assimilation efficiency -- experimental study -- feeding behavior -- food web -- freshwater environment -- ingestion rate -- trophic interaction -- algae -- Brachionus calyciflorus -- Rotifera -- Scenedesmus -- Scenedesmus obliquus
Аннотация: We studied how chemicals obtained as filtrates from algal monocultures (algal chemicals) and from rotifer cultures with or without algae (rotifer chemicals) affected feeding rates of the rotifer Brachionus calyciflorus on its food algae, both directly and indirectly (through chemical-induced changes in algal morphology). Algal chemicals had a strong stimulating effect on the feeding rate of B. calyciflorus, but these effects were counteracted by rotifer chemicals. In functional response experiments, rotifer chemicals lowered maximum ingestion rates and had strong effects on assimilation rates and assimilation efficiencies of B. calyciflorus, probably due to the release of unspecific (auto)toxic metabolites. Furthermore, rotifer chemicals induced colony formation in the food alga Scenedesmus obliquus. Above the optimum particle size for ingestion by B. calyciflorus, larger algal colony sizes increased the food-handling time, thus lowering ingestion and assimilation rates. Through their effects on trophic interactions, infochemicals may play a role in structuring and the functioning of aquatic food webs. В© 2007, by the American Society of Limnology and Oceanography, Inc.

Scopus
Держатели документа:
Netherlands Institute of Ecology (NIOO-KNAW), Centre for Limnology, Rijksstraatweg 6, 3631 AC Nieuwersluis, Netherlands
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Verschoor, A.M.; Zadereev, Y.S.; Mooij, W.M.

Найти похожие
2.


   
    Use of human wastes oxidized to different degrees in cultivation of higher plants on the soil-like substrate intended for closed ecosystems / A. A. Tikhomirov [et al.] // Advances in Space Research. - 2010. - Vol. 46, Is. 6. - P744-750, DOI 10.1016/j.asr.2010.02.024 . - ISSN 0273-1177
Кл.слова (ненормированные):
Life support systems -- Microflora -- Mineralized human wastes -- Phototrophic unit -- Wet incineration -- Alternating electromagnetic field -- Bioregenerative life support systems -- Degree of oxidations -- Denitrifying microorganisms -- Growth and development -- Higher plants -- Human waste -- Life support systems -- Mass exchange -- Microbiotas -- Microflora -- Microscopic fungi -- Mineralized human wastes -- Nutrient solution -- Oxidation level -- Phytopathogenic bacteria -- Plant productivity -- Soil-like substrate -- Wheat plants -- Biomolecules -- Electromagnetic fields -- Irrigation -- Magnetic field effects -- Metabolism -- Metabolites -- Oxidation -- Plants (botany) -- Soils -- Solvent extraction -- Wastes -- Waste incineration
Аннотация: To close mass exchange loops in bioregenerative life support systems more efficiently, researchers of the Institute of Biophysics SB RAS (Krasnoyarsk, Russia) have developed a procedure of wet combustion of human wastes and inedible parts of plants using H2O2 in alternating electromagnetic field. Human wastes pretreated in this way can be used as nutrient solutions to grow plants in the phototrophic unit of the LSS. The purpose of this study was to explore the possibilities of using human wastes oxidized to different degrees to grow plants cultivated on the soil-like substrate (SLS). The treated human wastes were analyzed to test their sterility. Then we investigated the effects produced by human wastes oxidized to different degrees on growth and development of wheat plants and on the composition of microflora in the SLS. The irrigation solution contained water, substances extracted from the substrate, and certain amounts of the mineralized human wastes. The experiments showed that the human wastes oxidized using reduced amounts of 30% H2O2: 1 ml/g of feces and 0.25 ml/ml of urine were still sterile. The experiments with wheat plants grown on the SLS and irrigated by the solution containing treated human wastes in the amount simulating 1/6 of the daily diet of a human showed that the degree of oxidation of human wastes did not significantly affect plant productivity. On the other hand, the composition of the microbiota of irrigation solutions was affected by the oxidation level of the added metabolites. In the solutions supplemented with partially oxidized metabolites yeast-like microscopic fungi were 20 times more abundant than in the solutions containing fully oxidized metabolites. Moreover, in the solutions containing incompletely oxidized human wastes the amounts of phytopathogenic bacteria and denitrifying microorganisms were larger. Thus, insufficiently oxidized sterile human wastes added to the irrigation solutions significantly affect the composition of the microbiological component of these solutions, which can ultimately unbalance the system as a whole. В© 2010 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, Akademgorodok, 50/50, Krasnoyarsk 660036, Russian Federation
Universite Blaise Pascal, 24 avenue des Landais, 63174 Aubiere cedex, France
ESA/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, Netherlands : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Kudenko, Y.A.; Ushakova, S.A.; Tirranen, L.S.; Gribovskaya, I.A.; Gros, J.-B.; Lasseur, C.

Найти похожие
3.


   
    Biological and physicochemical methods for utilization of plant wastes and human exometabolites for increasing internal cycling and closure of life support systems / I. G. Zolotukhin [et al.] // Advances in Space Research. - 2005. - Vol. 35, Is. 9 SPEC. ISS. - P1559-1562, DOI 10.1016/j.asr.2005.01.006 . - ISSN 0273-1177
Кл.слова (ненормированные):
BLSS -- Desalting -- Higher plants -- NaCl utilization -- SLS -- Biomass -- Crops -- Decomposition -- Electrodialysis -- Harvesting -- Metabolites -- Soils -- Wastes -- BLSS -- Higher plants -- NaCl utilization -- SLS -- Plants (botany) -- Biomass -- Decay -- Deionization -- Harvesting -- Plants -- Soil -- Wastes -- Wheat -- sodium chloride -- article -- biomass -- bioremediation -- culture medium -- feces -- growth, development and aging -- human -- metabolism -- methodology -- microbiology -- microclimate -- urine -- waste management -- wheat -- Biodegradation, Environmental -- Biomass -- Culture Media -- Ecological Systems, Closed -- Feces -- Humans -- Life Support Systems -- Sodium Chloride -- Soil Microbiology -- Triticum -- Urine -- Waste Management
Аннотация: Wheat was cultivated on soil-like substrate (SLS) produced by the action of worms and microflora from the inedible biomass of wheat. After the growth of the wheat crop, the inedible biomass was restored in SLS and exposed to decomposition ("biological" combustion) and its mineral compounds were assimilated by plants. Grain was returned to the SLS in the amount equivalent to human solid waste produced by consumption of the grain. Human wastes (urine and feces) after physicochemical processing turned into mineralized form (mineralized urine and mineralized feces) and entered the plants' nutrient solution amounts equal to average daily production. Periodically (once every 60-70 days) the nutrient solution was partly (up to 50%) desalinated by electrodialysis. Due to this NaCl concentration in the nutrient solution was sustained at a fixed level of about 0.26%. The salt concentrate obtained could be used in the human nutrition through NaCl extraction and the residuary elements were returned through the mineralized human liquid wastes into matter turnover. The control wheat cultivation was carried out on peat with use of the Knop nutrient solution. Serial cultivation of several wheat vegetations within 280 days was conducted during the experiment. Grain output varied and yield/harvest depended, in large part, upon the amount of inedible biomass returned to SLS and the speed of its decomposition. After achieving a stationary regime, (when the quantity of wheat inedible biomass utilized during vegetation in SLS is equal to the quantity of biomass introduced into SLS before vegetation) grain harvest in comparison with the control was at most 30% less, and in some cases was comparable to the control harvest values. The investigations carried out on the wheat example demonstrated in principle the possibility of long-term functioning of the LSS photosynthesizing link based on optimizations of biological and physicochemical methods of utilization of the human and plants wastes. The possibilities for the use of these technologies for the creation integrated biological-physicochemical LSS with high closure degree of internal matter turnover are discussed in this paper. В© 2005 Published by Elsevier Ltd on behalf of COSPAR.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Akademgorodok, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Zolotukhin, I.G.; Tikhomirov, A.A.; Kudenko, Yu.A.; Gribovskaya, I.V.

Найти похожие
4.


   
    Volatile metabolites of higher plant crops as a photosynthesizing life support system component under temperature stress at different light intensities / I. I. Gitelson [et al.] // Advances in Space Research. - 2003. - Vol. 31, Is. 7. - P1781-1786, DOI 10.1016/S0273-1177(03)00121-2 . - ISSN 0273-1177
Кл.слова (ненормированные):
Composition -- Crops -- Heat resistance -- Metabolites -- Photosynthesis -- Volatile metabolites -- Space research -- biosphere -- article -- comparative study -- gas -- growth, development and aging -- heat -- indoor air pollution -- light -- metabolism -- microclimate -- photon -- photosynthesis -- physiology -- radiation exposure -- volatilization -- wheat -- Air Pollution, Indoor -- Environment, Controlled -- Gases -- Heat -- Life Support Systems -- Light -- Photons -- Photosynthesis -- Triticum -- Volatilization
Аннотация: The effect of elevated temperatures of 35 and 45В°C (at the intensities of photosynthetically active radiation 322, 690 and 1104 ?mol-m-2-s-1) on the photosynthesis, respiration, and qualitative and quantitative composition of the volatiles emitted by wheat (Triticum aestuvi L., cultivar 232) crops was investigated in growth chambers. Identification and quantification of more than 20 volatile compounds (terpenoids - ?-pinene, ?3 carene, limonene, benzene, ?-and transcaryophyllene, ?- and ?-terpinene, their derivatives, aromatic hydrocarbons, etc.) were conducted by gas chromatograph/mass spectrometry. Under light intensity of 1104 ?mol-m-2-s-1, heat resistance of photosynthesis and respiration increased at 35В°C and decreased at 45В°C. The action of elevated temperatures brought about variations in the rate and direction of the synthesis of volatile metabolites. The emission of volatile compounds was the greatest under a reduced irradiation of 322 ?mol-m-2-s-1 and the smallest under 1104 ?mol-m-2-s-1 at 35В°C. During the repair period, the contents and proportions of volatile compounds were different from their initial values, too. The degree of disruption and the following recovery of the functional state depended on the light intensity during the exposure to elevated temperatures. The investigation of the atmosphere of the growth chamber without plants has revaled the substances that were definitely technogenic in origin: tetramethylurea, dimethylsulfide, dibutylsulfide, dibutylphthalate, and a number of components of furan and silane nature. В© 2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gitelson, I.I.; Tikhomirov, A.A.; Parshina, O.V.; Ushakova, S.A.; Kalacheva, G.S.

Найти похожие
5.


   
    Volatile Metabolites and External CO2 Exchange of Wheat Cenoses under Optimal Conditions and Thermal Stress / I. I. Gitel'zon [и др.] // Prikladnaya Biokhimiya i Mikrobiologiya. - 2002. - Vol. 38, Is. 1. - С. 95 . - ISSN 0555-1099
Аннотация: The effects of elevated temperature (35 and 45В°C) on photosynthesis, respiration, and both the qualitative and quantitative compositions of volatile emissions (VE) of wheat (Triticum aestuvum L. cultivar 232) cenoses at light intensities of 70, 150, or 240 W/m2 of photosynthetically available radiation (PAR) were studied. At a PAR of 240 W/m2, the thermal stabilities of photosynthesis and respiration increased at 35В°C and decreased at 45В°C. Elevated temperatures nonuniformly changed the rates and direction of VE syntheses. In this process, the highest increase in VE evolution was observed at 70 W/m2; the lowest, at 240 W/m2 and 35В°C. In addition, the concentrations and composition of VE during the repair period differed from the initial values.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gitel'zon, I.I.; Tikhomirov, A.A.; Parshina, O.V.; Ushakova, S.A.; Kalacheva, G.S.

Найти похожие
6.


   
    Volatile metabolites and external CO2 exchange of wheat cenoses under optimal conditions and thermal stress / I. I. Gitel'son [et al.] // Applied Biochemistry and Microbiology. - 2002. - Vol. 38, Is. 1. - P78-82, DOI 10.1023/A:1013212907872 . - ISSN 0003-6838
Кл.слова (ненормированные):
carbon dioxide -- volatile agent -- article -- biosynthesis -- carbon dioxide transport -- chemical composition -- concentration (parameters) -- controlled study -- cultivar -- metabolite -- nonhuman -- photosynthesis -- photosynthetically active radiation -- plant metabolism -- qualitative analysis -- quantitative analysis -- stress -- temperature sensitivity -- thermal exposure -- thermostability -- wheat -- Rickettsia sp. PAR -- Triticum -- Triticum aestivum
Аннотация: The effects of elevated temperature (35 and 45В°C) on photosynthesis, respiration, and both the qualitative and quantitative compositions of volatile emissions (VE) of wheat (Triticum aestuvum L. cultivar 232) cenoses at light intensities of 70, 150, or 240 W/m2 of photosynthetically available radiation (PAR) were studied. At a PAR of 240 W/m2, the thermal stabilities of photosynthesis and respiration increased at 35В°C and decreased at 45В°C. Elevated temperatures nonuniformly changed the rates and direction of VE syntheses. In this process, the highest increase in VE evolution was observed at 70 W/m2 and 35В°C; the lowest, at 240 W/m2. In addition, the concentrations and composition of VE during the repair period differed from the initial values.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gitel'son, I.I.; Tikhomirov, A.A.; Parshina, O.V.; Ushakova, S.A.; Kalacheva, G.S.

Найти похожие
7.


   
    A mathematical model of "plants-microorganisms" interaction on complete mineral medium and under nitrogen limitation / T. I. Pisman [et al.] // Advances in Space Research. - 1999. - Vol. 24, Is. 3. - P383-387 . - ISSN 0273-1177
Кл.слова (ненормированные):
nitrogen -- ecological modeling -- interspecific interaction -- nutrient limitation -- plant -- rhizosphere -- article -- biological model -- biomass -- comparative study -- culture medium -- drug effect -- growth, development and aging -- mathematics -- microbiology -- plant root -- Pseudomonas fluorescens -- sweating -- wheat -- Biomass -- Culture Media -- Mathematics -- Models, Biological -- Nitrogen -- Plant Roots -- Plant Transpiration -- Pseudomonas fluorescens -- Triticum
Аннотация: A mathematical model concerning the interaction of plants and rhizospheric microorganisms on complete mineral medium and under nitrogen limitation has been constructed. The model takes into account the closeness of plants and microorganisms in terms of the matter released by the plant and consumed by the microorganisms. The effect of rhizospheric microorganisms on plant growth with normal carbon dioxide and complete mineral medium has been demonstrated. Plants interacting with microorganisms have a greater biomass than plants growing without microorganisms. Wheat growth stimulation by metabolites of rhizospheric microorganisms under laboratory conditions on artificial soil has been experimentally demonstrated (Pechurkin, 1997). Under nitrogen limitation , the biomass of plants, with or without microorganisms, is identical, and is substantially reduced as compared with the medium with standard nitrogen. В© 1999 COSPAR. Published by Elsevier Science Ltd.

Scopus
Держатели документа:
Institute of Biophysics (Siberian Branch, Russian Academy of Sciences), Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Pisman, T.I.; Pechurkin, N.S.; Mariasova, T.S.; Somova, L.A.; Sarangova, A.B.

Найти похожие
8.


   
    Physiological and biochemical properties of the alga Botryococcus braunii / T. G. Volova [et al.] // Russian Journal of Plant Physiology. - 1998. - Vol. 45, Is. 6. - P775-779 . - ISSN 1021-4437
Кл.слова (ненормированные):
Batch culture -- Botryococcus braunii -- Liquid hydrocarbons -- Productivity
Аннотация: The growth, productivity, and changes in the chemical composition of the green alga Botryococcus braunii Kutz H-252 were studied at different phases of growth in a luminostat culture. Modification of the Prat medium resulted in an increase in the alga yield to 3.9 g/l and a decrease in the generation time to 3-4 days. The specific growth rate during the exponential phase was 0.235/ day. These values are comparable with the best results obtained abroad. Among the pigments of B. braunii, besides chlorophylls a and b, carotene, lutein, neoxanthin, and violaxanthin were also identified. The highest content of these pigments, based on dry weight, was achieved during the exponential growth phase. During culture aging, there was an accumulation of carbohydrates and lipids in addition to a simultaneous decrease in the concentration of nitrogen-containing substances. It was discovered that this strain can synthesize liquid hydrocarbons. These hydrocarbons were found both in the alga biomass (ca. 1% of dry weight) and among the extracellular metabolites (up to 10.3 mg/l).

Scopus
Держатели документа:
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.G.; Kalacheva, G.S.; Zhilo, N.O.; Plotnikov, V.F.

Найти похожие
9.


   
    The role of volatile metabolites in microbial communities of the LSS higher plant link / L. S. Tirranen, I. I. Gitelson // Advances in Space Research. - 2006. - Vol. 38, Is. 6. - P1227-1232, DOI 10.1016/j.asr.2006.02.038 . - ISSN 0273-1177
Кл.слова (ненормированные):
Inhibiting, bactericidal, stimulating effect -- Microbial interaction -- Type of interaction -- Volatile and non-volatile metabolites -- Growth kinetics -- Microbiology -- Microorganisms -- Plants (botany) -- Sensitivity analysis -- Toxic materials -- Inhibiting, bactericidal, stimulating effect -- Microbial interaction -- Type of interaction -- Volatile and non-volatile metabolites -- Metabolites
Аннотация: The paper addresses the possibility of controlling the microbial community composition through metabolites produced by microbes. The comparative analysis of experimental data has shown that volatile metabolites make a much greater contribution to the microbial interactions than nonvolatile ones. It has been found that interaction of microorganisms via the volatiles they release occurs frequently and is typical of a number of microorganisms. Volatile metabolites released by microorganisms produce an inhibitory, sometimes bactericidal, effect on the vital functions of bacteria. The stimulating action occurs 6-8 times less frequently. The range of action on the growth of the test cultures and the range of sensitivity to the effect of volatile metabolites of the study microbes have been found to be individual. Comparative cluster analysis of the ranges of action of 100 study cultures has shown that in the investigated set of microorganism species interaction was performed via a set of volatiles of an inhibiting action (82) and of a stimulating action (52). It has been found that release of volatile metabolites by the studied microorganisms depends upon the culture age, concentrations of components of the nutrient medium, and volatile by-products released by other microorganisms. This production can be increased or decreased by the action of volatile metabolites of other microbes. This is related to strain features and culture age. The prospects of using these regulating metabolites depend on the "range", specificity and safety for other members of the microbial community in insufficient concentrations. Volatiles produced by plants and microorganisms as well as by other components of the system - humans and processing equipment installed inside the closed ecosystem - could influence the formation not only of the microbial community but also of the gas composition of the system's atmosphere, through which they could affect the state of the plants. Specially performed experiments have shown that volatile metabolites of microorganisms can accumulate in their habitat, dissolve in the atmospheric water, and maintain their biological activity for days. It has been determined that volatile metabolites of some microorganisms are toxic for plants. Growth of seedling roots is inhibited more than growth of stems. В© 2006 COSPAR.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, Akademgorodok, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tirranen, L.S.; Gitelson, I.I.

Найти похожие
10.


   
    Experimental and mathematical model of the interactions in the mixed culture of links in the "producer-consumer" cycle [Text] / T. I. Pisman // Adv. Space Res. - 2009. - Vol. 44, Is. 2. - P177-183, DOI 10.1016/j.asr.2009.01.022. - Cited References: 20. - This study is supported by the grant of Russia Foundational Research Foundation and Krasnoyarsk Regional Science Foundation No. 07-05-96807. . - ISSN 0273-1177
РУБ Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences
Рубрики:
COMPETITION
Кл.слова (ненормированные):
Competition -- Metabolite interaction -- Invertebrates -- Mixed culture
Аннотация: The paper presents a experimental and mathematical model of interactions between invertebrates (the ciliates Paramecium caudatum and the rotifers Brachionus plicatilis) in the "producer-consumer" aquatic biotic cycle with spatially separated components. The model describes the dynamics of the mixed culture of ciliates and rotifers ill the "consumer" component, feeding on the mixed algal culture of the "producer" component. It has been found that metabolites of the algae Seenedesmus produce an adverse effect on the reproduction of the ciliates P. caudatum. Taking into account this effect, the results of investigation of the mathematical model were in qualitative agreement with the experimental results. In the "producer-consumer" biotic cycle it was shown that coexistence is impossible ill the mixed culture of invertebrates of the "consumer" component. The ciliates P. caudatum are driven out by the rotifers B. plicatilis. (C) 2009 Published by Elsevier Ltd on behalf of COSPAR.

Держатели документа:
RAS, SB, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Pisman, T.I.; Russia Foundational Research Foundation and Krasnoyarsk Regional Science Foundation [07-05-96807]

Найти похожие
11.


   
    INTERACTION OF MICROORGANISMS THROUGH THEIR GASEOUS METABOLITES [Text] / L. S. TIRRANEN, B. G. KOVROV, O. A. CHEREPANOV // Microbiology. - 1980. - Vol. 49, Is. 5. - P. 641-645. - Cited References: 15 . - ISSN 0026-2617
РУБ Microbiology


WOS : 660036, Красноярск, Академгородок, д. 50, стр. 50
Доп.точки доступа:
TIRRANEN, L.S.; KOVROV, B.G.; CHEREPANOV, O.A.

Найти похожие
12.


   
    Effect of volatile metabolites of dill, radish and garlic on growth of bacteria [Text] / L. S. Tirranen [et al.] // Acta Astronaut. - 2001. - Vol. 49, Is. 2. - P. 105-108, DOI 10.1016/S0094-5765(01)00006-6. - Cited References: 2 . - ISSN 0094-5765
РУБ Engineering, Aerospace

Аннотация: In a model experiment plants were grown in sealed chambers on expanded clay aggregate under the luminance of 150 W/m(2) PAR and the temperature of 24 degreesC. Seven bacterial strains under investigation, replicated on nutrient medium surface in Petri dishes, were grown in the atmosphere of cultivated plants. Microbial response was evaluated by the difference between colony size in experiment and in control. In control, bacteria grew in the atmosphere of clean air. To study the effect of volatile metabolites of various plant on microbial growth, the experimental data were compared with the background values defined for each individual experiment. Expanded clay aggregate, luminance, temperature and sealed chamber (without plants) for the background were the same. Volatile metabolites from 28-days old radish plants have been reliably established to have no effect on the growth of microbes under investigation. Metabolites of 30-days old dill and 50-days old garlic have been established to have reliable bacteriostatic effect on the growth of three bacterial strains. Dill and garlic have been found to have different range of effects of volatile substances on bacterial growth. Volatile metabolites of dill and garlic differed in their effect on the sensitivity spectrum of bacteria. An attempt has been made to describe the obtained data mathematically. (C) 2001 International Astronautical Federation. Published by Elsevier Science Ltd.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tirranen, L.S.; Borodina, E.V.; Ushakova, S.A.; Rygalov, V.Y.; Gitelson, J.I.

Найти похожие
13.


   
    Volatile metabolites and external CO2 exchange of wheat cenoses under optimal conditions and thermal stress [Text] / I. I. Gitel'son [et al.] // Appl. Biochem. Microbiol. - 2002. - Vol. 38, Is. 1. - P. 78-82, DOI 10.1023/A:1013212907872. - Cited References: 17 . - ISSN 0003-6838
РУБ Biotechnology & Applied Microbiology + Microbiology
Рубрики:
EMISSIONS
Аннотация: The effects of elevated temperature (35 and 45degreesC) on photosynthesis, respiration, and both the qualitative and quantitative compositions of volatile emissions (VE) of wheat (Triticum aestuvum L. cultivar 232) cenoses at light intensities of 70, 150, or 240 W/m(2) of photosynthetically available radiation (PAR) were studied. At a PAR of 240 W/m(2), the thermal stabilities of photosynthesis and respiration increased at 35degreesC and decreased at 45degreesC. Elevated temperatures nonuniformly changed the rates and direction of VE syntheses. In this process, the highest increase in VE evolution was observed at 70 W/m(2) and 35degreesC; the lowest, at 240 W/m(2). In addition, the concentrations and composition of VE during the repair period differed from the initial values.

WOS
Держатели документа:
Russian Acad Sci, Siberian Div, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gitel'son, I.I.; Tikhomirov, A.A.; Parshina, O.V.; Ushakova, S.A.; Kalacheva, G.S.

Найти похожие
14.


   
    A mathematical model of the interactions in the mixed culture of invertebrates and algae in the "producer-consumer" aquatic biotic cycle [Text] / T. I. Pisman, O. N. Bogdanova // Aquat. Ecol. - 2004. - Vol. 38, Is. 3. - P. 415-423. - Cited References: 19 . - ISSN 1386-2588
РУБ Ecology + Limnology + Marine & Freshwater Biology
Рубрики:
RESOURCE COMPETITION
Кл.слова (ненормированные):
competition -- metabolite interaction -- principle of competitive exclusion
Аннотация: This paper presents a mathematical model of interactions between two herbivorous invertebrates (ciliate Paramecium caudatum and rotifer Brachionus plicatilis) and two planktonic algae (Chlorella vulgaris and Scenedesmus quadricauda) spatially segregated in two compartments of a chemostat - type experimental microcosm system. The model mimics a "producer-consumer" aquatic biotic cycle, describing the dynamics of the mixed culture of ciliates and rotifers, as "consumer" compartment, feeding on the mixed algal culture, as "producer" compartment, under N-limiting conditions. We experimentally found that metabolites of the alga Scenedesmus produce an adverse effect on the reproduction of ciliate Paramecium. Taking this effect into account improved the behavior of the model, the results of which came into qualitative agreement with the experimental results. Both our experimental and modeling approaches demonstrated that, even in conditions of a spatially - segregated "producer-consumer" biotic cycle, species coexistence is impossible either in the mixed algal culture or in the mixed invertebrate culture. Scenedesmus excluded Chlorella, whereas Brachionus excluded Paramecium.

WOS
Держатели документа:
Inst Biophys SB RAS, Krasnoyarsk 660036, Russia
Krasnoyarsk State Univ, Krasnoyarsk 660041, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Pisman, T.I.; Bogdanova, O.N.

Найти похожие
15.


   
    Experimental and mathematical modeling of the consumer's influence on productivity of algae in a model aquatic ecosystem [Text] / T. I. Pisman, Y. V. Galayda, I. M. Shirobokova ; ed. YV Galayd // SPACE LIFE SCIENCES: CLOSED ECOLOGICAL SYSTEMS: EARTH AND SPACE APPLICATIONS. Ser. ADVANCES IN SPACE RESEARCH-SERIES : PERGAMON-ELSEVIER SCIENCE LTD, 2005. - Vol. 35: Workshop on Closed Ecological Systems (JUL, 2004, Paris, FRANCE), Is. 9. - P. 1521-1527, DOI 10.1016/j.asr.2004.12.048. - Cited References: 10 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Ecology + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Кл.слова (ненормированные):
producer -- consumer -- nitrogen cycling -- mathematical modeling
Аннотация: A "producer-consumer" (Chlorella vulgaris-Paramecium caudatum) closed aquatic system has been investigated experimentally and theoretically. It has been found that there is a direct relationship between the growth of the paramecia population and their release of ammonia nitrogen, which is the best form of nitrogen for Chlorella growth. The theoretical study of a model of a "producer-consumer" aquatic biotic cycle with spatially separated compartments has confirmed the contribution of paramecia to nitrogen cycling. It has been shown that an increase in the concentration of nitrogen released as metabolites of paramecia is accompanied by an increase in the productivity of microalgae. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

WOS
Держатели документа:
Krasnoyarsk State Univ, Dept Biophys, Krasnoyarsk 660041, Russia
RAS, SB, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Pisman, T.I.; Galayda, Y.V.; Shirobokova, I.M.; Galayd, YV \ed.\

Найти похожие
16.


   
    Assessment of the Volatility and Thermal Stability of Chemicals that Stimulate Females of Moina macrocopa (Cladocera) to Produce Diapausing Eggs [Text] / T. S. Lopatina, E. S. Zadereev // Russ. J. Ecol. - 2015. - Vol. 46, Is. 1. - P103-108, DOI 10.1134/S1067413615010105. - Cited References:25 . - ISSN 1067-4136. - ISSN 1608-3334
РУБ Ecology
Рубрики:
SEXUAL REPRODUCTION
   INDUCTION

   DAPHNIA

   METABOLITES

   CRUSTACEA

Кл.слова (ненормированные):
cladocerans -- diapause -- chemical communication -- chemical cues
Аннотация: The volatility and thermal stability of chemicals that are contained in the metabolic products of Moina macrocopa females that stimulate the production of diapausing eggs in these females have been studied in experiments with separately cultivated individuals. It has been shown that the gametogenesis-stimulating chemicals in this species are nonvolatile compounds: the effect of the medium that contains the metabolic products of the organism was not decreased after many hours of blowing with argon. Prolonged heating up to 80 degrees C also did not deactivate the ability of these products to change the reproductive mode. The effect of the medium that contains these products decreased after boiling, but if the possibilities of their oxidation or binding with salts of metals were excluded, they retained the ability to change the reproductive mode of the animals even after boiling.

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
ИБФ СО РАН

Доп.точки доступа:
Lopatina, T.S.; Zadereev, E.S.

Найти похожие
17.


   
    The Chemical Basis of Fungal Bioluminescence / K. V. Purtov [et al.] // Angew. Chem. Int. Ed. - 2015. - Vol. 54, Is. 28. - P8124-8128, DOI 10.1002/anie.201501779 . - ISSN 1433-7851
Кл.слова (ненормированные):
bioluminescence -- bioorganic chemistry -- biosynthesis -- luciferin -- natural products -- Biochemistry -- Bioluminescence -- Biosynthesis -- Metabolites -- Phosphorescence -- Biochemical mechanisms -- Bioorganic chemistry -- luciferin -- Natural products -- Plant secondary metabolites -- Structural similarity -- Fungi
Аннотация: Many species of fungi naturally produce light, a phenomenon known as bioluminescence, however, the fungal substrates used in the chemical reactions that produce light have not been reported. We identified the fungal compound luciferin 3-hydroxyhispidin, which is biosynthesized by oxidation of the precursor hispidin, a known fungal and plant secondary metabolite. The fungal luciferin does not share structural similarity with the other eight known luciferins. Furthermore, it was shown that 3-hydroxyhispidin leads to bioluminescence in extracts from four diverse genera of luminous fungi, thus suggesting a common biochemical mechanism for fungal bioluminescence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Scopus,
WOS
Держатели документа:
Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, Russian Federation
Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow, Russian Federation

Доп.точки доступа:
Purtov, K.V.; Petushkov, V.N.; Baranov, M.S.; Mineev, K.S.; Rodionova, N.S.; Kaskova, Z.M.; Tsarkova, A.S.; Petunin, A.I.; Bondar, V.S.; Rodicheva, E.K.; Medvedeva, S.E.; Oba, Y.; Arseniev, A.S.; Lukyanov, S.; Gitelson, J.I.; Yampolsky, I.V.

Найти похожие
18.


   
    Physicochemical conversion of human exometabolites for the NaCl involvement into the mass exchange in closed life support systems [Text] / A. A. Tikhomirov, Y. A. Kudenko, S. V. Trifonov // Dokl. Biochem. Biophys. - 2016. - Vol. 466, Is. 1. - P17-19, DOI 10.1134/S1607672916010051. - Cited References:6. - The study was supported by the Russian Science Foundation (project no. 14-14-00599) at the Institute of Biophysics, Siberian Branch, Russian Academy of Sciences. . - ISSN 1607-6729. - ISSN 1608-3091
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
WASTES
Аннотация: The results of the original physicochemical method of NaCl recovery out of the mineralized human metabolites' solution obtained after their oxidation in H2O2 aqueous solution under the influence of alternating electric current are presented. The technological stages of the newly developed method are described, and its efficiency at each stage is demonstrated. The possibility to efficiency isolate Na from the NaHCO3 solution by applying electrodialysis technology and temperature separation is demonstrated. The HCl synthesis from Cl-2 and H-2 released during electrolysis is stable, allowing its combining with electrodialysis aimed at NaCl production under the conditions of a closed life support system.

WOS,
Scopus
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Tikhomirov, A. A.; Kudenko, Yu. A.; Trifonov, S. V.; Russian Science Foundation at the Institute of Biophysics, Siberian Branch, Russian Academy of Sciences [14-14-00599]

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)