Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Nanocomposites<.>)
Общее количество найденных документов : 8
Показаны документы с 1 по 8
1.


   
    Low-field electron emission of diamond/pyrocarbon composites / A. V. Karabutov [et al.] // Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures. - 2001. - Vol. 19: 13th International Vaccum Microelectronics Conference (14 August 2000 through 17 August 2000, Guangzhou, Is. 3. - P965-970, DOI 10.1116/1.1368669 . - ISSN 1071-1023
Кл.слова (ненормированные):
Carbon nanotubes -- Chemical bonds -- Chemical vapor deposition -- Composite materials -- Diamond films -- Electric conductivity -- Electron emission -- Electron energy levels -- Hysteresis -- Interfaces (materials) -- Raman scattering -- Semiconducting diamonds -- Semiconductor quantum wells -- Transmission electron microscopy -- X ray diffraction analysis -- X ray photoelectron spectroscopy -- Pyrocarbon composites -- Nanostructured materials
Аннотация: The properties of field electron emission for diamond/pyrocarbon nanocomposites produced from diamond particles surrounded by a pyrocarbon matrix were studied. Low-threshold emissions at fields of ?1 V/?m with no activation or hysterisis in the current versus voltage (I/V) behaviour were observed for the materials. Scanning tunneling-field emission microscopy was used to study the mechanisms of low-field electron emission from the composites, and a model based on quantum well effect at the diamond/graphite interface was proposed and discussed.

Scopus
Держатели документа:
General Physics Institute, Vavilova str. 38, Moscow 117942, Russian Federation
Central Research Institute of Materials, Paradnaya str. 8, St. Petersburg 191014, Russian Federation
Institute of Biophysics, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Karabutov, A.V.; Frolov, V.D.; Konov, V.I.; Ralchenko, V.G.; Gordeev, S.K.; Belobrov, P.I.

Найти похожие
2.


   
    Thermal properties of diamond/carbon composites / A. Vlasov [et al.] // Diamond and Related Materials. - 2000. - Vol. 9: 10th European Conference on Diamond, Diamond-like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide (12 September 1999 through 17 September 1999, Prague, Czech Republic, Is. 3-6. - P1104-1109, DOI 10.1016/S0925-9635(99)00256-3 . - ISSN 0925-9635
Кл.слова (ненормированные):
Diamond composites -- Laser flash technique -- TEM -- Thermal conductivity -- Grain size and shape -- Laser applications -- Nanostructured materials -- Phonons -- Thermal conductivity of solids -- Transmission electron microscopy -- Diamond composites -- Laser flash technique -- Industrial diamonds -- carbon -- composite -- diamond -- thermal conductivity
Аннотация: The thermal conductivity, k, of diamond/carbon composites with different ratios of sp 2/sp 3-bonded carbon is measured by the laser flash technique. The thermal conductivity of nanocomposites containing 6 nm diamond particles falls within the range of k=0.003-0.017 W/cmK at room temperature. The thermal conductivity increases while nanopores are gradually filled with pyrolytic carbon (pyrocarbon/diamond mass ratio variation of 0.0-0.5). Transmission electron microscopy data reveal a fairly uniform mixture of two carbon phases, the diamond and matrix having similar grain sizes. Estimates show that the phonon free path is limited by dimensions of carbon matrix layer. Thermal data for coarse-grain (1-2 ?m) composites are also given for comparison. (C) 2000 Elsevier Science S.A. All rights reserved.

Scopus
Держатели документа:
General Physics Institute, 38 Vavilov Str., Moscow 117942, Russian Federation
Ctrl. Res. Institute of Materials, 8 Paradnaya Str., St. Petersburg, Russian Federation
Institute of Crystallography, Leninsky prosp. 59, Moscow, Russian Federation
Institute of Biophysics, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Vlasov, A.; Ralchenko, V.; Gordeev, S.; Zakharov, D.; Vlasov, I.; Karabutov, A.; Belobrov, P.

Найти похожие
3.


   
    Specific features in the change of electrical resistivity of carbon nanocomposites based on nanodiamonds under neutron irradiation / S. K. Gordeev [et al.] // Phys. Solid State. - 2013. - Vol. 55, Is. 7. - P1480-1486, DOI 10.1134/S1063783413070147. - Cited References: 24. - This study was supported by the Ministry of Education and Science of the Russian Federation (state contract nos. 14.518.11.7028 and 16.518.11.7034) and the Russian Foundation for Basic Research (project no. 10-02-00576). . - 7. - ISSN 1063-7834
РУБ Physics, Condensed Matter
Рубрики:
NANOPARTICLES
Аннотация: The physical properties of bulk composite materials consisting of nanodiamond, pyrolytic carbon, and nanopores were investigated. Samples were irradiated in a channel of the reactor by fast neutrons (E 0.5MeV) in ampoules with helium and in an aqueous medium. The dependences of the electrical transport properties of materials with different compositions on the dose of irradiation with fast neutrons were studied. A nonmonotonic change in the electrical resistivity with an increase in the neutron fluence was revealed. Possible explanations were offered for the observed dependence of the electrical resistivity on the neutron fluence, in particular, those related to the physical processes occurring in surface states of the three-phase system of the nanocomposite.

Держатели документа:
[Gordeev, S. K.
Korchagina, S. B.] Cent Res Inst Mat, St Petersburg 191014, Russia
[Konopleva, R. F.
Chekanov, V. A.
Belyaev, S. P.
Golosovskii, I. V.] Natl Res Ctr Kurchatov Inst, Konstantinov Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Oblas, Russia
[Denisov, I. A.
Belobrov, P. I.] Siberian Fed Univ, Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia
[Belyaev, S. P.] St Petersburg State Univ, St Petersburg 199034, Russia : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gordeev, S.K.; Konopleva, R.F.; Chekanov, V.A.; Korchagina, S.B.; Belyaev, S.P.; Golosovskii, I.V.; Denisov, I.A.; Belobrov, P.I.

Найти похожие
4.


   
    Thermal properties of diamond/carbon composites [Text] / A. . Vlasov [et al.] // Diam. Relat. Mat. - 2000. - Vol. 9: 10th European Conference on Diamond, Diamond-Like Materials, Nitrides and Silicon Carbide (Diamond 1999) (SEP 12-17, 1999, PRAGUE, CZECH REPUBLIC), Is. 03.06.2013. - P. 1104-1109, DOI 10.1016/S0925-9635(99)00256-3. - Cited References: 9 . - ISSN 0925-9635
РУБ Materials Science, Multidisciplinary
Рубрики:
CVD DIAMOND
   CONDUCTIVITY

   FILMS

   RAMAN

Кл.слова (ненормированные):
diamond composites -- laser flash technique -- TEM -- thermal conductivity
Аннотация: The thermal conductivity, k, of diamond/carbon composites with different ratios of sp(2)/sp(3)-bonded carbon is measured by the laser flash technique. The thermal conductivity of nanocomposites containing 6 nm diamond particles falls within the range of k = 0.003-0.017 W/cmK; at room temperature. The thermal conductivity increases while nanopores are gradually filled with pyrolytic carbon (pyrocarbon/diamond mass ratio variation of 0.0-0.5). Transmission electron microscopy data reveal a fairly uniform mixture of two carbon phases, the diamond and matrix having similar grain sizes. Estimates show that the phonon free path is limited by dimensions of carbon matrix layer. Thermal data for coarse-grain (1-2 mu m) composites are also given for comparison. (C) 2000 Elsevier Science S.A. All rights reserved.

WOS
Держатели документа:
Inst Gen Phys, Moscow 117942, Russia
CRIM, St Petersburg, Russia
Inst Crystallog, Moscow, Russia
Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Vlasov, A...; Ralchenko, V...; Gordeev, S...; Zakharov, D...; Vlasov, I...; Karabutov, A...; Belobrov, P...

Найти похожие
5.


   
    Low-field electron emission of diamond/pyrocarbon composites [Text] / A. V. Karabutov [et al.] // J. Vac. Sci. Technol. B. - 2001. - Vol. 19: 13th International Vacuum Microlectronics Conference (AUG 13-17, 2000, GUANGZHOU, PEOPLES R CHINA), Is. 3. - P. 965-970, DOI 10.1116/1.1368669. - Cited References: 31 . - ISSN 1071-1023
РУБ Engineering, Electrical & Electronic + Nanoscience & Nanotechnology + Physics, Applied
Рубрики:
CVD DIAMOND FILMS
   SCANNING-TUNNELING-MICROSCOPY

   AMORPHOUS-CARBON

   COLD-CATHODE

Аннотация: Properties of the field electron emission for diamond/pyrocarbon nanocomposites produced from diamond particles surrounded by an sp(2)-bonded pyrocarbon matrix are considered as functions of a size of diamond particles selected in the range of 5 nm - 5 mum, and of an average thickness of the pyrocarbon shell controlled by the pyrocarbon/diamond mass ratio varied from 0 to 0.5. The low-threshold emission at fields of greater than or equal to1 V/mum with ''no activation/no hysteresis'' I-V behavior was observed for these materials using tungsten tip microprobes as well as a fluorescent screen. A specially designed scanning tunneling-field emission microscope was used for simultaneous mapping of field emission intensity, topography, work function, and electrical resistivity to study the mechanisms of the emission from the composites and well-emitting chemical vapor deposition diamond films. It was found that for both of the materials emission centers are associated with interfaces between diamond and sp2-bonded carbon phases. Possible mechanisms of the low-field electron emission for the diamond/graphite composites including local field enhancement are analyzed. A model of the low-field emission based on quantum well effect at the diamond/graphite interface is proposed and discussed. (C) 2001 American Vacuum Society.

WOS
Держатели документа:
Russian Acad Sci, Inst Gen Phys, Moscow 117942, Russia
Cent Res Inst Mat, St Petersburg, Russia
Russian Acad Sci, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Karabutov, A.V.; Frolov, V.D.; Konov, V.I.; Ralchenko, V.G.; Gordeev, S.K.; Belobrov, P.I.

Найти похожие
6.


   
    Extraction of Nanochitin from Marine Resources and Fabrication of Polymer Nanocomposites: Recent Advances / B. Joseph, R. M. Sam, P. Balakrishnan [et al.] // Polymers. - 2020. - Vol. 12, Is. 8. - Ст. 1664, DOI 10.3390/polym12081664. - Cited References:128. - This study was financially supported by project "Agro preparations of the new generation: a strategy of construction and realization" (agreement number 074-02-2018-328) in accordance with resolution number 220 of the Government of the Russian Federation of 9 April 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning." S.C.M.F. is the recipient of an E2S UPPA Research Partnership Chair (MANTA: Marine Materials) supported by the "Investissements d'Avenir" French program managed by ANR (ANR-16-IDEX-0002), the Region Nouvelle-Aquitaine and the Communaute d'Agglomeration du Pays Basque, France. . - ISSN 2073-4360
РУБ Polymer Science
Рубрики:
NATURAL-RUBBER NANOCOMPOSITES
   ELECTROSPUN PVDF MEMBRANE

   ALPHA-CHITIN

Кл.слова (ненормированные):
nanochitin -- biodegradable -- marine -- reinforcement -- polysaccharides
Аннотация: Industrial sea food residues, mainly crab and shrimp shells, are considered to be the most promising and abundant source of chitin. In-depth understanding of the biological properties of chitin and scientific advancements in the field of nanotechnology have enabled the development of high-performance chitin nanomaterials. Nanoscale chitin is of great economic value as an efficient functional and reinforcement material for a wide range of applications ranging from water purification to tissue engineering. The use of polymers and nanochitin to produce (bio) nanocomposites offers a good opportunity to prepare bioplastic materials with enhanced functional and structural properties. Most processes for nanochitin isolation rely on the use of chemical, physical or mechanical methods. Chitin-based nanocomposites are fabricated by various methods, involving electrospinning, freeze drying, etc. This review discusses the progress and new developments in the isolation and physico-chemical characterization of chitin; it also highlights the processing of nanochitin in various composite and functional materials.

WOS
Держатели документа:
Mahatma Gandhi Univ, Int & Inter Univ Ctr Nanosci & Nanotechnol, Kottayam 686560, Kerala, India.
Bishop Moore Coll, Res & Post Grad Dept Chem, Mavelikara 690110, Kerala, India.
Plant Lipids Pvt Ltd, Cochin 682311, Kerala, India.
Siberian Fed Univ, Russian Acad Sci, Inst Biophys, Krasnoyarsk 660041, Russia.
Univ Pau & Pays Adour, Inst Interdisciplinary Res Environm & Mat IPREM, IPREM, CNRS,E2S UPPA, F-64600 Anglet, France.
Mahatma Gandhi Univ, Sch Energy Mat, Kottayam 686560, Kerala, India.

Доп.точки доступа:
Joseph, Blessy; Sam, Rubie Mavelil; Balakrishnan, Preetha; Maria, Hanna J.; Gopi, Sreeraj; Volova, Tatiana; Fernandes, Susana C. M.; Thomas, Sabu; Government of the Russian Federation [074-02-2018-328, 220]; "Investissements d'Avenir" French programFrench National Research Agency (ANR) [ANR-16-IDEX-0002]; Region Nouvelle-AquitaineRegion Nouvelle-Aquitaine; Communaute d'Agglomeration du Pays Basque, France

Найти похожие
7.


   
    Thermomechanical analysis of isora nanofibril incorporated polyethylene nanocomposites / C. Jose, C. H. Chan, T. Winie [et al.] // Polym. - 2021. - Vol. 13, Is. 2. - Ст. 299. - P1-15, DOI 10.3390/polym13020299 . - ISSN 2073-4360
Кл.слова (ненормированные):
Avrami model -- Crystallization -- Mechanical properties -- Polymer-cellulose nanocomposites -- Aliphatic compounds -- Cellulose nanocrystals -- Crystallization kinetics -- Fillers -- Nanocomposites -- Nanofibers -- Polyethylenes -- Viscoelasticity -- Application range -- Cellulose nanofibers -- Composite fabrication -- Physio-chemical properties -- Polyethylene nanocomposites -- Thermo-mechanical analysis -- Uniform dispersions -- Viscoelastic properties -- Cellulose -- Aliphatic Compounds -- Cellulose -- Crystallization -- Fillers -- Plants -- Polyethylene -- Thermoplastics -- Viscoelasticity
Аннотация: The research on cellulose fiber-reinforced nanocomposites has increased by an unprecedented magnitude over the past few years due to its wide application range and low production cost. However, the incompatibility between cellulose and most thermoplastics has raised significant challenges in composite fabrication. This paper addresses the behavior of plasma-modified polyethylene (PE) reinforced with cellulose nanofibers extracted from isora plants (i.e., isora nanofibrils (INFs)). The crystallization kinetics of PE–INF composites were explained using the Avrami model. The effect of cellulose nanofillers on tuning the physiochemical properties of the nanocomposite was also explored in this work. The increase in mechanical properties was due to the uniform dispersion of fillers in the PE. The investigation on viscoelastic properties confirmed good filler–matrix interactions, facilitating the stress transfer. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Newman College, Thodupuzha, Kerala, 685585, India
Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450, Malaysia
International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk, 660041, Russian Federation
Dipartimento di Ingegneria, Universita di Palermo, Viale delle Scienze, Palermo, 90128, Italy
Consorzio INSTM, Firenze, 50121, Italy
Institut Jean Lamour, UMR 7198, CNRS, Universite de Lorraine, Vandoeuvre-les-Nancy, F-54500, France
Facolta di Ingegneria, Universita degli Studi di Enna “Kore”, Cittadella Universitaria, Enna, 94100, Italy
Instituto de Alta Investigacion Universidad de Tarapaca, Casilla 7D, Arica, 1000000, Chile

Доп.точки доступа:
Jose, C.; Chan, C. H.; Winie, T.; Joseph, B.; Tharayil, A.; Maria, H. J.; Volova, T.; Mantia, F. P.L.; Rouxel, D.; Morreale, M.; Laroze, D.; Mathew, L.; Thomas, S.

Найти похожие
8.


   
    Thermomechanical Analysis of Isora Nanofibril Incorporated Polyethylene Nanocomposites / C. Jose, C. H. Chan, T. Winie [et al.] // Polymers. - 2021. - Vol. 13, Is. 2. - Ст. 299, DOI 10.3390/polym13020299. - Cited References:46. - This study (polymer synthesis and investigation) was financially supported by the project "Agro preparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation on 9 April 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning". . - ISSN 2073-4360
РУБ Polymer Science

Кл.слова (ненормированные):
polymer-cellulose nanocomposites -- crystallization -- mechanical -- properties -- Avrami model
Аннотация: The research on cellulose fiber-reinforced nanocomposites has increased by an unprecedented magnitude over the past few years due to its wide application range and low production cost. However, the incompatibility between cellulose and most thermoplastics has raised significant challenges in composite fabrication. This paper addresses the behavior of plasma-modified polyethylene (PE) reinforced with cellulose nanofibers extracted from isora plants (i.e., isora nanofibrils (INFs)). The crystallization kinetics of PE-INF composites were explained using the Avrami model. The effect of cellulose nanofillers on tuning the physiochemical properties of the nanocomposite was also explored in this work. The increase in mechanical properties was due to the uniform dispersion of fillers in the PE. The investigation on viscoelastic properties confirmed good filler-matrix interactions, facilitating the stress transfer.

WOS
Держатели документа:
Newman Coll Educ, Thodupuzha 685585, Kerala, India.
Univ Teknol MARA, Fac Appl Sci, Shah Alam 40450, Malaysia.
Mahatma Gandhi Univ, Int & Inter Univ Ctr Nanosci & Nanotechnol, Kottayam 686560, Kerala, India.
Mahatma Gandhi Univ, Sch Energy Mat, Kottayam 686560, Kerala, India.
Mahatma Gandhi Univ, Sch Chem Sci, Kottayam 686560, Kerala, India.
Siberian Fed Univ, Russian Acad Sci, Siberian Branch, Inst Biophys, 79 Svobodnyi Av, Krasnoyarsk 660041, Russia.
Univ Palermo, Dipartimento Ingn, Viale Sci, I-90128 Palermo, Italy.
Consorzio INSTM, I-50121 Florence, Italy.
Univ Lorraine, CNRS, Inst Jean Lamour, UMR 7198, F-54500 Vandoeuvre Les Nancy, France.
Univ Studi Enna Kore, Facolta Ingn, Cittadella Univ, I-94100 Enna, Italy.
Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica 1000000, Chile.

Доп.точки доступа:
Jose, Cintil; Chan, Chin Han; Winie, Tan; Joseph, Blessy; Tharayil, Abhimanyu; Maria, Hanna J.; Volova, Tatiana; La Mantia, Francesco Paolo; Rouxel, Didier; Morreale, Marco; Laroze, David; Mathew, Lovely; Thomas, Sabu; La, Francesco Paolo; project "Agro preparations of the new generation: a strategy of construction and realization" [074-02-2018-328]; Government of the Russian Federation [220]

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)