Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=RADISH<.>)
Общее количество найденных документов : 24
Показаны документы с 1 по 20
 1-20    21-24 
1.


   
    Production characteristics of the "higher plants-soil-like substrate" system as an element of the bioregenerative life support system / V. V. Velichko [et al.] // Advances in Space Research. - 2013. - Vol. 51, Is. 1. - P115-123, DOI 10.1016/j.asr.2012.08.003 . - ISSN 0273-1177
Кл.слова (ненормированные):
Biological-technical life support system -- Soil-like substrate -- Utilization of plant wastes -- Age groups -- Bioregenerative life support systems -- Cultivated crops -- Cyperus esculentus -- Growth chamber -- Higher plants -- Mineral element -- Nitrogen content -- Nutrient solution -- Plant wastes -- Raphanus sativus -- Root zone -- Soil-like substrate -- Study materials -- Biomass -- Carbon dioxide -- Harvesting -- Minerals -- Plants (botany) -- Soils -- Substrates -- Waste utilization -- Ecology
Аннотация: The study addresses the possibility of long-duration operation of a higher plant conveyor, using a soil-like substrate (SLS) as the root zone. Chufa (Cyperus esculentus L.), radish (Raphanus sativus L.), and lettuce (Lactuca sativa L.) were used as study material. A chufa community consisting of 4 age groups and radish and lettuce communities consisting of 2 age groups were irrigated with a nutrient solution, which contained mineral elements extracted from the SLS. After each harvest, inedible biomass of the harvested plants and inedible biomasses of wheat and saltwort were added to the SLS. The amounts of the inedible biomasses of wheat and saltwort to be added to the SLS were determined based on the nitrogen content of the edible mass of harvested plants. CO2 concentration in the growth chamber was maintained within the range of 1100-1700 ppm. The results of the study show that higher plants can be grown quite successfully using the proposed process of plant waste utilization in the SLS. The addition of chufa inedible biomass to the SLS resulted in species-specific inhibition of growth of both cultivated crops and microorganisms in the "higher plants - SLS" system. There were certain differences between the amounts of some mineral elements removed from the SLS with the harvested edible biomass and those added to it with the inedible biomasses of wheat and saltwort. В© 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch of Russian Academy of Science, Akademgorodok, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Velichko, V.V.; Tikhomirov, A.A.; Ushakova, S.A.; Tikhomirova, N.A.; Shihov, V.N.; Tirranen, L.S.; Gribovskaya, I.A.

Найти похожие
2.


   
    Influence of excitation light intensity and leaf age on the slow chlorophyll fluorescence transient in radish / T. V. Nesterenko, A. A. Tikhomirov, V. N. Shikhov // Biophysics (Russian Federation). - 2012. - Vol. 57, Is. 4. - P464-468, DOI 10.1134/S0006350912040136 . - ISSN 0006-3509
Кл.слова (ненормированные):
leaf ontogeny -- light dependence -- slow fluorescence induction -- temporal indices -- Raphanus sativus
Аннотация: The temporal characteristics of the slow phase of chlorophyll fluorescence induction-T0. 5 (half-decay time) and tmin (an integral-based index of the variable emission rate)-as well as the popular amplitude index FP/FS were determined at different excitation light intensities (Iex [400-500 nm] of 20-80 W/m2) in dark-adapted leaves of different age (3-24 days) taken from radish plants grown under continuous light of 100 W/m2 PAR. All the profiles thus obtained were mutually consistent, and the age-related variations were minimized at Iex > 40 W/m2; at that the age-averaged temporal indices proved to be more light-responsive than the standard amplitude ratio. В© 2012 Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Nesterenko, T.V.; Tikhomirov, A.A.; Shikhov, V.N.

Найти похожие
3.


   
    Estimation of the stability of the photosynthetic unit in the bioregenerative life support system with plant wastes included in mass exchange / A. A. Tikhomirov [et al.] // Acta Astronautica. - 2008. - Vol. 63, Is. 7-10. - P1111-1118, DOI 10.1016/j.actaastro.2007.12.025 . - ISSN 0094-5765
Кл.слова (ненормированные):
BLSS -- Mass exchange -- Plant wastes -- Agricultural products -- Air pollution -- Biological materials -- Biomass -- Environmental engineering -- Estimation -- Experiments -- Human engineering -- Incineration -- Renewable energy resources -- Space research -- Substrates -- System stability -- Bioregenerative -- Life-support systems -- Mass exchanges -- Plant biomass -- Plant productivity -- Plant wastes -- Radish plants -- Significant reduction -- Soil like substrates -- Wheat straws -- Waste incineration
Аннотация: The purpose of this study is to estimate the possible effect produced on plant productivity by inedible plant biomass added to soil-like substrate (SLS). Results of the experiments with radish plants grown on the SLS with inedible biomass of carrot and beet plants added in the amounts roughly equal to their yields harvested from the same area showed a significant reduction in productivity of radish plants. The yield of radish plants grown on the SLS with added radish tops was almost the same as the yield of the radish grown on the neutral substrate. Experiments with addition of dry wheat straw to the SLS and growing of wheat and radish plants on that substrate also showed that the productivity of the plants grown in that way was decreased. Attempts to negate the adverse effect of plant wastes proved that the most effective way was to mineralize the wastes using the technique of "wet incineration". В© 2008 Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics Russian Academy of Sciences, Siberian Branch, Akademgorodok, 660036 Krasnoyarsk, Russian Federation
Environmental Control and Life Support Section, ESA-ESTEC, Postbus 299, 2200 AG Noordwijk, Netherlands
Institute of Biology Komi SC, Ural Branch Russian Academy of Sciences, Kommunisticheskaya Street, 28, 167982 Siktivkar, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Velichko, V.V.; Zolotukhin, I.G.; Shklavtsova, E.S.; Lasseur, C.; Golovko, T.K.

Найти похожие
4.


   
    Effect of increased CO2 concentrations on gas exchange and productivity of cultivated vegetables contributing to the phototrophic component of biological regeneration life-support systems / A. A. Tikhomirov, V. V. Velichko, S. A. Ushakova // Doklady Biological Sciences. - 2007. - Vol. 416, Is. 1-6. - P379-381, DOI 10.1134/S001249660705016X . - ISSN 0012-4966
Кл.слова (ненормированные):
carbon dioxide -- article -- beet -- biomass -- carrot -- chemistry -- light -- metabolism -- photosynthesis -- phototropism -- plant -- plant physiology -- radish -- time -- vegetable -- Beta vulgaris -- Biomass -- Carbon Dioxide -- Daucus carota -- Light -- Photosynthesis -- Phototropism -- Plant Physiology -- Plants -- Raphanus -- Time Factors -- Vegetables

Scopus
Держатели документа:
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Velichko, V.V.; Ushakova, S.A.

Найти похожие
5.


   
    Testing soil-like substrate for growing plants in bioregenerative life support systems / J. B. Gros [et al.] // Advances in Space Research. - 2005. - Vol. 36, Is. 7. - P1312-1318, DOI 10.1016/j.asr.2005.05.079 . - ISSN 0273-1177
Кл.слова (ненормированные):
Life support system -- Matter recycling -- Plants -- Soil-like substrate -- Biodiversity -- Correlation methods -- Growth kinetics -- Hormones -- Plants (botany) -- Recycling -- Soils -- Bioregeneration -- Life support system -- Matter recycling -- Soil-like substrate -- Space research
Аннотация: We studied soil-like substrate (SLS) as a potential candidate for plant cultivation in bioregenerative life support systems (BLSS). The SLS was obtained by successive conversion of wheat straw by oyster mushrooms and worms. Mature SLS contained 9.5% humic acids and 4.9% fulvic acids. First, it was shown that wheat, bean and cucumber yields as well as radish yields when cultivated on mature SLS were comparable to yields obtained on a neutral substrate (expanded clay aggregate) under hydroponics. Second, the possibility of increasing wheat and radish yields on the SLS was assessed at three levels of light intensity: 690, 920 and 1150 ?mol m-2 s-1 of photosynthetically active radiation (PAR). The highest wheat yield was obtained at 920 ?mol m-2 s-1, while radish yield increased steadily with increasing light intensity. Third, long-term SLS fertility was tested in a BLSS model with mineral and organic matter recycling. Eight cycles of wheat and 13 cycles of radish cultivation were carried out on the SLS in the experimental system. Correlation coefficients between SLS nitrogen content and total wheat biomass and grain yield were 0.92 and 0.97, respectively, and correlation coefficients between nitrogen content and total radish biomass and edible root yield were 0.88 and 0.87, respectively. Changes in hormone content (auxins, gibberellins, cytokinins and abscisic acid) in the SLS during matter recycling did not reduce plant productivity. Quantitative and species compositions of the SLS and irrigation water microflora were also investigated. Microbial community analysis of the SLS showed bacteria from Bacillus, Pseudomonas, Proteus, Nocardia, Mycobacterium, Arthrobacter and Enterobacter genera, and fungi from Trichoderma, Penicillium, Fusarium, Aspergillus, Mucor, Botrytis, and Cladosporium genera. В© 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
LGCB, Universite B. Pascal, CUST, BP206, 63174 Aubiere cedex, France
Environmental Control and Life Support Section, ESA-Estec, Postbus 299, 2200 AG, Noordwijk, Netherlands
Institute of Biophysics (Russian Academy of Sciences, Siberian Branch), Academgorodok, Krasnoyarsk 660036, Russian Federation
Department of Plant Physiology and Biotechnology, Tomsk State University, Lenin av. 36, Tomsk 634050, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gros, J.B.; Lasseur, Ch.; Tikhomirov, A.A.; Manukovsky, N.S.; Kovalev, V.S.; Ushakova, S.A.; Zolotukhin, I.G.; Tirranen, L.S.; Karnachuk, R.A.; Dorofeev, V.Yu.

Найти похожие
6.


   
    Synthesis of biomass and utilization of plants wastes in a physical model of biological life-support system / A. A. Tikhomirov [et al.] // Acta Astronautica. - 2003. - Vol. 53, Is. 4-10. - P249-257, DOI 10.1016/S0094-5765(03)00137-1 . - ISSN 0094-5765
Кл.слова (ненормированные):
Ecosystems -- Microorganisms -- pH -- Photosynthesis -- Plants (botany) -- Synthesis (chemical) -- Waste utilization -- Biological life support systems (BLLS) -- Gas exchange -- Plant respiration -- Biomass -- carbon dioxide -- Agaricales -- article -- biomass -- bioremediation -- growth, development and aging -- hydroponics -- incineration -- metabolism -- methodology -- microbiology -- microclimate -- photosynthesis -- plant physiology -- radish -- space flight -- waste management -- weightlessness -- wheat -- Agaricales -- Biodegradation, Environmental -- Biomass -- Carbon Dioxide -- Ecological Systems, Closed -- Environmental Microbiology -- Hydroponics -- Incineration -- Life Support Systems -- Photosynthesis -- Plant Physiology -- Raphanus -- Space Flight -- Triticum -- Waste Management -- Weightlessness
Аннотация: The paper considers problems of biosynthesis of higher plants' biomass and "biological incineration" of plant wastes in a working physical model of biological LSS. The plant wastes are "biologically incinerated" in a special heterotrophic block involving Califomian worms, mushrooms and straw. The block processes plant wastes (straw, haulms) to produce soil-like substrate (SLS) on which plants (wheat, radish) are grown. Gas exchange in such a system consists of respiratory gas exchange of SLS and photosynthesis and respiration of plants. Specifics of gas exchange dynamics of high plants - SLS complex has been considered. Relationship between such a gas exchange and PAR irradiance and age of plants has been established. Nitrogen and iron were found to the first to limit plants' growth on SLS when process conditions are deranged. The SLS microflora has been found to have different kinds of ammonifying and denitrifying bacteria which is indicative of intensive transformation of nitrogen-containing compounds. The number of physiological groups of microorganisms in SLS was, on the whole, steady. As a result, organic substances - products of exchange of plants and microorganisms were not accumulated in the medium, but mineralized and assimilated by the biocenosis. Experiments showed that the developed model of a man-made ecosystem realized complete utilization of plant wastes and involved them into the intrasystem turnover. В© 2003 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russian Federation
Universite B. Pascal, Clermont-Ferrand, France
Environ. Contr. Life Support Sect., ESA, Estec Noonvijk, Netherlands : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Manukovsky, N.S.; Lisovsky, G.M.; Kudenko, Yu.A.; Koyalev, V.S.; Gribovskaya, I.V.; Tirranen, L.S.; Zolotukhin, I.G.; Gros, J.B.; Lasseur, Ch.

Найти похожие
7.


   
    Light intensity and production parameters of phytocenoses cultivated on soil-like substrate under controled environment conditions / A. A. Tikhomirov [et al.] // Advances in Space Research. - 2003. - Vol. 31, Is. 7. - P1775-1780, DOI 10.1016/S0273-1177(03)80020-0 . - ISSN 0273-1177
Кл.слова (ненормированные):
Bacteria -- Biology -- Crops -- Photosynthesis -- Substrates -- Light intensity -- Space research -- biosphere -- Biomass -- Carbon Dioxide -- Colony Count, Microbial -- Culture Media -- Ecological Systems, Closed -- Enterobacteriaceae -- Life Support Systems -- Light -- Photosynthesis -- Plant Transpiration -- Raphanus -- Soil Microbiology -- Triticum -- Water Microbiology
Аннотация: To increase the degree of closure of biological life support systems of a new generation, we used vermicomposting to involve inedible phytomass in the intra-system mass exchange. The resulting product was a soil-like substrate, which was quite suitable for growing plants (Manukovsky et al. 1996, 1997). However, the soil-like substrate can be regarded as a candidate for inclusion in a system only after a comprehensive examination of its physical, chemical, and other characteristics. An important criterion is the ability of the soil-like substrate to supply the necessary mineral elements to the photosynthesizing component under the chosen cultivation conditions. Thus, the purpose of this work was to study the feasibility of enhancing the production activity of wheat and radish crops by varying the intensity of photosynthetically active radiation, without decreasing the harvest index. The increase of light intensity from 920 to 1150 ?molВ·m -2В·s -1 decreased the intensity of apparent photosynthesis of the wheat crops and slightly increased the apparent photosynthesis of the radish crops The maximum total and grain productivity (kg/m 2) of the wheat crops was attained at the irradiance of 920 ?molВ·m -2В·s -1. Light intensity of 1150 ?molВ·m -2В·s -1 decreased the productivity of wheat plants and had no significant effect on the productivity of the radish crops (kg/m 2) as compared to 920 ?molВ·m 2В·s -1. The qualitative and quantitative composition of microflora of the watering solution and substrate was determined by the condition of plants, developmental phase and light intensity. By the end of wheat growth under 1150 ?molВ·m -2В·s -1 the numbers of bacteria of the coliform family and phytopathogenic bacteria in the watering solution and substrate were an order of magnitude larger than under other illumination conditions. The obtained data suggest that the cultivation of plants in a life support system on soil-like substrate from composts has a number of advantages over the cultivation on neutral substrates, which require continual replenishment of the plant nutrient solution from the system's store to complement the macro- and microelements. Yet, a number of problems arise, including those related to the controlling of the production activity of the plants by the intensity of photosynthetically active radiation. It is essential to understand why the intensity of production processes is limited at higher irradiation levels and to overcome the factors responsible for this, so that the soil-like substrate could have an even better chance in the competition for the best plant cultivation technology to be used in biological life support systems. В© 2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, RAS SB, Krasnoyarsk 660036, Russian Federation
Tomsk State University, Lenin street, 36, Tomsk 634050, Russian Federation
LGCB, Universte B. Pascal, BP206, Aubiere cedex 63174, France
ESA/ESTEC, Noordwijk, AG 2200, Netherlands : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Gribovskaya, I.A.; Tirranen, L.S.; Manukovsky, N.S.; Zolotukhin, I.G.; Karnachuk, R.A.; Gros, J.-B.; Lasseur, Ch.

Найти похожие
8.


   
    Mass exchange in an experimental new-generation life support system model based on biological regeneration of environment / A. A. Tikhomirov [et al.] // Advances in Space Research. - 2003. - Vol. 31, Is. 7. - P1711-1720, DOI 10.1016/S0273-1177(03)80017-0 . - ISSN 0273-1177
Кл.слова (ненормированные):
Biomass -- Photosynthesis -- Plants (botany) -- Transpiration -- Mass exchange -- Life support systems (spacecraft) -- ammonia -- nitrogen -- oxygen -- biosphere -- animal -- annelid worm -- article -- biological model -- biomass -- bioremediation -- evaluation -- growth, development and aging -- human -- metabolism -- microclimate -- photosynthesis -- Pleurotus -- radish -- wheat -- Ammonia -- Animals -- Biodegradation, Environmental -- Biomass -- Ecological Systems, Closed -- Evaluation Studies -- Humans -- Life Support Systems -- Models, Biological -- Nitrogen -- Oligochaeta -- Oxygen -- Photosynthesis -- Pleurotus -- Raphanus -- Triticum
Аннотация: An experimental model of a biological life support system was used to evaluate qualitative and quantitative parameters of the internal mass exchange. The photosynthesizing unit included the higher plant component (wheat and radish), and the heterotrophic unit consisted of a soil-like substrate, California worms, mushrooms and microbial microflora. The gas mass exchange involved evolution of oxygen by the photosynthesizing component and its uptake by the heterotroph component along with the formation and maintaining of the SLS structure, growth of mushrooms and California worms, human respiration, and some other processes. Human presence in the system in the form of "virtual human" that at regular intervals took part in the respirative gas exchange during the experiment. Experimental data demonstrated good oxygen/carbon dioxide balance, and the closure of the cycles of these gases was almost complete. The water cycle was nearly 100% closed. The main components in the water mass exchange were transpiration water and the watering solution with mineral elements. Human consumption of the edible plant biomass (grains and roots) was simulated by processing these products by a unique physicochemical method of oxidizing them to inorganic mineral compounds, which were then returned into the system and fully assimilated by the plants. The oxidation was achieved by "wet combustion" of organic biomass, using hydrogen peroxide following a special procedure, which does not require high temperature and pressure. Hydrogen peroxide is produced from the water inside the system. The closure of the cycle was estimated for individual elements and compounds. Stoichiometric proportions are given for the main components included in the experimental model of the system. Approaches to the mathematical modeling of the cycling processes are discussed, using the data of the experimental model. Nitrogen, as a representative of biogenic elements, shows an almost 100% closure of the cycle inside the system. The proposed experimental model of a biological system is discussed as a candidate for potential application in the investigations aimed at creating ecosystems with largely closed cycles of the internal mass exchange. The formation and maintenance of sustainable cycling of vitally important chemical elements and compounds in biological life support systems (BLSS) is an extremely pressing problem. To attain the stable functioning of biological life support systems (BLSS) and to maintain a high degree of closure of material cycles in them, it is essential to understand the character of mass exchange processes and stoichiometric proportions of the initial and synthesized components of the system. В© 2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russian Federation
Universite B. Pascal, Clermont-Ferrand, France
Environ. Control/Life Support Sect., ESA, Estec Noorwijk, Netherlands : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Manukovsky, N.S.; Lisovsky, G.M.; Kudenko, Yu.A.; Kovalev, V.S.; Gubanov, V.G.; Barkhatov, Yu.V.; Gribovskaya, I.V.; Zolotukhin, I.G.; Gros, J.B.; Lasseur, Ch.

Найти похожие
9.


   
    Tolerance of LSS plant component to elevated temperatures / S. A. Ushakova, A. A. Tikhomirov // Acta Astronautica. - 2002. - Vol. 50, Is. 12. - P759-764, DOI 10.1016/S0094-5765(02)00010-3 . - ISSN 0094-5765
Кл.слова (ненормированные):
Metabolism -- Photosynthesis -- Rate constants -- Thermal effects -- Thermoanalysis -- Thermal tolerance -- Life support systems (spacecraft) -- carbon dioxide -- adaptation -- article -- Brassicaceae -- comparative study -- heat -- instrumentation -- light -- metabolism -- microclimate -- photosynthesis -- physiology -- plant physiology -- wheat -- Adaptation, Physiological -- Brassicaceae -- Carbon Dioxide -- Ecological Systems, Closed -- Heat -- Life Support Systems -- Light -- Photosynthesis -- Plant Physiology -- Triticum
Аннотация: Stability of LSS based on biological regeneration of water, air and food subject to damaging factors is largely dependent on the behavior of the photosynthesizing component represented, mainly, by higher plants. The purpose of this study is to evaluate the tolerance of uneven-aged wheat and radish cenoses to temperature effects different in time and value. Estimation of thermal tolerance of plants demonstrated that exposure for 20 h to the temperature increasing to 45В°C brought about irreversible damage both in photosynthetic processes (up to 80% of initial value) and the processes of growth and development. Kinetics of visible photosynthesis during exposure to elevated temperatures can be used to evaluate critical exposure time within the range of which the damage of metabolic processes is reversible. With varying light intensity and air temperature it is possible to find a time period admissible for the plants to stay under adverse conditions without considerable damage of metabolic processes. В© 2002 Elsevier Science Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics (Russian Academy of Sciences, Siberian Branch) Academgorodok, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Ushakova, S.A.; Tikhomirov, A.A.

Найти похожие
10.


   
    Mass exchange in an experimental new-generation life support system model based on biological regeneration of environment [Text] / A. A. Tikhomirov [et al.] ; ed. M Nelson [et al.] // SPACE LIFE SCIENCES: CLOSED ARTIFICIAL ECOSYSTEMS AND LIFE SUPPORT SYSTEMS. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON-ELSEVIER SCIENCE LTD, 2003. - Vol. 31: Meeting of F4 1 Session of the 34th Scientific Assembly of COSPAR (OCT, 2002, HOUSTON, TEXAS), Is. 7. - P1711-1720, DOI 10.1016/S0273-1177(03)00108-X. - Cited References: 13 . - 10. - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Ecology + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: An experimental model of a biological life support system was used to evaluate qualitative and quantitative parameters of the internal mass exchange. The photosynthesizing unit included the higher plant component (wheat and radish), and the heterotrophic unit consisted of a soil-like substrate, California worms, mushrooms and microbial microflora. The gas mass exchange involved evolution of oxygen by the photosynthesizing component and its uptake by the heterotroph component along with the formation and maintaining of the SLS structure, growth of mushrooms and California worms, human respiration, and some other processes. Human presence in the system in the form of "virtual human" that at regular intervals took part in the respirative gas exchange during the experiment. Experimental data demonstrated good oxygen/carbon dioxide balance, and the closure of the cycles of these gases was almost complete. The water cycle was nearly 100% closed. The main components in the water mass exchange were transpiration water and the watering solution with mineral elements. Human consumption of the edible plant biomass (grains and roots) was simulated by processing these products by a unique physicochemical method of oxidizing them to inorganic mineral compounds, which were then returned into the system and fully assimilated by the plants. The oxidation was achieved by "wet combustion" of organic biomass, using hydrogen peroxide following a special procedure, which does not require high temperature and pressure. Hydrogen peroxide is produced from the water inside the system. The closure of the cycle was estimated for individual elements and compounds. Stoichiometric proportions are given for the main components included in the experimental model of the system. Approaches to the mathematical modeling of the cycling processes are discussed, using the data of the experimental model. Nitrogen, as a representative of biogenic elements, shows an almost 100% closure of the cycle inside the system, The proposed experimental model of a biological system is discussed as a candidate for potential application in the investigations aimed at creating ecosystems with largely closed cycles of the internal mass exchange. The formation and maintenance of sustainable cycling of vitally important chemical elements and compounds in biological life support systems (BLSS) is an extremely pressing problem. To attain the stable functioning of biological life support systems (BLSS) and to maintain a high degree of closure of material cycles in them, it is essential to understand the character of mass exchange processes and stoichiometric proportions of the initial and synthesized components of the system. (C) 2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Держатели документа:
Russian Acad Sci, Inst Biophys, Krasnoyarsk, Russia
Univ Strasbourg 1, Clermont Ferrand, France
ESA, Estec, Environm Control & Life Support Sect, Noordwijk, Netherlands : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Manukovsky, N.S.; Lisovsky, G.M.; Kudenko, Y.A.; Kovalev, V.S.; Gubanov, V.G.; Barkhatov, Y.V.; Gribovskaya, I.V.; Zolotukhin, I.G.; Gros, J.B.; Lasseur, C...; Nelson, M \ed.\; Pechurkin, NS \ed.\; Dempster, WF \ed.\; Somova, LA \ed.\; Somo, , LA \ed.\

Найти похожие
11.


   
    PHOTOSYNTHESIS AND STRUCTURE OF RADISH AND WHEAT CANOPIES AS AFFECTED BY RADIATION OF DIFFERENT ENERGY AND SPECTRAL COMPOSITION [Text] / A. A. TIKHOMIROV, F. Y. SIDKO // Photosynthetica. - 1982. - Vol. 16, Is. 2. - P. 191-195. - Cited References: 11 . - ISSN 0300-3604
РУБ Plant Sciences


WOS : 660036, Красноярск, Академгородок, д. 50, стр. 50
Доп.точки доступа:
TIKHOMIROV, A.A.; SIDKO, F.Y.

Найти похожие
12.


   
    STATE OF THE PIGMENT APPARATUS AND FORMATION OF THE STRUCTURE OF RADISH CENOSES IN CONNECTION WITH THEIR PRODUCTIVITY UNDER CONDITIONS OF DIFFERENT RADIATION INTENSITIES AND SPECTRA [Text] / A. A. TIKHOMIROV, F. Y. SIDKO // SOVIET PLANT PHYSIOLOGY. - 1982. - Vol. 29, Is. 3. - P. 350-356. - Cited References: 13 . - ISSN 0038-5719
РУБ Plant Sciences


WOS : 660036, Красноярск, Академгородок, д. 50, стр. 50
Доп.точки доступа:
TIKHOMIROV, A.A.; SIDKO, F.Y.

Найти похожие
13.


   
    PHOTOSYNTHESIS, RESPIRATION, AND PRODUCTIVITY OF RADISH CENOSES GROWN UNDER RED AND BLUE-LIGHT [Text] / S. A. USHAKOVA [et al.] // SOVIET PLANT PHYSIOLOGY. - 1992. - Vol. 39, Is. 3. - P. 307-311. - Cited References: 18 . - ISSN 0038-5719
РУБ Plant Sciences

Кл.слова (ненормированные):
RADISH -- BLUE AND RED LIGHT -- CO2 EXCHANGE -- PRODUCTIVITY
Аннотация: We investigated the influence of blue (BL) and red (RL) light on gas exchange, biochemical composition, pigment content, and productivity in cenoses of radish plants (Raphanus sativa L.). The rates or true photosynthesis and light respiration are lower in RL than in BL, whereas the rate of apparent photosynthesis and productivity of vegetative mass are higher in the former than the latter. Possible causes of the different action of RL and BL on productive activity of radish cenoses are discussed in the paper.

WOS : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
USHAKOVA, S.A.; VOLKOVA, E.K.; SHALAEVA, E.E.; TIKHOMIROV, A.A.

Найти похожие
14.


   
    CO2-exchange and volatile emission by radish cenosis under elevated temperatures [Текст] / I. I. Gitel'zon [и др.] // Dokl. Akad. Nauk. - 1999. - Vol. 369, Is. 3. - P. 408-410. - Cited References: 8 . - ISSN 0869-5652
РУБ Multidisciplinary Sciences
Рубрики:
HYDROCARBON

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Krasnoyarsk, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gitel'zon, I.I.; Tikhomirov, A.A.; Kalacheva, G.S.; Ushakova, S.A.; Parshina, O.V.

Найти похожие
15.


   
    Physical-chemical treatment of wastes: A way to close turnover of elements in LSS [Text] / Y. A. Kudenko, I. V. Gribovskaya, I. G. Zolotukhin // Acta Astronaut. - 2000. - Vol. 46, Is. 9. - P. 585-589, DOI 10.1016/S0094-5765(00)00007-2. - Cited References: 14 . - ISSN 0094-5765
РУБ Engineering, Aerospace

Аннотация: Man-plants-physical-chemical unit system designed For space stations or terrestrial ecohabitats to close steady-state mineral, water and gas exchange is proposed. The physical-chemical unit is to mineralize all inedible plant wastes and physiological human wastes (feces, urine, gray water) by electromagnetically activated hydrogen peroxide in an oxidation reactor. The final product is a mineralized solution containing all elements balanced for plants' requirements. The solution has been successfully used in experiments to grow wheat, beans and radish. The solution was reusable: the evaporated moisture was replenished by the phytotron condensate. Sodium salination of plants was precluded by evaporating reactor-mineralized urine to sodium saturation concentration to crystallize out NaCl which can be used as food for the crew. The remaining mineralized product was brought back for nutrition of plants. The gas composition of the reactor comprises O(2), N(2), CO(2), NH(3), H(2). At the reactor's output hydrogen and oxygen were catalyzed into water, NH(3) was converted in a water trap into NH(4) and used for nutrition of plants. A special accessory at the reactor's output may produce hydrogen peroxide from intrasystem water and gas which makes possible to close gas loops between LSS components. (C) 2000 Elsevier Science ttd. All rights reserved.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kudenko, Y.A.; Gribovskaya, I.V.; Zolotukhin, I.G.

Найти похожие
16.


   
    Effect of volatile metabolites of dill, radish and garlic on growth of bacteria [Text] / L. S. Tirranen [et al.] // Acta Astronaut. - 2001. - Vol. 49, Is. 2. - P. 105-108, DOI 10.1016/S0094-5765(01)00006-6. - Cited References: 2 . - ISSN 0094-5765
РУБ Engineering, Aerospace

Аннотация: In a model experiment plants were grown in sealed chambers on expanded clay aggregate under the luminance of 150 W/m(2) PAR and the temperature of 24 degreesC. Seven bacterial strains under investigation, replicated on nutrient medium surface in Petri dishes, were grown in the atmosphere of cultivated plants. Microbial response was evaluated by the difference between colony size in experiment and in control. In control, bacteria grew in the atmosphere of clean air. To study the effect of volatile metabolites of various plant on microbial growth, the experimental data were compared with the background values defined for each individual experiment. Expanded clay aggregate, luminance, temperature and sealed chamber (without plants) for the background were the same. Volatile metabolites from 28-days old radish plants have been reliably established to have no effect on the growth of microbes under investigation. Metabolites of 30-days old dill and 50-days old garlic have been established to have reliable bacteriostatic effect on the growth of three bacterial strains. Dill and garlic have been found to have different range of effects of volatile substances on bacterial growth. Volatile metabolites of dill and garlic differed in their effect on the sensitivity spectrum of bacteria. An attempt has been made to describe the obtained data mathematically. (C) 2001 International Astronautical Federation. Published by Elsevier Science Ltd.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tirranen, L.S.; Borodina, E.V.; Ushakova, S.A.; Rygalov, V.Y.; Gitelson, J.I.

Найти похожие
17.


   
    Tolerance of LSS plant component to elevated temperatures [Text] / S. A. Ushakova, A. A. Tikhomirov // Acta Astronaut. - 2002. - Vol. 50, Is. 12. - P. 759-764, DOI 10.1016/S0094-5765(02)00010-3. - Cited References: 10 . - ISSN 0094-5765
РУБ Engineering, Aerospace

Аннотация: Stability of LSS based on biological regeneration of water, air and food subject to damaging factors is largely dependent on the behavior of the photosynthesizing component represented, mainly, by higher plants. The purpose of this study is to evaluate the tolerance of uneven-aged wheat and radish cenoses to temperature effects different in time and value. Estimation of thermal tolerance of plants demonstrated that exposure for 20 h to the temperature increasing to 45degreesC brought about irreversible damage both in photosynthetic processes (up to 80% of initial value) and the processes of growth and development. Kinetics of visible photosynthesis during exposure to elevated temperatures can be used to evaluate critical exposure time within the range of which the damage of metabolic processes is reversible. With varying light intensity and air temperature it is possible to find a time period admissible for the plants to stay under adverse conditions without considerable damage of metabolic processes. (C) 2002 Elsevier Science Ltd. All rights reserved.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Ushakova, S.A.; Tikhomirov, A.A.

Найти похожие
18.


   
    Light intensity and production parameters of phytocenoses cultivated on soil-like substrate under controled environment conditions [Text] / A. A. Tikhomirov [et al.] ; ed. M Nelson [et al.] // SPACE LIFE SCIENCES: CLOSED ARTIFICIAL ECOSYSTEMS AND LIFE SUPPORT SYSTEMS. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON-ELSEVIER SCIENCE LTD, 2003. - Vol. 31: Meeting of F4 1 Session of the 34th Scientific Assembly of COSPAR (OCT, 2002, HOUSTON, TEXAS), Is. 7. - P. 1775-1780, DOI 10.1016/S0273-1177(03)00120-0. - Cited References: 11 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Ecology + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences
Рубрики:
SYSTEM
Аннотация: To increase the degree of closure of biological life support systems of a new generation, we used vermicomposting to involve inedible phytomass in the intra-system mass exchange. The resulting product was a soil-like substrate, which was quite suitable for growing plants (Manukovsky et al. 1996, 1997). However, the soil-like substrate can be regarded as a candidate for inclusion in a system only after a comprehensive examination of its physical, chemical, and other characteristics. An important criterion is the ability of the soil-like substrate to supply the necessary mineral elements to the photosynthesizing component under the chosen cultivation conditions. Thus, the purpose of this work was to study the feasibility of enhancing the production activity of wheat and radish crops by varying the intensity of photosynthetically active radiation, without decreasing the harvest index. The increase of light intensity from 920 to 1150 mumol(.)m(-2.)s(-1) decreased the intensity of apparent photosynthesis of the wheat crops and slightly increased the apparent photosynthesis of the radish crops The maximum total and grain productivity (kg/m(2)) of the wheat crops was attained at the irradiance of 920 mumol(.)m(-2.)s(-1). Light intensity of 1150 mumol(.)m(2.)s(-1) decreased the productivity of wheat plants and had no significant effect on the productivity of the radish crops (kg/m(2)) as compared to 920 mumol(.)m(-2.)s(-2). The qualitative and quantitative composition of microflora of the watering solution and substrate was determined by the condition of plants, developmental phase and light intensity. By the end of wheat growth under 1150 mumol(.)m(-2.)s(-1) the numbers of bacteria of the coliform family and phytopathogenic bacteria in the watering solution and substrate were an order of magnitude larger than under other illumination conditions. The obtained data suggest that the cultivation of plants in a life support system on soil-like substrate from composts has a number of advantages over the cultivation on neutral substrates, which require continual replenishment of the plant nutrient solution from the system's store to complement the macro- and micro- elements. Yet, a number of problems arise, including those related to the controlling of the production activity of the plants by the intensity of photosynthetically active radiation. It is essential to understand why the intensity of production processes is limited at higher irradiation levels and to overcome the factors responsible for this, so that the soil-like substrate could have an even better chance in the competition for the best plant cultivation technology to be used in biological life support systems. (C) 2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

WOS
Держатели документа:
RAS SB, Inst Biophys, Krasnoyarsk 660036, Russia
Tomsk VV Kuibyshev State Univ, Tomsk 634050, Russia
Univ Clermont Ferrand, LGCB, F-63174 Aubiere, France
European Space Agcy, European Space Technol Ctr, NL-2200 AG Noordwijk, Netherlands
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Gribovskaya, I.A.; Tirranen, L.S.; Manukovsky, N.S.; Zolotukhin, I.G.; Karnachuk, R.A.; Gros, J.B.; Lasseur, C...; Nelson, M \ed.\; Pechurkin, NS \ed.\; Dempster, WF \ed.\; Somova, LA \ed.\; Somo, , LA \ed.\

Найти похожие
19.


   
    Synthesis of biomass and utilization of plants wastes in a physical model of biological life-support system [Text] / A. A. Tikhomirov [et al.] // Acta Astronaut. - 2003. - Vol. 53: 53rd Congress of the International-Astronautical-Federation (IAF) (OCT 10, 2002, HOUSTON, TEXAS), Is. 04.10.2013. - P. 249-257, DOI 10.1016/S0094-5765(03)00137-1. - Cited References: 16 . - ISSN 0094-5765
РУБ Engineering, Aerospace

Аннотация: The paper considers problems of biosynthesis of higher plants' biomass and "bioloaical incineration" of plant wastes in a working physical model of biological LSS. The plant wastes are "biologically incinerated" in a special heterotrophic block involving Californian worms, mushrooms and straw. The block processes plant wastes (straw, haulms) to produce soil-like substrate (SLS) on which plants (wheat, radish) are grown. Gas exchange in such a system consists of respiratory gas exchange of SLS and photosynthesis and respiration of plants. Specifics of gas exchange dynamics of high plants - SLS complex has been considered. Relationship between such a gas exchange and PAR irradiance and age of plants has been established. Nitrogen and iron were found to the first to limit plants' growth on SLS when process conditions are deranged. The SLS microflora has been found to have different kinds of ammonifying and denitrifying bacteria which is indicative of intensive transformation of nitrogen-containing compounds. The number of physiological groups of microorganisms in SLS was, on the whole, steady. As a result, organic substances - products of exchange of plants and microorganisms were not accumulated in the medium, but mineralized and assimilated by the biocenosis. Experiments showed that the developed model of a manmade ecosystem realized complete utilization of plant wastes and involved them into the intrasystem turnover. (C) 2003 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia
Univ B Pascal, Clermont Ferrand, France
Estec, ESA, Environm Control & Life Support Sect, Noordwijk, Netherlands
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Manukovsky, N.S.; Lisovsky, G.M.; Kudenko, Y.A.; Kovalev, V.S.; Gribovskaya, I.V.; Tirranen, L.S.; Zolotukhin, I.G.; Gros, J.B.; Lasseur, C...

Найти похожие
20.


   
    Mass exchange in an experimental new-generation life support system model based on biological regeneration of environment [Text] / A. A. Tikhomirov [et al.] ; ed. M Nelson [et al.] // SPACE LIFE SCIENCES: CLOSED ARTIFICIAL ECOSYSTEMS AND LIFE SUPPORT SYSTEMS. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON-ELSEVIER SCIENCE LTD, 2003. - Vol. 31: Meeting of F4 1 Session of the 34th Scientific Assembly of COSPAR (OCT, 2002, HOUSTON, TEXAS), Is. 7. - P. 1711-1720, DOI 10.1016/S0273-1177(03)00108-X. - Cited References: 13 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Ecology + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: An experimental model of a biological life support system was used to evaluate qualitative and quantitative parameters of the internal mass exchange. The photosynthesizing unit included the higher plant component (wheat and radish), and the heterotrophic unit consisted of a soil-like substrate, California worms, mushrooms and microbial microflora. The gas mass exchange involved evolution of oxygen by the photosynthesizing component and its uptake by the heterotroph component along with the formation and maintaining of the SLS structure, growth of mushrooms and California worms, human respiration, and some other processes. Human presence in the system in the form of "virtual human" that at regular intervals took part in the respirative gas exchange during the experiment. Experimental data demonstrated good oxygen/carbon dioxide balance, and the closure of the cycles of these gases was almost complete. The water cycle was nearly 100% closed. The main components in the water mass exchange were transpiration water and the watering solution with mineral elements. Human consumption of the edible plant biomass (grains and roots) was simulated by processing these products by a unique physicochemical method of oxidizing them to inorganic mineral compounds, which were then returned into the system and fully assimilated by the plants. The oxidation was achieved by "wet combustion" of organic biomass, using hydrogen peroxide following a special procedure, which does not require high temperature and pressure. Hydrogen peroxide is produced from the water inside the system. The closure of the cycle was estimated for individual elements and compounds. Stoichiometric proportions are given for the main components included in the experimental model of the system. Approaches to the mathematical modeling of the cycling processes are discussed, using the data of the experimental model. Nitrogen, as a representative of biogenic elements, shows an almost 100% closure of the cycle inside the system, The proposed experimental model of a biological system is discussed as a candidate for potential application in the investigations aimed at creating ecosystems with largely closed cycles of the internal mass exchange. The formation and maintenance of sustainable cycling of vitally important chemical elements and compounds in biological life support systems (BLSS) is an extremely pressing problem. To attain the stable functioning of biological life support systems (BLSS) and to maintain a high degree of closure of material cycles in them, it is essential to understand the character of mass exchange processes and stoichiometric proportions of the initial and synthesized components of the system. (C) 2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Krasnoyarsk, Russia
Univ Strasbourg 1, Clermont Ferrand, France
ESA, Estec, Environm Control & Life Support Sect, Noordwijk, Netherlands
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Ushakova, S.A.; Manukovsky, N.S.; Lisovsky, G.M.; Kudenko, Y.A.; Kovalev, V.S.; Gubanov, V.G.; Barkhatov, Y.V.; Gribovskaya, I.V.; Zolotukhin, I.G.; Gros, J.B.; Lasseur, C...; Nelson, M \ed.\; Pechurkin, NS \ed.\; Dempster, WF \ed.\; Somova, LA \ed.\; Somo, , LA \ed.\

Найти похожие
 1-20    21-24 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)