Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Scaffolds<.>)
Общее количество найденных документов : 15
Показаны документы с 1 по 15
1.


   
    Comparative investigation of polyhydroxyalkanoate scaffolds with various chemical compositions / E. D. Nikolaeva [и др.] // Cellular Transplantation and Tissue Engineering. - 2011. - Vol. 6, Is. 4. - С. 54-63 . - ISSN 1815-445X
Кл.слова (ненормированные):
Biopolymers -- Scaffolds -- Tissue engineering
Аннотация: The authors have constructed and characterized a series of membranes based on resorbable polyhydroxyalkanoates of different compositions. Five PHA types have been studied: a homopolymer of 3-hydroxybutyric acid, copolymers of 3-hydroxybutyric and 4-hydroxybutyric acids, 3-hydroxybutyric and 3-hydroxyvaleric acids, 3-hydroxybutyric and 3-hydroxyhexanoic acids. Scanning electron microscopy and atomicforce microscopy were used to examine the microstructure of membrane surfaces, showing that membranes based on the copolymer of 3-hydroxybutyrate and 3-hydroxyhexanoate had the roughest surface, while membranes based on the copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate had the smoothest surface. The contact angle for water in air was smaller and hydrophilic properties better in the copolymer membranes than in the membranes based on the high-crystallinity homopolymer of 3-hydroxybutyric acid. The culture of mouse fibroblast cell line NIH 3,3 was used to test PHAbased membranes; results of fluorescent probes of DNA DAPI and the MTT assay show that membranes based on studied PHAs are not cytotoxic on direct contact with cells and are highly biocompatible; their adhesive properties and ability to maintain fibroblast proliferation are similar to those of polystyrene and better than those of polylactic acid membranes.

Scopus
Держатели документа:
Institute of Biophisycs, SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russian Federation
Massachusetts Institute of Technology, Cambridge, United States : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Nikolaeva, E.D.; Shishatskaya, E.I.; Mochalov, K.E.; Volova, T.G.; Sinsky, A.J.

Найти похожие
2.


   
    Surface modification of bioresorbable polymer scaffolds by laser treatment / V. V. Slabko [et al.] // Biophysics. - 2010. - Vol. 55, Is. 2. - P234-238, DOI 10.1134/S0006350910020120 . - ISSN 0006-3509
Кл.слова (ненормированные):
hydrophilicity -- laser irradiation -- microbial biocompatible and biodegradable polymers -- polyhydroxybuturate -- surface properties
Аннотация: The effect of laser irradiation on the properties of the surface of films prepared from a bioresorbable polymer poly(hydroxybuturate) has been studied. To determine the spectral region of the polymer optimal for the effective action of radiation on electron molecular bonds, theoretical investigations have been performed, which have shown that, for modifying the surface of PHB scaffolds, it is expedient to use a vacuum laser at a wavelength of 160 nm. Using laser irradiation at a power from 3 to 30 W, a series of films with modified surface, from roughnesses to perforations, have been obtained. The microstructure and properties of the film surface depending on the mode of irradiation have been examined, and conditions have been found under which the contact marginal angles of film wetting with water can be decreased to 50В° (compared with 76-80В° in starting products). Thus, conditions of laser treatment of PHB scaffolds have been theoretically substantiated and experimentally realized that provide a beneficial effect on the properties of the surface without destroying the structure of the material. В© 2010 Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Biophysics, Russian Academy of Sciences, Siberian Division, Krasnoyarsk 660036, Russian Federation
Siberian State Technological University, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Slabko, V.V.; Volova, T.G.; Krasnov, P.O.; Kuzubov, A.A.; Shishatskaya, E.I.

Найти похожие
3.


   
    A hybrid PHB-hydroxyapatite composite for biomedical application: Production, in vitro and in vivo investigation / E. I. Shishatskaya, I. A. Khlusov, T. G. Volova // Journal of Biomaterials Science, Polymer Edition. - 2006. - Vol. 17, Is. 5. - P481-498, DOI 10.1163/156856206776986242 . - ISSN 0920-5063
Кл.слова (ненормированные):
Biocompatibility -- Hydroxyapatite (HA) -- PHB-hydroxyapatite composite -- Polyhydroxyalkanoate (PHA) -- Polyhydroxybutyrate (P(3HB)) -- Properties -- Biocompatibility -- Differential thermal analysis -- Electron microscopy -- Free energy -- Interfacial energy -- Physical properties -- Surface properties -- X ray analysis -- Biomedical application -- Physicochemical properties -- Polyhydroxyalkanoate (PHA) -- Polyhydroxybutyrate (PHB) -- Hydroxyapatite -- hydroxyapatite -- poly(3 hydroxybutyric acid) -- polymer -- biomaterial -- hydroxybutyric acid -- adhesion -- animal cell -- animal tissue -- article -- biomedicine -- bone marrow cell -- cell differentiation -- cell growth -- chemical structure -- composite material -- controlled study -- crystallization -- decomposition -- electron microscopy -- in vitro study -- in vivo study -- melting point -- mouse -- nonhuman -- ossification -- osteoblast -- physical chemistry -- priority journal -- rat -- strength -- structure analysis -- surface property -- synthesis -- temperature measurement -- thermal analysis -- tissue engineering -- wettability -- animal -- biomechanics -- bioremediation -- bone prosthesis -- cattle -- cell culture -- chemistry -- cytology -- differential scanning calorimetry -- drug effect -- human -- materials testing -- prostheses and orthoses -- scanning electron microscopy -- standard -- Wistar rat -- Murinae -- Animals -- Biocompatible Materials -- Biodegradation, Environmental -- Biomechanics -- Bone Substitutes -- Cattle -- Cells, Cultured -- Differential Thermal Analysis -- Durapatite -- Humans -- Hydroxybutyrates -- Materials Testing -- Microscopy, Electron, Scanning -- Osteoblasts -- Prostheses and Implants -- Rats -- Rats, Wistar -- Surface Properties
Аннотация: Samples of a hybrid composite of polyhydroxybutyrate (PHB), a biodegradable polyester, and hydroxyapatite (HA), with different PHB/HA ratios, have been prepared using mechanical-physical method. Electron microscopy, X-ray structure analysis and differential thermal analysis have been used to investigate the structure and physicochemical properties of the composite, depending on the PHB/HA ratio. The properties of the surface of the HA-loaded composite are significantly different from those of the pure polymer. As the HA percentage in the composite increases, free interface energy, the cohesive force, i.e., the strength of the adhesive bond between the composite surface and the water phase, and surface wettability increase. The HA percentage of the composite does not influence its melting temperature, but affects the temperature for the onset of decomposition: as the HA content increases from 0 to 10% (w/w), Td decreases from 260В°C to 225В°C. The degree of crystallinity of PHB/HA increases from 77% to 89% with an increase in the HA fraction from 10% to 50%. Functional properties of the composites have been investigated in vitro and in vivo. The best parameters of growth and differentiation of murine marrow osteoblasts are registered on PHB/HA samples containing 10% and 20% HA. In ectopic bone formation assay it has been proven that the hybrid PHB/HA composites can function as scaffolds and that bone tissue develops on their surface and in pores. В© VSP 2006.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 60036, Russian Federation
Tomsk State University, Tomsk 634021, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shishatskaya, E.I.; Khlusov, I.A.; Volova, T.G.

Найти похожие
4.


   
    Cultivation of multipotent mesenchymal bone marrow cells on matrixes made of resorbable bioplastotan / E. I. Shishatskaya [и др.] // Cellular Transplantation and Tissue Engineering. - 2013. - Vol. 8, Is. 1. - С. 57-65 . - ISSN 1815-445X
Кл.слова (ненормированные):
Alkaline phosphatase -- Differentiation -- Extracellular calcium precipitates -- Multipotent mesenchymal stromal cells -- Osteopontin -- Resorbable bioplastotan
Аннотация: Series of cell carriers made of resorbable polyester Bioplastotan, which is a copolymer of 3- And 4-hydroxybutyric acid, are characterized in this work. With use of various technologies membranes, 3D scaffolds, and nanomatrixes formed by ultrafine fibers produced with electrostatic spinning were constructed. All types of scaffolds provide adhesion of multipotent mesenchymal stromal cells and are suitable for the cultivation and differentiation of cells in the osteoblastes, that confirmed by detection of extracellular calcium precipitates, alkaline phosphatase activity and osteopontin production in cell culture. В© Human stem cells institute, 2013.

Scopus
Держатели документа:
Siberian Branch, Institute of Biophisycs, RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Siberian Branch, L.V. Kirensky Institute of Physics, RAS, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shishatskaya, E.I.; Nikolaeva, E.D.; Shumilova, A.A.; Shabanov, A.V.; Volova, T.G.

Найти похожие
5.


   
    Biomedical investigations of biodegradable PHAs / E. I. Shishatskaya // Macromolecular Symposia. - 2008. - Vol. 269, Is. 1. - P65-81, DOI 10.1002/masy.200850909 . - ISSN 1022-1360
Кл.слова (ненормированные):
Biodegradable polymers -- Biomedical investigations -- PHA -- ABS resins -- Biodegradable polymers -- Biopolymers -- Biotechnology -- Bone -- Cell culture -- Endothelial cells -- Fibers -- Functional polymers -- Osteoblasts -- Polymers -- Surgery -- Abdominal surgeries -- Biocompatible -- Biodegradable -- Biomedical -- Biomedical investigations -- Bone defects -- Ectopic bones -- Hepatocytes -- In vitro -- Microparticles -- Oral surgeries -- Osteogenesis -- PHA -- Polyhydroxybutyrate -- Polymer devices -- Ralstonia -- Russian academy of sciences -- Two types -- Polymer films
Аннотация: This work is a review of the results of biomedical studies of polymer devices (films, fibers, microparticles, 30 implants) made from resorbable PHAs synthesized by the bacterium Wautersia (Ralstonia) eutropha 65786, using the technology developed at the Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences. Two types of PHAs - polyhydroxybutyrate (PHB) and a hydroxybutyrate/hydroxyvalerate copolymer (PHB/PHV) - have been proven to be biocompatible in vitro in cultures of fibroblasts, endothelial cells, hepatocytes, and osteoblasts, and in short- and long-duration experiments on animals. Polymer films and membranes have been found to be usable as scaffolds for functioning cells and monofilament suture fibers - for stitching muscular-fascial wounds and in abdominal surgery. Ectopic bone formation assay and experiments with the model of segmental osteotomy showed that 30 PHB and PHB/HA implants can be used for reparative osteogenesis. The paper reports beneficial results of using polymers to repair bone defects in oral surgery. Copyright В© 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Svobodnui Av., 69, Krasnoyarsk, 660148, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shishatskaya, E.I.

Найти похожие
6.


   
    Effects of H 2O 2-plasma processing on properties of cellular scaffolds made of В«BioplastotanВ» resorbing polyesters / E. D. Nikolaeva, D. B. Goncharov, E. I. Shishatskaya // Cellular Transplantation and Tissue Engineering. - 2011. - Vol. 6, Is. 2. - С. 65-69 . - ISSN 1815-445X
Кл.слова (ненормированные):
Adhesion -- Bioplastotan -- Cell viability -- H 2O 2-plasma processing -- Resorbing polyesters -- Scaffold
Аннотация: Produced from В«BioplastotanВ» resorbing polyesters (linear polyesters of hydroxyl derivatives alkanoic acids) scaffolds for cell culturing such as films, pressed 3-D forms and nonwoven fabric from ultrathin fibers are characterized. Two types of polymers - a homopolymer of the 3-hydroxybutyric acid and a copolymer formed by monomers of the 3-hydroxybutyric and 3-hydroxyvalerianic acids are studied. Surface properties of developed polymer scaffolds, sterilized with autoclaving and H 2O 2-plasma processing are compared. It is shown that plasma has beneficial effects resulting in decrease of the watering contact angle and increase of surface hydrophilic properties. Positive effects of H 2O 2-plasma processing of scaffold surface on culturing cell adhesion and viability compared with autoclaving sterilization is demonstrated on NIH 3T3 line fibroblast culturing.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Nikolaeva, E.D.; Goncharov, D.B.; Shishatskaya, E.I.

Найти похожие
7.


   
    In vivo study of 2D PHA matrices of different chemical compositions: tissue reactions and biodegradations [Text] / T. G. Volova [et al.] // Mater. Sci. Technol. - 2014. - Vol. 30, Is. 5. - P549-557, DOI 10.1179/1743284713Y.0000000470. - Cited References: 31. - The study was supported by the project initiated by the Government of the Russian Federation (decree no. 220 of 09.04.2010) for governmental support of scientific research conducted under the guidance of leading scientists at Russian institutions of higher learning (agreement no. 11.G34.31.0013) and the Program of Integrated Research of the Presidium of SB RAS (project no. 96). . - ISSN 0267-0836. - ISSN 1743-2847
РУБ Materials Science, Multidisciplinary + Metallurgy & Metallurgical Engineering
Рубрики:
BIOMEDICAL INVESTIGATIONS
   POLYHYDROXYALKANOATES

   VITRO

   BIOCOMPATIBILITY

   DEGRADATION

   SCAFFOLDS

   CONDUITS

   POLYMERS

Кл.слова (ненормированные):
PHA -- Polyhydroxyalkanoates -- Biocompatibility -- Implantation -- Tissue response -- Biodegradation
Аннотация: Matrices based on resorbable polyhydroxyalkanoates (PHAs) of five types {a homopolymer of 3-hydroxybutyric acid, copolymers of 3-hydroxybutyric and 4-hydroxybutyric acids [P(3HB/4HB)], 3-hydroxybutyric and 3-hydroxyvaleric acids [P(3HB/3HV)], 3-hydroxybutyric and 3-hydroxyhexanoic acids [P(3HB/3HHx)]} have been constructed and characterised. No significant differences have been found in tissue response to implantation of these PHAs. Non-coarse fibrous capsules that formed around PHA matrices reached their maximum thickness (60-90 mm) 90 days after implantation; by day 180, the average thickness of the capsules had decreased by 1.5- 2.3 times. The number of foreign body giant cells, resorbing PHAs, remained high. In vivo biodegradation behaviour of polymer matrices is related to the chemical composition of the PHA. Matrices prepared from copolymers P(3HB/4HB) and P(3HB/3HHx) exhibited the fastest degradation rates. P3HB/3HV matrices were degraded more slowly, and P3HB matrices were the most durable. In the PHA matrices that were degraded more slowly, giant cell reaction developed later.

WOS
Держатели документа:
[Volova, T. G.
Shishatskaya, E. I.
Nikolaeva, E. D.] Inst Biophys SB RAS, Krasnoyarsk 660036, Russia
[Volova, T. G.
Shishatskaya, E. I.
Nikolaeva, E. D.] Siberian Fed Univ, Inst Modern Biol & Biotechnol, Krasnoyarsk 660041, Russia
[Sinskey, A. J.] MIT, Dept Biol, Cambridge, MA 02139 USA
[Sinskey, A. J.] MIT, Engn Syst Div, Cambridge, MA 02139 USA
[Sinskey, A. J.] MIT, Hlth Sci Technol Div, Cambridge, MA 02139 USA
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.G.; Shishatskaya, E.I.; Nikolaeva, E.D.; Sinskey, A.J.; Government of the Russian Federation

Найти похожие
8.


   
    Electrospinning of polyhydroxyalkanoate fibrous scaffolds: effects on electrospinning parameters on structure and properties [Text] / T. . Volova [et al.] // J. Biomater. Sci.-Polym. Ed. - 2014. - Vol. 25, Is. 4. - P370-393, DOI 10.1080/09205063.2013.862400. - Cited References: 52. - This study was financially supported by Project 'Biotechnologies of novel biomaterials: innovative biopolymers and devices for biomedicine' (Agreement No. 1 of 15.02.2013 to Agreement No. 11.G34.31.0013) in accordance with Resolution No. 220 of the Government of the Russian Federation of April 9, 2010, 'On measures designed to attract leading scientists to the Russian institutions of higher learning' and Grant of the RF President for supporting young Doctors of Sciences No. MD-3112.2012.4. . - ISSN 0920-5063
РУБ Engineering, Biomedical + Materials Science, Biomaterials + Polymer Science
Рубрики:
TISSUE ENGINEERING APPLICATIONS
   FIBER MATS

   POLY 3-HYDROXYBUTYRATE

   POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE)

   BIOCOMPATIBILITY

   PROLIFERATION

   FABRICATION

   NANOFIBERS

   COPOLYMERS

   MEMBRANES

Кл.слова (ненормированные):
electrospinning -- polyhydroxyalkanoates -- ultrafine fibers -- physical-mechanical properties -- fibroblast cells
Аннотация: In this study, electrospinning was used to prepare ultrafine fibers from PHAs with different chemical compositions: P(3HB) and copolymers: P(3HB-co-4HB), P(3HB-co-3HV), and P(3HB-co-3HHx). The main process parameters that influence ultrafine fiber diameter and properties (polymer concentration, solution feeding rate, working distance, and applied voltage) have been investigated and their effects evaluated. The study revealed electrospinning parameters for the production of high-quality ultrafine fibers and determined which parameters should be varied to tailor the properties of the products. This study is the first to compare biological and physical-mechanical parameters of PHAs with different chemical compositions as dependent upon the fractions of monomers constituting the polymers and ultrafine fiber orientation. Mechanical strength of aligned ultrafine fibers prepared from different PHAs is higher than that of randomly oriented ones; no significant effect of ultrafine fiber orientation on surface properties has been found. None of the fibrous scaffolds produced by electrospinning from PHAs had any adverse effects on attachment, growth, and viability of NIH 3T3 mouse fibroblast cells, and all of them were found to be suitable for tissue engineering applications.

WOS,
Scopus
Держатели документа:
[Volova, Tatiana
Sukovatyi, Aleksey
Nikolaeva, Elena] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
[Goncharov, Dmitriy
Shishatskaya, Ekaterina] Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk 660041, Russia
[Shabanov, Alexander] Russian Acad Sci, LV Kirenskii Inst Phys, Siberian Branch, Krasnoyarsk 660036, Russia
ИБФ СО РАН
ИФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T...; Goncharov, D...; Sukovatyi, A...; Shabanov, A...; Nikolaeva, E...; Shishatskaya, E...; Project 'Biotechnologies of novel biomaterials: innovative biopolymers and devices for biomedicine' [1, 11.G34.31.0013]; Government of the Russian Federation [220]; RF President for supporting young Doctors of Sciences [MD-3112.2012.4]

Найти похожие
9.


   
    Laser processing of polymer constructs from poly(3-hydroxybutyrate) / T. G. Volova [et al.] // J. Biomater. Sci. Polym. Ed. - 2015. - Vol. 26, Is. 16. - P1210-1228, DOI 10.1080/09205063.2015.1082810 . - ISSN 0920-5063
Кл.слова (ненормированные):
biocompatibility -- biopolymers -- laser processing -- poly(3-hydroxybutyrate) -- polymer materials -- Biocompatibility -- Biomechanics -- Biopolymers -- Bone -- Cell culture -- Pulsed lasers -- Scaffolds (biology) -- Stem cells -- 3t3 mouse fibroblasts -- Bone marrow -- Bone regeneration -- Laser process -- Mesenchymal stem cell -- Poly-3-hydroxybutyrate -- Polymer materials -- Pulsed mode -- Laser materials processing
Аннотация: CO2 laser radiation was used to process poly(3-hydroxybutyrate) constructs - films and 3D pressed plates. Laser processing increased the biocompatibility of unperforated films treated with moderate uniform radiation, as estimated by the number and degree of adhesion of NIH 3T3 mouse fibroblast cells. The biocompatibility of perforated films modified in the pulsed mode did not change significantly. At the same time, pulsed laser processing of the 3D plates produced perforated scaffolds with improved mechanical properties and high biocompatibility with bone marrow-derived multipotent, mesenchymal stem cells, which show great promise for bone regeneration. © 2015 Taylor & Francis.

Scopus,
WOS
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Avenue, Krasnoyarsk, Russian Federation
School of Engineering Physics and Radio Electronics, Siberian Federal University, 79 Svobodnyi Avenue, Krasnoyarsk, Russian Federation
Special Design and Technological Bureau, Nauka Krasnoyarsk Scientific Centre of Siberian Branch, Russian Academy of Sciences, 53 Mir Avenue, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T. G.; Tarasevich, A. A.; Golubev, A. I.; Boyandin, A. N.; Shumilova, A. A.; Nikolaeva, E. D.; Shishatskaya, E. I.

Найти похожие
10.


   
    Electrospinning of degradable phas: Process, properties, applications / T. G. Volova [et al.] // : Nova Science Publishers, Inc., 2017. - P1-56
Кл.слова (ненормированные):
Biological and physical/mechanical properties -- Cell proliferation -- Electrospinning -- Nonwoven membranes -- Pha -- Scaffolds -- Skin regeneration -- Ultrafine fibers -- Wound dressings
Аннотация: An integrated study has been performed to investigate the process of formation of ultrafine fibers and nonwoven membranes by electrospinning from natural degradable polymers-polyhydroxyalkanoates (PHAs); physical, mechanical, and biological properties of the products have been studied. Then, electrospinning was used to prepare ultrafine fibers from PHAs with different compositions: P(3HB) and its copolymers P(3HB-co-4HB), P(3HB-co-3HV), and P(3HB-co-3HHx). The main process parameters, that influence UF-fiber diameter and properties of fibrous non-woven membranes) (polymer concentration, solution feeding rate, working distance, and applied voltage), were investigated and their effects evaluated. This study was the first to compare biological and physical/mechanical parameters of PHAs with different chemical compositions as dependent upon the fractions of monomers, constituting the polymers and fiber orientation. Electrospun polymer membranes, prepared from the [P(3HB-co-4HB)], were tested as wound dressings. The developed nonwoven membranes can be used as the equivalent of collagen skine dressings in the treatment of burns of degree II. Experiments on laboratory animals with model skin defects showed, that the membranes fitted the wound shape good, protected the wound from external influences, and facilitated wound healing, promoting fast repair. The successful experiments on laboratory animals were followed by pilot clinical trials of nanomembranes, comprised of PHA membranes as wound dressings in the treatment of septic wounds. During the regeneration phase, PHA membranes served as a scaffold for the new tissue on the skin and filled out soft tissue defects. The formation of the uniform and sufficiently vascularized tissue is a prerequisite for quicker wound healing and can serve as a basis for the subsequent skin grafting and spontaneous re-epithelialization of superficial wounds. The wound dressing, tested in this clinical trial, performs important physiological functions of natural skin, provides a barrier against secondary infection, reduces fluid loss, and, at the same time, does not keep the air out. © 2017 Nova Science Publishers, Inc.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T. G.; Goncharov, D. B.; Nikolaeva, E. D.; Shishatskaya, E. I.

Найти похожие
11.


   
    Biotechnological wound dressings based on bacterial cellulose and degradable copolymer P(3HB/4HB) / T. G. Volova [et al.] // Int. J. Biol. Macromol. - 2019. - Vol. 131. - P230-240, DOI 10.1016/j.ijbiomac.2019.03.068. - Cited By :1 . - ISSN 0141-8130
Кл.слова (ненормированные):
Bacterial cellulose -- Composites -- Polyhydroxyalkanoates -- 3 hydroxybutyric acid 4 hydroxybutyric acid copolymer -- actovegin -- bacterial cellulose -- cellulose -- collagen type 1 -- copolymer -- cytokeratin 10 -- cytokeratin 14 -- solcoseryl -- unclassified drug -- angiogenesis -- animal cell -- animal experiment -- animal model -- animal tissue -- biochemical analysis -- biocompatibility -- burn -- cell growth -- controlled study -- cutaneous parameters -- differential scanning calorimetry -- drug release -- elemental analysis -- female -- fibroblast -- histopathology -- in vitro study -- in vivo study -- inflammation -- mechanics -- nonhuman -- rat -- Review -- wound healing -- wound planimetry -- X ray analysis
Аннотация: Hybrid wound dressings have been constructed using two biomaterials: bacterial cellulose (BC) and copolymer of 3-hydroxybutyric and 4-hydroxybutyric acids [P(3HB/4HB)] – a biodegradable polymer of microbial origin. Some of the experimental membranes were loaded with drugs promoting wound healing and epidermal cells differentiated from multipotent adipose-derived mesenchymal stem cells. A study has been carried out to investigate the structure and physical/mechanical properties of the membranes. The in vitro study showed that the most effective scaffolds for growing fibroblasts were composite BC/P(3HB/4HB) films loaded with actovegin. Two types of the experimental biotechnological wound dressings – BC/P(3HB/4HB)/actovegin and BC/P(3HB/4HB)/fibroblasts – were tested in vivo, on laboratory animals with model third-degree skin burns. Wound planimetry, histological examination, and biochemical and molecular methods of detecting factors of angiogenesis, inflammation, type I collagen, and keratin 10 and 14 were used to monitor wound healing. Experimental wound dressings promoted healing more effectively than VoskoPran – a commercial wound dressing. © 2019

Scopus,
Смотреть статью,
WOS
Держатели документа:
Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizan Zheleznyak Street, Krasnoyarsk, 660022, Russian Federation

Доп.точки доступа:
Volova, T. G.; Shumilova, A. A.; Nikolaeva, E. D.; Kirichenko, A. K.; Shishatskaya, E. I.

Найти похожие
12.


   
    Polymer Films of Poly-3-hydroxybutyrate Synthesized byCupriavidus necatorfrom Different Carbon Sources / E. Shishatskaya, I. Nemtsev, A. Lukyanenko [et al.] // J. Polym. Environ. - 2020, DOI 10.1007/s10924-020-01924-3. - Cited References:54. - The reported study was funded by RFBR and KKRF Grant No. 19-43-240012 "Biological and physical principles of production of new generation biomaterials". The work was carried out as part of the State Assignment of the Ministry of Education and Science of the Russian Federation No. FSRZ-2020-0006. The authors would like to express their special thanks to Krasnoyarsk Regional Center of Research Equipment of Federal Research Center "Krasnoyarsk Science Center SB RAS" for providing equipment to ensure the accomplishment of this project. . - Article in press. - ISSN 1566-2543. - ISSN 1572-8919
РУБ Engineering, Environmental + Polymer Science
Рубрики:
CHEMOMECHANICAL PROPERTIES
   RALSTONIA-EUTROPHA

   SURFACE-ROUGHNESS

Кл.слова (ненормированные):
Degradable P(3HB) -- Various carbon substrates -- Films -- Structure -- Properties
Аннотация: Films were prepared from 2% solutions of biodegradable poly-3-hydroxybutyrate [P(3HB)] and investigated. The polymer was synthesized by theCupriavidus necatorB-10646 bacterium cultivated using various carbon sources (glucose and glycerol of different degrees of purity, containing 0.3 to 17.93% impurities). Glycerol as the substrate influenced molecular-weight properties and crystallinity of the polymer without affecting its temperature characteristics. The P(3HB) specimens synthesized from glycerol had reduced M-w(300-400 kDa) and degree of crystallinity (50-55%) compared to the specimens synthesized from glucose (860 kDa and 76%, respectively). The low-crystallinity P(3HB) specimens, regardless of the degree of purity of glycerol, produced a beneficial effect on the properties of polymer films, which had a better developed folded surface and increased hydrophilicity. The values of the highest roughness (R-a) of the films synthesized from glycerol were 1.8 to 4.0 times lower and the water angles 1.4-1.6 times smaller compared to the films synthesized from glucose (71.75 nm and 87.4 degrees, respectively). Those films performed better as cell scaffolds: the number of viable NIH fibroblasts was 1.7-1.9 times higher than on polystyrene (control) or films of P(3HB) synthesized from glucose.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodnyi Av, Krasnoyarsk 660041, Russia.
RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, Inst Biophys, Krasnoyarsk, Russia.
RAS, Krasnoyarsk Sci Ctr SB, Fed Res Ctr, LV Kirenskii Inst Phys, Krasnoyarsk, Russia.

Доп.точки доступа:
Shishatskaya, Ekaterina; Nemtsev, Ivan; Lukyanenko, Anna; Vasiliev, Alexander; Kiselev, Evgeniy; Sukovatyi, Aleksey; Volova, Tatiana; RFBRRussian Foundation for Basic Research (RFBR); KKRF [19-43-240012]; Ministry of Education and Science of the Russian FederationMinistry of Education and Science, Russian Federation [FSRZ-2020-0006]

Найти похожие
13.


   
    Production of porous films based on biodegradable polyesters by the casting solution technique using a co-soluble porogen (Camphor) / A. N. Boyandin, L. M. Dvoinina, A. G. Sukovatyi, A. A. Sukhanova // Polym. - 2020. - Vol. 12, Is. 9. - Ст. 1950. - P1-12, DOI 10.3390/polym12091950 . - ISSN 2073-4360
Кл.слова (ненормированные):
Biopolymers -- Camphor -- Co-soluble porogen -- Polycaprolactone -- Polyesters -- Polyhydroxybutyrate -- Porosity -- Biocompatibility -- Biodegradable polymers -- Biomechanics -- Camphor -- Cell adhesion -- Cell culture -- Cell engineering -- Cells -- Porosity -- Scaffolds (biology) -- 3t3 mouse fibroblasts -- Biocompatibility testing -- Biodegradable polyesters -- Biological properties -- Cellular engineering -- Intermediate structures -- Poly3-hydroxybutyrate (PHB) -- Water vapor transmission rate -- Polymer films
Аннотация: Porous films have been prepared from degradable polymers—poly-3-hydroxybutyrate (PHB), poly-?-caprolactone (PCL) and a blend of these polymers (1:3)—by adding porogen (camphor) to the polymer solution at 10%, 30% or 50% of the total mass of the polymer and porogen, and leaching it out afterwards. After the rinse, camphor content in films decreased to about 0.025%. The structure, physical/mechanical and biological properties of the films were investigated as dependent on their composition and porosity, which varied depending on the amount of camphor added. The surface of PHB films was porous, the PCL films were relatively smooth, and the PHB/PCL films had an intermediate structure. The addition of camphor increased the thickness (from 35 to 45 µm, from 40 to 80 µm and from 20 to 65 µm for PHB, PCL and PHB/PCL, respectively) and porosity (from 4.2(±3.6)% to 50.0(±12.8)%, from 6.4(±5.5)% to 54.5(±6.0)% and from 4.9(±4.8)% to 51.5(±5.8)%, respectively) of the films. The introduction (and removal) of 10% camphor into the PHB and PHB/PCL films led to an approximately twofold increase in the polar component of the free surface energy (from 5.4 ± 0.38 to 11.8 ± 1.33 and from 2.7 ± 0.13 to 5.2 ± 0.09 mN/m, respectively) but in other cases, on the contrary, a decrease in this indicator was registered. The increase of camphor addition from 0% to 50% gradually impaired mechanical properties of the films: so, Young’s modulus decreased from 3.6 to 1.8 GPa, from 0.30 to 0.12 GPa and from 0.50 to 0.20 GPa for PHB, PCL and PHB/PCL, respectively. At the same time, the water vapor transmission rate considerably increased from 197.37 ± 23.62 to 934.03 ± 114.34 g/m2 /d for PHB films; from 1027.99 ± 154.10 to 7014.62 ± 280.81 g/m2 /d for PCL films; and from 715.47 ± 50.08 to 4239.09 ± 275.54 g/m2 /d for PHB/PCL films. Results of biocompatibility testing in the culture of NIH 3T3 mouse fibroblast cells showed that for the most of experimental samples cell adhesion and proliferation were comparable or superior to the corresponding parameters on the initial nonporous films. The best results were obtained for PHB films where at Day 3 of the experiment the registered cell density for experimental samples arrived at 2.66(±0.26) ? 105 cells/cm2 versus 1.29(±0.33) ? 105 cells/cm2 in the control. So, the proposed method can be used to construct highly porous cell scaffolds for cellular engineering. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus
Держатели документа:
Reshetnev Siberian State University of Science & Technology, 31 Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk, 660041, Russian Federation

Доп.точки доступа:
Boyandin, A. N.; Dvoinina, L. M.; Sukovatyi, A. G.; Sukhanova, A. A.

Найти похожие
14.


   
    Production of Porous Films Based on Biodegradable Polyesters by the Casting Solution Technique Using a Co-Soluble Porogen (Camphor) / A. N. Boyandin, L. M. Dvoinina, A. G. Sukovatyi, A. A. Sukhanova // Polymers. - 2020. - Vol. 12, Is. 9. - Ст. 1950, DOI 10.3390/polym12091950. - Cited References:42. - This work was carried out by the team of the scientific laboratory "Smart Materials and Structures" within the state assignment of the Ministry of Science and Higher Education of the Russian Federation for the implementation of the project "Development of multifunctional smart materials and structures based on modified polymer composite materials capable to function in extreme conditions" (Project No. FEFE-2020-0015). . - ISSN 2073-4360
РУБ Polymer Science
Рубрики:
TISSUE ENGINEERING APPLICATIONS
   SCAFFOLDS

   FABRICATION

   POLYMERS

Кл.слова (ненормированные):
polyhydroxybutyrate -- polycaprolactone -- biopolymers -- polyesters -- porosity -- co-soluble porogen -- camphor
Аннотация: Porous films have been prepared from degradable polymers-poly-3-hydroxybutyrate (PHB), poly-epsilon-caprolactone (PCL) and a blend of these polymers (1:3)-by adding porogen (camphor) to the polymer solution at 10%, 30% or 50% of the total mass of the polymer and porogen, and leaching it out afterwards. After the rinse, camphor content in films decreased to about 0.025%. The structure, physical/mechanical and biological properties of the films were investigated as dependent on their composition and porosity, which varied depending on the amount of camphor added. The surface of PHB films was porous, the PCL films were relatively smooth, and the PHB/PCL films had an intermediate structure. The addition of camphor increased the thickness (from 35 to 45 mu m, from 40 to 80 mu m and from 20 to 65 mu m for PHB, PCL and PHB/PCL, respectively) and porosity (from 4.2(+/- 3.6)% to 50.0(+/- 12.8)%, from 6.4(+/- 5.5)% to 54.5(+/- 6.0)% and from 4.9(+/- 4.8)% to 51.5(+/- 5.8)%, respectively) of the films. The introduction (and removal) of 10% camphor into the PHB and PHB/PCL films led to an approximately twofold increase in the polar component of the free surface energy (from 5.4 +/- 0.38 to 11.8 +/- 1.33 and from 2.7 +/- 0.13 to 5.2 +/- 0.09 mN/m, respectively) but in other cases, on the contrary, a decrease in this indicator was registered. The increase of camphor addition from 0% to 50% gradually impaired mechanical properties of the films: so, Young's modulus decreased from 3.6 to 1.8 GPa, from 0.30 to 0.12 GPa and from 0.50 to 0.20 GPa for PHB, PCL and PHB/PCL, respectively. At the same time, the water vapor transmission rate considerably increased from 197.37 +/- 23.62 to 934.03 +/- 114.34 g/m(2)/d for PHB films; from 1027.99 +/- 154.10 to 7014.62 +/- 280.81 g/m(2)/d for PCL films; and from 715.47 +/- 50.08 to 4239.09 +/- 275.54 g/m(2)/d for PHB/PCL films. Results of biocompatibility testing in the culture of NIH 3T3 mouse fibroblast cells showed that for the most of experimental samples cell adhesion and proliferation were comparable or superior to the corresponding parameters on the initial nonporous films. The best results were obtained for PHB films where at Day 3 of the experiment the registered cell density for experimental samples arrived at 2.66(+/- 0.26) x 10(5) cells/cm(2) versus 1.29(+/- 0.33) x 10(5) cells/cm(2) in the control. So, the proposed method can be used to construct highly porous cell scaffolds for cellular engineering.

WOS
Держатели документа:
Reshetnev Siberian State Univ Sci & Technol, 31 Krasnoyarsky Rabochy Av, Krasnoyarsk 660037, Russia.
Russian Acad Sci, Fed Res Ctr, Inst Biophys, Siberian Branch,Krasnoyarsk Sci Ctr SB RAS, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, 79 Svobodnyi Av, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Boyandin, Anatoly Nikolayevich; Dvoinina, Ljublyana Mikhailovna; Sukovatyi, Aleksey Grigorievich; Sukhanova, Anna Alekseevna; A., Aleksey; Boyandin, Anatoly; Ministry of Science and Higher Education of the Russian Federation [FEFE-2020-0015]

Найти похожие
15.


   
    Polymer Films of Poly-3-hydroxybutyrate Synthesized by Cupriavidus necator from Different Carbon Sources / E. Shishatskaya, I. Nemtsev, A. Lukyanenko [et al.] // J. Polym. Environ. - 2021. - Vol. 29, Is. 3. - P837-850, DOI 10.1007/s10924-020-01924-3 . - ISSN 1566-2543
Кл.слова (ненормированные):
Degradable P(3HB) -- Films -- NIH 3T3 fibroblasts -- Properties -- Structure -- Various carbon substrates -- Carbon -- Carbon films -- Cell culture -- Chlorine containing polymers -- Crystallinity -- Glucose -- Glycerol -- Scaffolds (biology) -- Semiconducting films -- Beneficial effects -- Cell scaffold -- Degree of crystallinity -- Different carbon sources -- Low crystallinity -- Poly-3-hydroxybutyrate -- Temperature characteristic -- Weight Properties -- Polymer films -- Bacteria (microorganisms) -- bacterium B -- Cupriavidus necator
Аннотация: Films were prepared from 2% solutions of biodegradable poly-3-hydroxybutyrate [P(3HB)] and investigated. The polymer was synthesized by the Cupriavidus necator B-10646 bacterium cultivated using various carbon sources (glucose and glycerol of different degrees of purity, containing 0.3 to 17.93% impurities). Glycerol as the substrate influenced molecular-weight properties and crystallinity of the polymer without affecting its temperature characteristics. The P(3HB) specimens synthesized from glycerol had reduced Mw (300–400 kDa) and degree of crystallinity (50–55%) compared to the specimens synthesized from glucose (860 kDa and 76%, respectively). The low-crystallinity P(3HB) specimens, regardless of the degree of purity of glycerol, produced a beneficial effect on the properties of polymer films, which had a better developed folded surface and increased hydrophilicity. The values of the highest roughness (Ra) of the films synthesized from glycerol were 1.8 to 4.0 times lower and the water angles 1.4–1.6 times smaller compared to the films synthesized from glucose (71.75 nm and 87.4°, respectively). Those films performed better as cell scaffolds: the number of viable NIH fibroblasts was 1.7–1.9 times higher than on polystyrene (control) or films of P(3HB) synthesized from glucose. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.

Scopus
Держатели документа:
Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
L.V. Kirenskii Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Shishatskaya, E.; Nemtsev, I.; Lukyanenko, A.; Vasiliev, A.; Kiselev, E.; Sukovatyi, A.; Volova, T.

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)