Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий библиотеки Института биофизики СО РАН (3)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=Understanding<.>)
Общее количество найденных документов : 33
Показаны документы с 1 по 20
 1-20    21-33 
1.


   
    Challenges and opportunities for integrating lake ecosystem modelling approaches / W. M. Mooij [et al.] // Aquatic Ecology. - 2010. - Vol. 44, Is. 3. - P633-667, DOI 10.1007/s10452-010-9339-3 . - ISSN 1386-2588
Кл.слова (ненормированные):
Adaptive processes -- Analysis -- Aquatic -- Bifurcation -- Biodiversity -- Climate warming -- Community -- Eutrophication -- Fisheries -- Food web dynamics -- Freshwater -- Global change -- Hydrology -- Lake -- Management -- Marine -- Mitigation -- Model integration -- Model limitations -- Non-linear dynamics -- Nutrients -- Plankton -- Population -- Prediction -- Spatial -- Understanding -- adaptive management -- algorithm -- aquatic community -- biodiversity -- ecosystem modeling -- eutrophication -- fishery production -- food web -- fuzzy mathematics -- global warming -- hydrology -- lake ecosystem -- mitigation -- model test -- numerical model -- nutrient availability -- plankton -- prediction -- saline lake -- spatial analysis
Аннотация: A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and trait-based models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models. В© 2010 The Author(s).

Scopus
Держатели документа:
Netherlands Institute of Ecology (NIOO-KNAW), Department of Aquatic Ecology, Rijksstraatweg 6, 3631 AC Nieuwersluis, Netherlands
Aarhus University, National Environmental Research Institute, Department of Freshwater Ecology, 8600 Silkeborg, Denmark
Greenland Climate Research Centre (GCRC), Greenland Institute of Natural Resources, Kivioq 2, P.O. Box 570, 3900 Nuuk, Greenland
University of Toronto, Department of Physical and Environmental Sciences, Toronto, ON M1C 1A4, Canada
Institute of Computational Modelling (SB-RAS), Siberian Federal University, 660036 Krasnoyarsk, Russian Federation
Tanzania Fisheries Research Institute (TAFIRI), Mwanza Centre, P.O. Box 475, Mwanza, Tanzania
Institute of Biophysics (SB-RAS), Akademgorodok, 660036 Krasnoyarsk, Russian Federation
University of Miami, Florida Integrated Science Centre, USGS, Coral Gables, FL 33124, United States
Wageningen University, Department of Aquatic Ecology and Water Quality, P.O. Box 47, 6700 AA Wageningen, Netherlands
Centre for Ecology and Hydrology, Lancaster Environment Centre, Lake Ecosystem Group, Algal Modelling Unit, Bailrigg, Lancaster LA1 4AP England, United Kingdom
Federal University of Alagoas, Centre for Technology, Campus A.C. Simoes, 57072-970 Maceio-AL, Brazil
Institute of Biochemistry and Biology, Department of Ecology and Ecosystem Modelling, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, P.O. Box 7050, 75007 Uppsala, Sweden
University of Waikato, Centre for Biodiversity and Ecology Research, Private Bag 3105, Hamilton, New Zealand
University of Western Australia, School of Earth and Environment, Crawley, WA 6009, Australia
Technische Universitat Dresden, Institute of Hydrobiology, 01062 Dresden, Germany
Technische Universitat Dresden, Neunzehnhain Ecological Station, Neunzehnhainer Str. 14, 09514 Lengefeld, Germany
Deltares, P.O. Box 177, 2600 MH Delft, Netherlands
Technion-Israel Institute of Technology, Faculty of Civil and Environmental Engineering, Technicon City, Haifa 32000, Israel
Helmholtz Centre for Environmental Research, Department of Lake Research, Brueckstrasse 3a, 39114 Magdeburg, Germany
Witteveen and Bos, P.O. Box 233, 7400 AV Deventer, Netherlands
University of Oslo, Department of Biology, P.O. Box 1066, Blindern, 0316 Oslo, Norway
UNESCO-IHE Institute of Water Education, 2601 DA Delft, Netherlands
Portland State University, Department of Civil and Environmental Engineering, Portland, OR 97207, United States
Netherlands Environmental Assessment Agency (PBL), P.O. Box 303, 3720 AH Bilthoven, Netherlands : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Mooij, W.M.; Trolle, D.; Jeppesen, E.; Arhonditsis, G.; Belolipetsky, P.V.; Chitamwebwa, D.B.R.; Degermendzhy, A.G.; DeAngelis, D.L.; De Senerpont Domis, L.N.; Downing, A.S.; Elliott, J.A.; Fragoso Jr., C.R.; Gaedke, U.; Genova, S.N.; Gulati, R.D.; Hakanson, L.; Hamilton, D.P.; Hipsey, M.R.; 't Hoen, J.; Hulsmann, S.; Los, F.H.; Makler-Pick, V.; Petzoldt, T.; Prokopkin, I.G.; Rinke, K.; Schep, S.A.; Tominaga, K.; van Dam, A.A.; van Nes, E.H.; Wells, S.A.; Janse, J.H.

Найти похожие
2.


   
    Understanding the mechanisms of blooming of phytoplankton in Lake Shira, a saline lake in Siberia (the Republic of Khakasia) / A. G. Degermendzhy, R. D. Gulati // Aquatic Ecology. - 2002. - Vol. 36, Is. 2. - P331-340 . - ISSN 1386-2588
Кл.слова (ненормированные):
Carbon budget -- Cyanobacteria -- Heterotrophic bacteria -- Hydrogen sulphide -- Mathematical models of stratification -- Meromictic lakes -- Microbial loop -- Stratification -- Trophic scheme -- algal bloom -- ecosystem modeling -- limiting factor -- nutrient availability -- phytoplankton -- saline lake -- trophic interaction -- Russian Federation -- algae -- Bacteria (microorganisms) -- Cyanobacteria -- Lyngbya -- Lyngbya contorta
Аннотация: The paper summarises the results of a three-year research study (European Union Grant: INTAS 97-0519) aimed at investigating the planktonic populations and trophic organization of the Lake Shira ecosystem - a saline lake in Khakasia, Siberia. The lake exhibits a stable summer-autumn stratification of the chemical-biological components. The mechanisms responsible for the 'blooming' of phytoplankton in the deeper layers were investigated in greater detail, using data from both field and laboratory experiments. The spectra of nutrition were examined to estimate the relationships between the specific growth rates of the hydrobionts and the influence of the limiting factors: light, nutrients. The observed heterotrophic capability of a metalimnetic phytoplankton population might help explain the development in the deeper waters of Lyngbya contorta. The scheme of trophic interactions was put up, based on the assessment of the carbon pools and carbon flows in the pelagic zone of the lake. A mathematical model of the vertical structure of the lake's plankton populations was constructed, using the ecosystem description and data of vertical turbulent diffusion. The role of light and nutrient limitations and grazing mortality in forming the vertical inhomogeneities, particularly in lowering the depth of the maximal cyanobacterial biomass, has been demonstrated. The theoretical curves for the stratification of chemical and biological parameters have been brought in conformity with the field observations, e.g. for the different patterns of the peaks, and for the biomass maxima of cyanobacteria, purple and green sulphur bacteria, oxygen, and hydrogen sulphide. The calculations revealed that for an adequate assessment of the parameters for the hydrogen sulphide zone it is necessary to introduce flows of allochthonous organic matter. Based on the form of the sulphur distribution curve, the allochthonous input of organic matter and the inflow of hydrogen sulphide from the bottom have been theoretically discriminated for the first time. It has also been ascertained that irrespective of the depth the allochthonous substances limiting bacterial growth, the bacteria are uniformly distributed over depth and can serve as an indicator of the presence of limitation (the effect of autostabilisation in space). Of indisputable interest to limnology are the specific methods developed for understanding the functioning of Lake Shira ecosystem. These include the autostabilisation of the limiting factors, the on-the-spot fluorescent method of determining the three classes of microalgae, the algal mixotrophy and the planktonic population interactions and feedbacks, and development of a more sensitive, bioluminescent method for mapping the nonhomogeneities. Owing to a balanced combination of classical approaches (field observations, in situ data on production-decomposition) and the more recent ones (satellite monitoring, biophysical methods of estimating interactions of populations, mathematical models based on the field and experimental data), many of the structural-function relationships in the ecosystem can now be explained, and the models can provide 'mutual control and mutual agreement' between the data collected using different approaches.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Degermendzhy, A.G.; Gulati, R.D.

Найти похожие
3.


   
    Fatty acid analyses reveal high degrees of omnivory and dietary plasticity in pond-dwelling tadpoles / M. R. Whiles [et al.] // Freshwater Biology. - 2010. - Vol. 55, Is. 7. - P1533-1547, DOI 10.1111/j.1365-2427.2009.02364.x . - ISSN 0046-5070
Кл.слова (ненормированные):
Anura -- Diet -- Food web -- Foraging -- Gut contents -- Omnivory -- Selective feeding -- Amphibia -- Anura -- Bacteria (microorganisms) -- Hexapoda -- Lithobates -- Pseudacris crucifer
Аннотация: 1. Understanding the trophic relationships of consumers is central to ecology, but constructing meaningful food webs is often difficult because of a lack of detailed information on consumption versus assimilation and high degrees of omnivory.2. We used fatty acid analyses to examine the trophic relationships of three common larval anurans (Pseudacris crucifer, Lithobates catesbeianus and Lithobates clamitans) that are often classified as grazers or detritivores. Tadpoles and potential food sources were sampled in four ponds in southern Illinois and analysed for fatty acid composition. Single linkage cluster analysis was then used to compare fatty acid profiles among tadpole gut contents, tadpole muscle tissues and available food resources.3. Diets varied among species and within species among ponds, but organic sediments consistently contributed most to the fatty acid composition of the gut contents of all species. Fatty acid profiles also indicated that larval insects and phytoplankton were consumed by both L. catesbeianus and L. clamitans in one pond, while L. clamitans and P. crucifer consumed mainly periphyton along with sediments in another pond, and these diet differences appeared linked to physical differences among ponds, with periphyton and/or phytoplankton contributing more to tadpole diets in less shaded ponds.4. The fatty acid composition of muscle tissues of L. clamitans, the dominant tadpole in these systems, indicated that plant detritus and bacteria, which were the dominant components of organic sediments in the ponds, were common components of the assimilatory diet.5. Results demonstrate the utility of fatty acid analyses for assessing both consumption and assimilation. The tadpole assemblages we examined derive much of their energy from heterotrophic and allochthonous sources and exhibit high dietary plasticity. This information will allow for more accurate and comprehensive assessments of trophic interactions in freshwater habitats, as well as aid in amphibian conservation, management and captive propagation efforts. В© 2009 Blackwell Publishing Ltd.

Scopus
Держатели документа:
Department of Zoology, Center for Ecology, Illinois Fisheries and Aquaculture Center, Southern Illinois University, Carbondale, IL, United States
Institute of Biophysics of Siberian Branch of the Russian Academy of Science, Akademgorodok, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodny av. 79, Krasnoyarsk, Russian Federation
Department of Biology, Clarion University of Pennsylvania, Clarion, PA, United States : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Whiles, M.R.; Gladyshev, M.I.; Sushchik, N.N.; Makhutova, O.N.; Kalachova, G.S.; Peterson, S.D.; Regester, K.J.

Найти похожие
4.


   
    A study of forest vegetation dynamics in the south of the Krasnoyarskii Krai in spring / M. Chernetskiy [et al.] // Advances in Space Research. - 2011. - Vol. 48, Is. 5. - P819-825, DOI 10.1016/j.asr.2011.04.032 . - ISSN 0273-1177
Кл.слова (ненормированные):
EVI -- Forestry -- MODIS -- NDVI -- Remote sensing -- Vegetation phenology -- Accurate measurement -- Annual time series -- Carbon exchange -- Data series -- Dynamic state -- Enhanced vegetation index -- EVI -- Forest vegetation -- Global scale -- Growth dynamics -- Interannual variability -- Moderate resolution imaging spectroradiometer -- MODIS -- NDVI -- Normalized difference vegetation index -- Principal components analysis -- Remote sensing applications -- Remote sensing data -- Satellite data -- Spatial structure -- Spring season -- Terrestrial ecosystems -- Vegetation dynamics -- Vegetation phenology -- Biology -- Climate models -- Dynamics -- Ecosystems -- Estimation -- Forestry -- Monitoring -- Principal component analysis -- Radiometers -- Remote sensing -- Satellite imagery -- Timber -- Time series -- User interfaces -- Vegetation -- Carbon -- Ecosystems -- Forests -- Image Analysis -- Plants -- Remote Sensing -- Time Series Analysis
Аннотация: Remote sensing applications have greatly enhanced ability to monitor and manage in the areas of forestry. Accurate measurements of regional and global scale vegetation dynamics (phenology) are required to improve models and understanding of inter-annual variability in terrestrial ecosystem carbon exchange and climate-biosphere interactions. Study of vegetation phenology is required for understanding of variability in ecosystem. In this paper, monitoring of vegetation dynamics using time series of satellite data is presented. Vegetation variability (vegetation rate) in different topoclimatic areas is investigated. Original software using IDL interactive language for processing of satellite long-term data series was developed. To investigate growth dynamics vegetation rate inferred from remote sensing was used. All estimations based on annual time series of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Vegetation rate for Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) was calculated using MODIS data. The time series covers spring seasons of each of 9 years, from 2000 to 2008. Comparison of EVI and NDVI derived growth rates has shown that NDVI derived rates reveal spatial structure better. Using long-term data of vegetation rates variance was estimated that helps to reveal areas with anomalous growth rate. Such estimation shows sensitivity degree of different areas to different topoclimatic conditions. Woods of heights depend on spatial topoclimatic variability unlike woods of lowlands. Principal components analysis shows vegetation with different rate conditions. Also it reveals vegetation of same type in areas with different conditions. It was demonstrated that using of methods for estimating the dynamic state of vegetation based on remote sensing data enables successful monitoring of vegetation phenology. В© 2011 COSPAR. Published by Elsevier Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics of SB RAS, Akademgorodok 50/50, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Chernetskiy, M.; Pasko, I.; Shevyrnogov, A.; Slyusar, N.; Khodyayev, A.

Найти похожие
5.


   
    Recycling efficiencies of C,H,O,N,S, and P elements in a biological life support system based on micro-organisms and higher plants / J. B. Gros [et al.] // Advances in Space Research. - 2003. - Vol. 31, Is. 1. - P195-199, DOI 10.1016/S0273-1177(02)00739-1 . - ISSN 0273-1177
Кл.слова (ненормированные):
Biomass -- Biosynthesis -- Chemical elements -- Earth atmosphere -- Ecosystems -- Life support systems (spacecraft) -- Manned space flight -- Microorganisms -- Plants (botany) -- Wastes -- Compartments -- Space research -- carbon -- carbon dioxide -- hydrogen -- nitrogen -- oxygen -- phosphorus -- sulfur -- space technology -- article -- biological model -- biomass -- chemistry -- comparative study -- computer simulation -- growth, development and aging -- metabolism -- methodology -- microbiology -- microclimate -- plant -- waste management -- Biomass -- Carbon -- Carbon Dioxide -- Computer Simulation -- Ecological Systems, Closed -- Environmental Microbiology -- Hydrogen -- Life Support Systems -- Models, Biological -- Nitrogen -- Oxygen -- Phosphorus -- Plants, Edible -- Sulfur -- Waste Management
Аннотация: MELiSSA is a microorganism based artificial ecosystem conceived as a tool for understanding the behavior of ecosystems and developing the technology for future Manned Space Missions. MELiSSA is composed of four compartments colonized by the microorganisms required by the function of this ecosystem : breakdown of waste produced by men, regeneration of atmosphere and biosynthesis of edible biomass. This paper reports the mass balance description of a Biological Life Support System composed of the MELiSSA loop and of a Higher Plant Compartment working in parallel with the photosynthetic Spirulina compartment producing edible biomass. The recycling efficiencies of the system are determined and compared for various working conditions of the MELiSSA loop with or without the HPC. В© 2002 Published by Elsevier Science Ltd on behalf of COSPAR.

Scopus
Держатели документа:
Lab. de Genie Chimique/Biochimique, Universite B. Pascal, Aubiere cedex 63177, France
ESA/Estec, YVC, P.O. Box 299, Noordwijk, AG 2200, Netherlands
Institute of Biophysics, Siberian branchs RAS, Academgorodok, Krasnoyarsk 630036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gros, J.B.; Poughon, L.; Lasseur, C.; Tikhomirov, A.A.

Найти похожие
6.


   
    System analysis of links interactions and development of ecosystems of different types / N. S. Pechurkin, I. M. Shirobokova // Advances in Space Research. - 2003. - Vol. 31, Is. 7. - P1667-1674, DOI 10.1016/S0273-1177(03)80013-3 . - ISSN 0273-1177
Кл.слова (ненормированные):
Free energy -- Heuristic methods -- Hierarchical systems -- Mathematical models -- Photosynthesis -- Systems analysis -- Biological interactions -- Ecosystems -- anthropogenic effect -- ecosystem function -- systems analysis -- article -- biological model -- biomass -- ecology -- ecosystem -- energy transfer -- environmental protection -- food chain -- methodology -- microclimate -- plankton -- population dynamics -- statistics -- Biomass -- Conservation of Natural Resources -- Ecological Systems, Closed -- Ecology -- Ecosystem -- Energy Transfer -- Food Chain -- Models, Biological -- Plankton -- Population Dynamics
Аннотация: The anthropogenic impact on the Earth's ecosystems are leading to dramatic changes in ecosystem functioning and even to destruction of them. System analysis and the use of heuristic modeling can be an effective means to determine the main biological interactions and key factors that are of high importance for understanding the development of ecosystems. Cycling of limiting substances, induced by the external free energy flux, and trophic links interaction is the basis of the mathematical modeling studies presented in this paper. Mathematical models describe the dynamics of simplified ecosystems having different characteristics: 1) different degrees of biotic turnover closure (from open to completely closed); 2) different numbers of trophic links (including both "topdown", "bottom-up" regulation types); 3) different intensities of input - output flows of the limiting nutrient and its total amount in the system. Adaptive values of the changes of lower hierarchical levels (populational, trophic chain level) are to be estimated by integrity indices for total system functioning (e.g. NPP, total photosynthesis). The approach developed can be used for evaluating the contributions of lower hierarchical levels to the functioning of the higher hierarchical levels of the system. This approach may have value for determining biomanipulation management and their assessment. В© 2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics, SB RAS, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Pechurkin, N.S.; Shirobokova, I.M.

Найти похожие
7.


   
    Modeling of CO2 fluxes between atmosphere and boreal forest / Y. V. Barkhatov [et al.] ; ed.: Z Yang, Z Yang // 18TH BIENNIAL ISEM CONFERENCE ON ECOLOGICAL MODELLING FOR GLOBAL CHANGE AND COUPLED HUMAN AND NATURAL SYSTEM. Ser. Procedia Environmental Sciences : ELSEVIER SCIENCE BV, 2012. - Vol. 13: 18th Biennial ISEM Conference on Ecological Modelling for Global Change and Coupled Human and Natural Systems (SEP 20-23, 2011, Beijing, PEOPLES R CHINA). - P621-625, DOI 10.1016/j.proenv.2012.01.053. - Cited References: 17 . - 5. - ISBN 1878-0296
РУБ Ecology + Environmental Sciences
Рубрики:
CARBON-DIOXIDE FLUXES
   SIBERIA

   BUDGET

   SINKS

   RATIO

   O-2

Кл.слова (ненормированные):
Global carbon cycle -- Siberian boreal forests -- mathematical modeling -- atmospheric boundary layer budget method
Аннотация: Difficulties in estimating terrestrial ecosystem CO2 fluxes on regional scales have significantly limited our understanding of the global carbon cycle. We present a method of using tall-tower-based CO2 concentrations for estimating CO2 fluxes over a forested region. With long-term measurements of the CO2 mixing ratio at a 300-m-tall tower, regional CO2 fluxes were estimated for several months, from the first obtained data. Estimates of a monthly-integrated surface CO2 flux over the region were obtained by the analysis of average gradients and estimates of the rate of vertical mixing between the atmospheric boundary layer (ABL) and the free troposphere. For the comparison of the ABL budget method and field measurements a zero-dimensional mathematical model of the ecosystem of Siberian boreal forests was used. The model is a system of ordinary differential equations with additional conditions superimposed on the parameters. The main occurring processes are described - photosynthesis, respiration, seasonal changes of active phytomass, water balance of trees, the influence of light, humidity, and temperature on photosynthesis and respiration. (C) 2011 Published by Elsevier B. V. Selection and/or peer-review under responsibility of School of Environment, Beijing Normal University.

Держатели документа:
[Barkhatov, Y. V.
Belolipetsky, P. V.
Degermendzhi, A. G.
Shchemel, A. L.] Inst Biophys SB RAS, Krasnoyarsk 660036, Russia : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Barkhatov, Y.V.; Belolipetsky, P.V.; Degermendzhi, A.G.; Belolipetskii, V.M.; Verkhovets, S.V.; Timokhina, A.V.; Panov, A.V.; Shchemel, A.L.; Vedrova, E.F.; Trephilova, O.V.; Yang, Z \ed.\

Найти похожие
8.


   
    High-active truncated luciferase of copepod Metridia longa / S. V. Markova, L. P. Burakova, E. S. Vysotski // Biochem. Biophys. Res. Commun. - 2012. - Vol. 417, Is. 1. - P98-103, DOI 10.1016/j.bbrc.2011.11.063. - Cited References: 31. - This study was supported by the Grants 16.512.11.2141 and 64987.2010.4 of the Ministry of Education and Science of Russian Federation. . - ISSN 0006-291X
РУБ Biochemistry & Molecular Biology + Biophysics
Рубрики:
COELENTERAZINE-BINDING PROTEIN
   REPORTER-GENE-EXPRESSION

   RENILLA LUCIFERASE

   GAUSSIA LUCIFERASE

   LIGHT-EMITTER

   IN-VIVO

   BIOLUMINESCENCE

   PHOTOPROTEINS

   CDNA

   SUBSTRATE

Кл.слова (ненормированные):
Bioluminescence -- Coelenterazine -- Mammalian expression -- Secretion
Аннотация: The technology of real-time imaging in living cells is crucial for understanding of intracellular events. For this purpose, bioluminescent reporters have been introduced as sensitive and convenient tools. Metridia luciferase (MLuc) from the copepod Metridia longa is a coelenterazine-dependent luciferase containing a natural signal peptide for secretion. We report the high-active MLuc mutants with deletion of the N-terminal variable part of amino acid sequence. The MLuc variants were produced in Escherichia coil cells, converted to an active protein, and characterized. We demonstrate that the truncated MLucs have significantly increased bioluminescent activity as against the wild type enzyme but substantially retain other properties. One of the truncated variants of MLuc was transiently expressed in HEK 293 cells. The results clearly suggest that the truncated Metridia luciferase is well suited as a secreted reporter ensuring higher detection sensitivity in comparison with a wild type enzyme. (C) 2011 Elsevier Inc. All rights reserved.

Держатели документа:
[Vysotski, Eugene S.] Russian Acad Sci, Photobiol Lab, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
Siberian Fed Univ, Dept Biophys, Krasnoyarsk 660041, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Markova, S.V.; Burakova, L.P.; Vysotski, E.S.

Найти похожие
9.


   
    Protein-protein complexation in bioluminescence [Text] / M. S. Titushin [et al.] // Protein Cell. - 2011. - Vol. 2, Is. 12. - P957-972, DOI 10.1007/s13238-011-1118-y. - Cited References: 114. - The work was funded by "Fellowship for Young International Scientists" of Chinese Academy of Sciences. This work was supported by the National Natural Science Foundation of China (Grant Nos: 30870483, 31070660, 31021062 and 81072449), Ministry of Science and Technology of China (Nos. 2009DFB30310, 2009CB918803 and 2011CB911103), CAS Research Grants (Nos. YZ200839 and KSCX2-EW-J-3). . - ISSN 1674-800X
РУБ Cell Biology
Рубрики:
GREEN-FLUORESCENT PROTEIN
   LUCIFERIN-BINDING-PROTEIN

   RENILLA-RENIFORMIS LUCIFERASE

   VIBRIO-FISCHERI Y1

   JELLYFISH CLYTIA-GREGARIA

   ALPHA/BETA-HYDROLASE FOLD

   AMINO-ACID-SEQUENCE

   BACTERIAL LUCIFERASE

   ENERGY-TRANSFER

   CRYSTAL-STRUCTURE

Кл.слова (ненормированные):
green-fluorescent protein (GFP) -- photoprotein -- luciferase -- lumazine protein -- Forster resonance energy transfer (FRET) -- docking
Аннотация: In this review we summarize the progress made towards understanding the role of protein-protein interactions in the function of various bioluminescence systems of marine organisms, including bacteria, jellyfish and soft corals, with particular focus on methodology used to detect and characterize these interactions. In some bioluminescence systems, protein-protein interactions involve an "accessory protein" whereby a stored substrate is efficiently delivered to the bioluminescent enzyme luciferase. Other types of complexation mediate energy transfer to an "antenna protein" altering the color and quantum yield of a bioluminescence reaction. Spatial structures of the complexes reveal an important role of electrostatic forces in governing the corresponding weak interactions and define the nature of the interaction surfaces. The most reliable structural model is available for the protein-protein complex of the Ca2+-regulated photoprotein clytin and green-fluorescent protein (GFP) from the jellyfish Clytia gregaria, solved by means of X-ray crystallography, NMR mapping and molecular docking. This provides an example of the potential strategies in studying the transient complexes involved in bioluminescence. It is emphasized that structural studies such as these can provide valuable insight into the detailed mechanism of bioluminescence.

Держатели документа:
[Titushin, Maxim S.
Liu, Zhi-Jie] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China
[Feng, Yingang] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
[Lee, John] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
[Vysotski, Eugene S.] Russian Acad Sci, Siberian Branch, Inst Biophys, Lab Photobiol, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Titushin, M.S.; Feng, Y.G.; Lee, J...; Vysotski, E.S.; Liu, Z.J.

Найти похожие
10.


   
    Zooplankton carcasses and non-predatory mortality in freshwater and inland sea environments [Text] / K. W. Tang [et al.] // J. Plankton Res. - 2014. - Vol. 36, Is. 3. - P597-612, DOI 10.1093/plankt/fbu014. - Cited References: 168. - This work was supported by the Humboldt Foundation (Fellowship for Experienced Researchers to K. W. T.); Siberian Branch of Russian Academy of Science (Partner Project No. 8 to M. I. G. and O.P.D.); Federal Tasks of Ministry of Education and Science of Russian Federation (project B-15 of Siberian Federal University to M. I. G.); the Leibniz-Association (SAW-2011-IGB-2 to G. K.); and the German Science foundation (KI-853/7-1 to G. K., GR1540/20-1 to H. P. G.). The manuscript benefited from the constructive comments from three reviewers. . - ISSN 0142-7873. - ISSN 1464-3774
РУБ Marine & Freshwater Biology + Oceanography
Рубрики:
SMALL-SCALE TURBULENCE
   NON-CALANOID COPEPODS

   AGGREGATES LAKE SNOW

   DAPHNIA-GALEATA

   MIDSUMMER DECLINE

   NONCONSUMPTIVE MORTALITY

   CRUSTACEAN ZOOPLANKTON

   CLIMATE-CHANGE

   VERTICAL-DISTRIBUTION

   POPULATION-GROWTH

Кл.слова (ненормированные):
carbon flux -- inland waters -- lakes -- live -- dead sorting -- non-predatory mortality -- zooplankton carcasses
Аннотация: Zooplankton carcasses are ubiquitous in marine and freshwater systems, implicating the importance of non-predatory mortality, but both are often overlooked in ecological studies compared with predatory mortality. The development of several microscopic methods allows the distinction between live and dead zooplankton in field samples, and the reported percentages of dead zooplankton average 11.6 (minimum) to 59.8 (maximum) in marine environments, and 7.4 (minimum) to 47.6 (maximum) in fresh and inland waters. Common causes of non-predatory mortality among zooplankton include senescence, temperature change, physical and chemical stresses, parasitism and food-related factors. Carcasses resulting from non-predatory mortality may undergo decomposition leading to an increase in microbial production and a shift in microbial composition in the water column. Alternatively, sinking carcasses may contribute significantly to vertical carbon flux especially outside the phytoplankton growth seasons, and become a food source for the benthos. Global climate change is already altering freshwater ecosystems on multiple levels, and likely will have significant positive or negative effects on zooplankton non-predatory mortality. Better spatial and temporal studies of zooplankton carcasses and non-predatory mortality rates will improve our understanding of this important but under-appreciated topic.

WOS
Держатели документа:
[Tang, Kam W.] Virginia Inst Marine Sci, Coll William & Mary, Gloucester Point, VA 23062 USA
[Tang, Kam W.] Swansea Univ, Dept Biosci, Swansea SA2 8PP, W Glam, Wales
[Gladyshev, Michail I.
Dubovskaya, Olgo P.] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
[Gladyshev, Michail I.
Dubovskaya, Olgo P.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Kirillin, Georgiy] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Ecohydrol, D-12587 Berlin, Germany
[Grossart, Hans-Peter] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Expt Limmol, D-16775 Stechlin, Germany
[Grossart, Hans-Peter] Univ Potsdam, Inst Biochem & Biol, D-14469 Potsdam, Germany
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tang, K.W.; Gladyshev, M.I.; Dubovskaya, O.P.; Kirillin, G...; Grossart, H.P.; Humboldt Foundation; Ministry of Education and Science of Russian Federation (Siberian Federal University) [B-15]; Leibniz-Association [SAW-2011-IGB-2]; German Science foundation [KI-853/7-1, GR1540/20-1]

Найти похожие
11.


   
    Systematic approach to life support system analyses and integration [Text] / S. I. Bartsev, V. V. Mezhevikin, V. A. Okhonin ; ed. M Nelson [et al.] // SPACE LIFE SCIENCES: CLOSED ARTIFICIAL ECOSYSTEMS AND LIFE SUPPORT SYSTEMS. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON-ELSEVIER SCIENCE LTD, 2003. - Vol. 31: Meeting of F4 1 Session of the 34th Scientific Assembly of COSPAR (OCT, 2002, HOUSTON, TEXAS), Is. 7. - P. 1823-1832, DOI 10.1016/S0273-1177(03)00081-4. - Cited References: 25 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Ecology + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences
Рубрики:
RELIABILITY
   SPACE

Аннотация: This paper is devoted to the consideration of possible viewpoint on CELSS development and design. If the aim to create practically applicable CELSS is accepted then the task to optimize the process of CELSS research and development in terms of minimum cost, hours, maximum applicability, scientific contribution, etc. becomes actual. Requirements of applicability and scientific significance are synergetic since understanding of general properties of CELSS gives an ability to create CELSS for different applications. To accomplish the task three main groups of parameters have to be optimized: i) configuration and operating parameters of developing CELSS itself, ii) organizational management of research and development of CELSS; iii) features of an area where CELSS is planned to be used (space missions, terrestrial applications, or biosphere investigation) and where requirements to CELSS characteristic come from. Given paper is a brief review presented some attempts to arrange mentioned above into some set of formalized and interacting criteria, and some progression of research stages derived from these criteria. (C) 2003 Published by Elsevier Science Ltd on behalf of COSPAR.

WOS
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Bartsev, S.I.; Mezhevikin, V.V.; Okhonin, V.A.; Nelson, M \ed.\; Pechurkin, NS \ed.\; Dempster, WF \ed.\; Somova, LA \ed.\; Somo, , LA \ed.\

Найти похожие
12.


   
    Recycling efficiencies of C,H,O,N,S, and P elements in a biological life support system based on microorganisms and higher plants [Text] / J. B. Gros [et al.] ; ed.: G Horneck, ME Vazquez, Vazquez, ME // SPACE LIFE SCIENCES: MISSIONS TO MARS, RADIATION BIOLOGY, AND PLANTS AS A FOUNDATION FOR LONG-TERM LIFE SUPPORT SYSTEMS IN SPACE. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON-ELSEVIER SCIENCE LTD, 2003. - Vol. 31: F0 1 and F1 3-F2 3 Symposia of COSPAR Scientific Commission F held at the 33rd COSPAR Scientific Assembly (JUL, 2000, WARSAW, POLAND), Is. 1. - P. 195-199, DOI 10.1016/S0273-1177(02)00739-1. - Cited References: 10 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: MELiSSA is a microorganism based artificial ecosystem conceived as a tool for understanding the behavior of ecosystems and developing the technology for future Manned Space Missions. MELiSSA is composed of four compartments colonized by the microorganisms required by the function of this ecosystem : breakdown of waste produced by men, regeneration of atmosphere and biosynthesis of edible biomass. This paper reports the mass balance description of a Biological Life Support System composed of the MELiSSA loop and of a Higher Plant Compartment working in parallel with the photosynthetic Spirulina compartment producing edible biomass. The recycling efficiencies of the system are determined and compared for various working conditions of the MELiSSA loop with or without the HPC. (C) 2002 Published by Elsevier Science Ltd on behalf of COSPAR.

WOS
Держатели документа:
Univ Clermont Ferrand, Lab Genie Chim & Biochim, F-63177 Aubiere, France
European Space Agcy, Estec, YVC, NL-2200 AG Noordwijk, Netherlands
RAS, Siberian Branch, Inst Biophys, Krasnoyarsk 630036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Gros, J.B.; Poughon, L...; Lasseur, C...; Tikhomirov, A.A.; Horneck, G \ed.\; Vazquez, ME \ed.\

Найти похожие
13.


   
    System analysis of links interactions and development of ecosystems of different types [Text] / N. S. Pechurkin, I. M. Shirobokova ; ed. M Nelson [et al.] // SPACE LIFE SCIENCES: CLOSED ARTIFICIAL ECOSYSTEMS AND LIFE SUPPORT SYSTEMS. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON-ELSEVIER SCIENCE LTD, 2003. - Vol. 31: Meeting of F4 1 Session of the 34th Scientific Assembly of COSPAR (OCT, 2002, HOUSTON, TEXAS), Is. 7. - P. 1667-1674, DOI 10.1016/S0273-1177(03)00106-6. - Cited References: 12 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Ecology + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: The anthropogenic impact on the Earth's ecosysterns are leading to dramatic changes in ecosystem functioning and even to destruction of them. System analysis and the use of heuristic modeling can be an effective means to determine the main biological interactions and key factors that are of high importance for understanding the development of ecosysterns. Cycling of limiting substances, induced by the external free energy flux, and trophic links interaction is the basis of the mathematical modeling studies presented in this paper. Mathematical models describe the dynamics of simplified ecosysterns having different characteristics:1) different degrees of biotic turnover closure (from open to completely closed); 2) different numbers of trophic links (including both "top-down", "bottom-up" regulation types); 3) different intensities of input - output flows of the limiting nutrient and its total amount in the system. Adaptive values of the changes of lower hierarchical levels (populational, trophic chain level) are to be estimated by integrity indices for total system functioning (e.g. NPP, total photosynthesis). The approach developed can be used for evaluating the contributions of lower hierarchical levels to the functioning of the higher hierarchical levels of the system. This approach may have value for determining biomanipulation management and their assessment. (C) 2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

WOS
Держатели документа:
SB RAS, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Pechurkin, N.S.; Shirobokova, I.M.; Nelson, M \ed.\; Pechurkin, NS \ed.\; Dempster, WF \ed.\; Somova, LA \ed.\; Somo, , LA \ed.\

Найти похожие
14.


   
    Naturally deducing estimate for the coefficient of CELSS closure [Text] / S. I. Bartsev ; ed. M Nelson [et al.] // SPACE LIFE SCIENCES: CLOSED ARTIFICIAL ECOSYSTEMS AND LIFE SUPPORT SYSTEMS. Ser. ADVANCES IN SPACE RESEARCH : PERGAMON-ELSEVIER SCIENCE LTD, 2003. - Vol. 31: Meeting of F4 1 Session of the 34th Scientific Assembly of COSPAR (OCT, 2002, HOUSTON, TEXAS), Is. 7. - P. 1675-1682, DOI 10.1016/S0273-1177(03)00107-8. - Cited References: 4 . - ISBN 0273-1177
РУБ Engineering, Aerospace + Astronomy & Astrophysics + Ecology + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: The term Closed Ecological System (CES) is in wide use. However there is no generally accepted measure of the closure of ecological systems. In order to obtain reproducibility of experiments with natural and man-made CES (with respect to degree of closure) some universal estimate needs to be developed. Understanding ecological systems as a network and closure as the degree of matter recycling allows the use of matrix graphs. Graphs are very natural forms for the presentation of the network of matter flows in ecosystems. An estimate equal to the sum of products of weights of oriented edges that constitute contour is suggested as a measure of the degree of closure in ecosystems. It is shown that this estimate can be uniformly applied to ecosystems of arbitrary size and configuration of flows. (C) 2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Bartsev, S.I.; Nelson, M \ed.\; Pechurkin, NS \ed.\; Dempster, WF \ed.\; Somova, LA \ed.\; Somo, , LA \ed.\

Найти похожие
15.


   
    Experimental effects of large-bodied Daphnia, fish and zebra mussels on cladoceran community and size structure [Text] / I. Feniova [et al.] // J. Plankton Res. - 2015. - Vol. 37, Is. 3. - P611-625, DOI 10.1093/plankt/fbv022. - Cited References:66. - This research was supported by the Polish National Science Centre (2012/05/B/N28/02684). The work also was supported by grants of Belorussian Foundation for Basic Research ((sic)12P-98), Russian Foundation for Basic Research (14-04-00087), Siberian Federal University project, carried out according to Federal Tasks of Ministry of Education and Science of Russian Federation (6.1089.214/K) and by Russian Federal Tasks of Fundamental Research (51.1.1). . - ISSN 0142-7873. - ISSN 1464-3774
РУБ Marine & Freshwater Biology + Oceanography
Рубрики:
FRESH-WATER ZOOPLANKTON
   POLYUNSATURATED FATTY-ACIDS

   LAKE-ERIE

Кл.слова (ненормированные):
alien species -- large- and small-bodied cladocerans -- invasion mechanisms -- PUFA -- C:N:P ratios
Аннотация: Understanding the factors that regulate the abundance, size structure and community structure of cladocerans is an important goal of aquatic ecologists. While both top-down and bottom-up factors help to structure cladoceran communities, there may be interactions between these factors. We conducted a mesocosm study to determine how alien large-bodied Daphnia, zebra mussels and fish affected cladoceran community and size structure. We found that large-bodied Daphnia reduced algal resources and the fecundity of smaller bodied cladocerans. Fish removed the large-bodied Daphnia magna from the mesocosms and shifted the cladoceran community to a smaller body size. Fish also appeared to promote increases in cladoceran diversity through the coexistence of several smaller bodied taxa. In contrast, zebra mussels increased cyanobacteria and helped to promote the success of the alien Daphnia, but reduced the biomass of small-bodied cladocerans. Zebra mussels reduced the carbon (C):phosphorus (P) ratio of the phytoplankton in the mesocosms which may have favored the relatively P-limited Daphnia. Combined, our results highlight the complex interactions of multiple factors that help to regulate cladoceran community and size structure.

WOS,
Scopus
Держатели документа:
Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow 119071, Russia.
Univ Warsaw, Biol & Chem Res Ctr, Inst Zool, Dept Hydrobiol, PL-02089 Warsaw, Poland.
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Polish Acad Sci, M Nencki Inst Expt Biol, PL-02093 Warsaw, Poland.
Natl Acad Sci Belarus, Sci & Pract Ctr Bioresources, Minsk 220072, Byelarus.
Oklahoma State Univ, Dept Integrat Biol, Stillwater, OK 74078 USA.

Доп.точки доступа:
Feniova, Irina; Dawidowicz, Piotr; Gladyshev, Michail I.; Kostrzewska-Szlakowska, Iwona; Rzepecki, Marek; Razlutskij, Vladimir; Sushchik, Nadezda N.; Majsak, Natalia; Dzialowski, Andrew R.; Polish National Science Centre [2012/05/B/N28/02684]; Belorussian Foundation for Basic Research [(sic)12P-98]; Russian Foundation for Basic Research [14-04-00087]; Siberian Federal University project; Russian Federal Tasks of Fundamental Research [51.1.1]

Найти похожие
16.


   
    Growth and light emission of luminous basidiomycetes cultivated on solid media and in submerged culture [Text] / S. E. Medvedeva [et al.] // Mycosphere. - 2014. - Vol. 5, Is. 4. - P565-577, DOI 10.5943/mycosphere/5/4/9. - Cited References:23. - This study was supported by grant No. 11.G34.31.058 (RF Government) and Projects No. 71 and No. 38 (SB RAS). . - ISSN 2077-7000
РУБ Mycology
Рубрики:
MYCELIAL GROWTH
   PANELLUS-STYPTICUS

   BIOLUMINESCENCE

   LUMINESCENCE

Кл.слова (ненормированные):
luminescence -- luminous higher fungi -- mycelium
Аннотация: There are higher fungi that emit visible light; however, little is known about their requirements for good growth and bright luminescence. Knowledge of these requirements is extremely important for maintaining fungal cultures in laboratory conditions and preparation of luminous mycelia for research purposes. Luminous higher fungi Panellus stipticus, Armillaria sp. and Neonothopanus nambi isolated from different climatic areas and maintained in CCIBSO 836 (Collection of IBP SB RAS, Russia) were used for experiments. Techniques for static and submerged cultivation of mycelia of higher fungi have been developed and optimized for the production of samples of aerial and globular mycelia with prolonged and stable luminescence. We investigated the growth characteristics and luminescence of mycelia cultivated in/on different nutrient media, and the effects of deionized water and mechanical damage on the light emission of mycelia. An increase in luminescence intensity of fungal mycelia can be obtained during cultivation of fungi on a nutrient medium with a certain composition. A significant increase in light emission from N. nambi mycelium can also be obtained after its incubation in water and mechanical damage. The light emission from N. nambi mycelium was greatly enhanced after these treatments, in contrast to the mycelia of Armillaria sp. or P. stipticus. Cultivation conditions that enable growing mycelia with high levels of luminescence will expedite further studies to gain a better understanding of fungal bioluminescence.

WOS
Держатели документа:
Inst Biophys SB RAS, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.

Доп.точки доступа:
Medvedeva, S. E.; Artemenko, K. S.; Krivosheenko, A. A.; Rusinova, A. G.; Rodicheva, E. K.; Puzyr, A. P.; Bondar, V. S.; RF Government [11.G34.31.058]; SB RAS [71, 38]

Найти похожие
17.


   
    Mercury, selenium and fish oils in marine food webs and implications for human health / M. O. Gribble [et al.] // J. Mar. Biol. Assoc. U.K. - 2016. - Vol. 96, Is. 1. - P43-59, DOI 10.1017/S0025315415001356 . - ISSN 0025-3154
Кл.слова (ненормированные):
Docosahexaenoic acid -- Ecotoxicology -- Eicosapentaenoic acid -- Fish oils -- Mercury -- N-3 fatty acids -- Oceans and human health -- OHH -- Public health -- Selenium
Аннотация: Humans who eat fish are exposed to mixtures of healthful nutrients and harmful contaminants that are influenced by environmental and ecological factors. Marine fisheries are composed of a multitude of species with varying life histories, and harvested in oceans, coastal waters and estuaries where environmental and ecological conditions determine fish exposure to both nutrients and contaminants. Many of these nutrients and contaminants are thought to influence similar health outcomes (i.e., neurological, cardiovascular, immunological systems). Therefore, our understanding of the risks and benefits of consuming seafood require balanced assessments of contaminants and nutrients found in fish and shellfish. In this paper, we review some of the reported benefits of fish consumption with a focus on the potential hazards of mercury exposure, and compare the environmental variability of fish oils, selenium and mercury in fish. A major scientific gap identified is that fish tissue concentrations are rarely measured for both contaminants and nutrients across a range of species and geographic regions. Interpreting the implications of seafood for human health will require a better understanding of these multiple exposures, particularly as environmental conditions in the oceans change. © Marine Biological Association of the United Kingdom, 2015.

Scopus,
WOS
Держатели документа:
Department of Preventive Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States
School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
Department of Environmental Health Sciences, University at Albany School of Public Health, State University of New York, Rensselaer, NY, United States
Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
Department of Veterinary Medicine, College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, AK, United States
Institute of Biophysics of Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Department of Biological Sciences, Dartmouth College, Hanover, NH, United States

Доп.точки доступа:
Gribble, M. O.; Karimi, R.; Feingold, B. J.; Nyland, J. F.; O'Hara, T. M.; Gladyshev, M. I.; Chen, C. Y.

Найти похожие
18.


   
    Multistable states in the biosphere-climate system: towards conceptual models / S. Bartsev, P. Belolipetskii, A. Degermendzhi // V INTERNATIONAL WORKSHOP ON MATHEMATICAL MODELS AND THEIR APPLICATIONS : IOP PUBLISHING LTD, 2017. - Vol. 173: 5th International Workshop on Mathematical Models and their Applications (NOV 07-09, 2016, Krasnoyarsk, RUSSIA). - Ст. UNSP 012005. - (IOP Conference Series-Materials Science and Engineering), DOI 10.1088/1757-899X/173/1/012005. - Cited References:31. - This work was supported by grant RFBR-KKFN No 15-41-04300 and Complex Program of SB RAS No II.2. No 0360-2015-0002. . -
РУБ Materials Science, Multidisciplinary + Mathematics, Applied
Рубрики:
SEA-SURFACE TEMPERATURE
   1980S REGIME SHIFT

   EL-NINO

   PACIFIC

Аннотация: Forecasting response of the biosphere and regional ecosystems to observed and expected climate change is the fundamental problem with obvious practical significance. Fundamental non-linearity of the climate system and biosphere makes feasible implementing multiple states and threshold processes in the biosphere-climate system (BCS) in response to gradually increasing influence factor (greenhouse gas concentrations growth). Really time series analysis of global temperature and other global and local parameters indicates the presence of abrupt transitions between stationary states. Identification of the switching mechanisms using general circulation models of the atmosphere and the ocean is associated with the obvious difficulties due to their complexity. Understanding the nature of such switches at qualitative level can be achieved by using a conceptual small-scale models. Some variants of possible mechanisms capable of generating these shifts and simultaneously supporting quasi-stationary periods between them are discussed.

WOS,
Смотреть статью
Держатели документа:
Inst Biophys SB RAS, Krasnoyarsk Sci Ctr, Krasnoyarsk, Russia.
Inst Computat Modelling SB RAS, Krasnoyarsk Sci Ctr, Krasnoyarsk, Russia.

Доп.точки доступа:
Bartsev, S.; Belolipetskii, P.; Degermendzhi, A.; RFBR-KKFN [15-41-04300]; Complex Program of SB RAS [II.2, 0360-2015-0002]

Найти похожие
19.


   
    Variability of fluorescence spectra of coelenteramide-containing proteins as a basis for toxicity monitoring / R. R. Alieva, N. S. Kudryasheva // Talanta. - 2017. - Vol. 170. - P425-431, DOI 10.1016/j.talanta.2017.04.043 . - ISSN 0039-9140
Кл.слова (ненормированные):
Coelenteramide-containing fluorescent protein -- Multicolor fluorescent bioassay -- Obelin -- Primary photochemical process -- Protein destruction -- Proton transfer -- Bioassay -- Biomarkers -- Excited states -- Fluorescence -- Fluorophores -- Ionizing radiation -- Proton transfer -- Toxicity -- Electron-excited state -- Fluorescence spectra -- Fluorescent protein -- Green fluorescent protein -- Obelin -- Photochemical process -- Photochemical properties -- Physicochemical process -- Proteins
Аннотация: Nowadays, physicochemical approach to understanding toxic effects remains underdeveloped. A proper development of such mode would be concerned with simplest bioassay systems. Coelenteramide-Containing Fluorescent Proteins (CLM-CFPs) can serve as proper tools for study primary physicochemical processes in organisms under external exposures. CLM-CFPs are products of bioluminescent reactions of marine coelenterates. As opposed to Green Fluorescent Proteins, the CLM-CFPs are not widely applied in biomedical research, and their potential as colored biomarkers is undervalued now. Coelenteramide, fluorophore of CLM-CFPs, is a photochemically active molecule; it acts as a proton donor in its electron-excited states, generating several forms of different fluorescent state energy and, hence, different fluorescence color, from violet to green. Contributions of the forms to the visible fluorescence depend on the coelenteramide microenvironment in proteins. Hence, CLM-CFPs can serve as fluorescence biomarkers with color differentiation to monitor results of destructive biomolecule exposures. The paper reviews experimental and theoretical studies of spectral-luminescent and photochemical properties of CLM-CFPs, as well as their variation under different exposures – chemicals, temperature, and ionizing radiation. Application of CLM-CFPs as toxicity bioassays of a new type is justified. © 2017

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/50, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodny Prospect 79, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Alieva, R. R.; Kudryasheva, N. S.

Найти похожие
20.


   
    Fluorescent coelenteramide-containing protein as a color bioindicator for low-dose radiation effects / A. S. Petrova [et al.] // Anal. Bioanal. Chem. - 2017. - Vol. 409, Is. 18. - P4377-4381, DOI 10.1007/s00216-017-0404-9. - Cited References:22. - This work was supported by the state budget allocated to the fundamental research at the Russian Academy of Sciences (project 01201351504) and by the Russian Foundation for Basic Research, Grant No. 16-34-00695. . - ISSN 1618-2642. - ISSN 1618-2650
РУБ Biochemical Research Methods + Chemistry, Analytical
Рубрики:
LUMINOUS MARINE-BACTERIA
   DISCHARGED-OBELIN

   AEQUORIN

Кл.слова (ненормированные):
Fluorescent protein -- Coelenteramide -- Discharged photoprotein obelin -- Multicolor bioindicator -- Radiotoxicity
Аннотация: The study addresses the application of fluorescent coelenteramide-containing proteins as color bioindicators for radiotoxicity evaluation. Biological effects of chronic low-dose radiation are under investigation. Tritiated water (200 MBq/L) was used as a model source of low-intensive ionizing radiation of beta type. 'Discharged obelin,' product of bioluminescent reaction of marine coelenterate Obelia longissimi, was used as a representative of the coelenteramide-containing proteins. Coelenteramide, fluorophore of discharged obelin, is a photochemically active molecule; it produces fluorescence forms of different color. Contributions of 'violet' and 'blue-green' forms to the visible fluorescence serve as tested parameters. The contributions depend on the coelenteramide's microenvironment in the protein, and, hence, evaluate distractive ability and toxicity of radiation. The protein samples were exposed to beta radiation for 18 days, and maximal dose accumulated by the samples was 0.28 Gy, being close to a tentative limit of a low-dose interval. Increase of relative contribution of 'violet' fluorescence under exposure to the beta irradiation was revealed. High sensitivity of the protein-based test system to low-dose ionizing radiation (to 0.03 Gy) was demonstrated. The study develops physicochemical understanding of radiotoxic effects.

WOS,
Смотреть статью
Держатели документа:
FRC KSC SB RAS, Inst Biophys SB RAS, Akademgorodok 50, Krasnoyarsk 660036, Russia.
Krasnoyarsk State Agrarian Univ, Krasnoyarsk 660049, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Moscow MV Lomonosov State Univ, Moscow 119991, Russia.

Доп.точки доступа:
Petrova, Alena S.; Lukonina, Anna A.; Badun, Gennadii A.; Kudryasheva, Nadezhda S.; Russian Academy of Sciences [01201351504]; Russian Foundation for Basic Research [16-34-00695]

Найти похожие
 1-20    21-33 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)