Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=biofilms<.>)
Общее количество найденных документов : 8
Показаны документы с 1 по 8
1.


   
    Amino acid composition of epilithic biofilm and benthic animals in a large Siberian river / A. A. Kolmakova [et al.] // Freshwater Biology. - 2013. - Vol. 58, Is. 10. - P2180-2195, DOI 10.1111/fwb.12200 . - ISSN 0046-5070
Кл.слова (ненормированные):
Amino acids -- Epilithic microalgae and cyanobacteria -- Nutritive quality -- River ecosystem -- Zoobenthos
Аннотация: We studied amino acid (AA) composition of epilithic biofilms and zoobenthos near the shore at a middle section of the Yenisei River (Siberia, Russia). We hypothesised that there was an imbalance between the composition and content of amino acids in the biofilm and its consumers, the zoobenthos, as well as between those in the zoobenthos and fish. Based on monthly sampling from 2007 to 2010, there was seasonal variation in AA profiles in the epilithic biofilms, probably caused by the succession of microalgal and cyanobacterial species. Overall, there was an imbalance in the percentage of the essential amino acids (lysine and histidine) between benthic animals and their food (the epilithic biofilm), which suggests that benthic animals may be limited by food quality. Moreover, the zoobenthos had a significantly higher content of AA, relative to carbon, than the biofilm. Based on sampling in 2012, there was an imbalance between the AA profiles of zoobenthos and that of their main consumer, the Siberian grayling (Thymallus arcticus), particularly in the percentages of two essential amino acids, lysine and leucine. In terms of overall content of essential amino acids, the nutritional value to fish of gammarids, which have recently invaded the river, was significantly lower than that of indigenous taxa, trichopteran and chironomid larvae. В© 2013 John Wiley & Sons Ltd.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Science, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kolmakova, A.A.; Gladyshev, M.I.; Kalachova, G.S.; Kravchuk, E.S.; Ivanova, E.A.; Sushchik, N.N.

Найти похожие
2.


   
    Water moss as a food item of the zoobenthos in the Yenisei River / G. S. Kalachova [et al.] // Central European Journal of Biology. - 2011. - Vol. 6, Is. 2. - P236-245, DOI 10.2478/s11535-010-0115-0 . - ISSN 1895-104X
Кл.слова (ненормированные):
Acetylenic fatty acids -- Bryophytes -- Fontinalis -- Gammarids -- Stable isotope analysis -- Trichopterans -- Animalia -- Bryophyta -- bryophytes -- Chironomidae -- Ephemeroptera -- Eulimnogammarus viridis -- Fontinalis -- Fontinalis antipyretica -- Gammaridae -- Invertebrata -- Trichoptera
Аннотация: Bryophytes are abundant in streams and are a habitat for many invertebrates, but their contribution to the diet of fluvial zoobenthos is still debated. To estimate the amount of bryophyte-derived organic matter assimilated by benthic invertebrates, we used a combination of fatty acid and stable isotope analyses during a four-year monthly study of a littoral site in the Yenisei River (Siberia, Russia). Acetylenic acids, which are highly specific biomarkers of the water moss Fontinalis antipyretica, were found in lipids of all dominant benthic animals: gammarids, ephemeropterans, chironomids and trichopterans. The dominant zoobenthic species, Eulimnogammarus viridis, had maximum levels of the biomarkers in its biomass during winter, and minimum levels in summer. The zoobenthos in the studied site regularly consume and assimilate bryophyte-derived organic matter as a minor supplemental food. This consumption increases in winter, when the main food source of the zoobenthos, epilithic biofilms, are probably scarce. В© 2010 Versita Warsaw and Springer-Verlag Wien.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russian Federation
Siberian Federal University, 660041 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Kalachova, G.S.; Gladyshev, M.I.; Sushchik, N.N.; Makhutova, O.N.

Найти похожие
3.


   
    Seasonal distribution and fatty acid composition of littoral microalgae in the Yenisei River / N. N. Sushchik [et al.] // Journal of Applied Phycology. - 2010. - Vol. 22, Is. 1. - P11-24, DOI 10.1007/s10811-009-9418-9 . - ISSN 0921-8971
Кл.слова (ненормированные):
Fatty acids -- Riverine microalgae -- Taxa composition -- Temperature adaptations -- algae -- Bacillariophyta -- Chlorophyta -- Cyanobacteria
Аннотация: We studied fatty acid (FA) composition of littoral microalgae in the fast-flowing oligotrophic river, the Yenisei, Siberia, monthly for 3 years. Seasonal dynamics of species composition had similar patterns in all the studied years. In springs, a pronounced dominance of filamentous green algae occurred, in summer and autumn diatoms were abundant, and in late autumn and winter epilithic biofilms consisted primarily of cyanobacteria and detritus. In general, FA composition of the algal periphytic community was dominated by 16:0, 16:1?7, 20:5?3, 14:0, and 18:3?3 throughout the studied period. Several groups of FAs, which had peculiar seasonal dynamics, were differentiated by statistical analysis based on a method of correlation graphs. The seasonal changes in FA composition could be partly explained by the seasonal succession of species composition of the community. Besides, we found that populations of both diatom and green algae grown in summer at a higher water temperature were lower in polyunsaturated fatty acids than those in spring, at a lower temperature. Hence, we suppose that the regular seasonal dynamics of FA composition of the studied littoral microalgae was driven both by changes in species composition and by temperature adaptations of the algal populations. The highest content of essential polyunsaturated FAs, eicosapentaenoic and docosahexaenoic acids, in the spring "psychrophilic" populations of diatoms could make them of the higher nutritive value for zoobenthic primary consumers. В© Springer Science+Business Media B.V. 2009.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036, Russian Federation
Siberian Federal University, Svobodny av. 79, Krasnoyarsk 660041, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Sushchik, N.N.; Gladyshev, M.I.; Ivanova, E.A.; Kravchuk, E.S.

Найти похожие
4.


   
    The morphological characteristics and the dynamics of biofilms formed by a transgenic Bacillus subtilis strain [Text] / O. A. Mogil'naya, T. Y. Krylova, L. Y. Popova // Microbiology. - 2003. - Vol. 72, Is. 4. - P. 509-510, DOI 10.1023/A:1025065311507. - Cited References: 5 . - ISSN 0026-2617
РУБ Microbiology


WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Div, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50
Доп.точки доступа:
Mogil'naya, O.A.; Krylova, T.Y.; Popova, L.Y.

Найти похожие
5.


   
    Development and morphological features of biofilms formed by transgenic and wild type strains of Bacillus subtilis [Text] / O. A. Mogilnaya, T. Y. Krylova, L. Y. Popova // Microbiol. Res. - 2003. - Vol. 158, Is. 4. - P. 327-335, DOI 10.1078/0944-5013-00212. - Cited References: 17 . - ISSN 0944-5013
РУБ Microbiology
Рубрики:
ANTIBIOTIC-RESISTANCE
   MICROBIAL BIOFILMS

   COMMUNITY

Кл.слова (ненормированные):
Bacillus subtilis -- biofilms -- transgenic microorganisms -- electron microscopy
Аннотация: The study addressed the ability of the transgenic strain (TM) B. subtilis 2335/pBMB 105 (Km(r)Inf(+)) to form biofilms on the surface of liquid media of various compositions, inoculated with vegetative cells and spores. The morphological features of these biofilms do not differ from those of the films formed by the recipient strain (WT) B. subtilis 2335 (Km(s)). However, the TM and the natural one differ in the dynamics of biofilm formation and the cellular composition of the films. Biofilms of the TM are formed earlier, develop at a higher rate, but decompose later than the films of the WT. When the medium is inoculated with vegetative cells, sporulation in the biofilms of both strains undergoes glucose repression; no such effect is observed when the medium is inoculated with spores. The TM does not form films when the medium is inoculated with spores and supplemented with glycerin and kanamycin.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Mogilnaya, O.A.; Krylova, T.Y.; Popova, L.Y.

Найти похожие
6.


   
    Formation of structured communities by natural and transgenic naphthalene-degrading bacteria [Text] / O. A. Mogil'naya [et al.] // Appl. Biochem. Microbiol. - 2005. - Vol. 41, Is. 1. - P. 63-68, DOI 10.1007/s10438-005-0012-x. - Cited References: 18 . - ISSN 0003-6838
РУБ Biotechnology & Applied Microbiology + Microbiology
Рубрики:
GENETICALLY-ENGINEERED MICROORGANISM
   POLYCYCLIC AROMATIC-HYDROCARBONS

   BIOFILM FORMATION

   DEGRADATION

Аннотация: This study concerns the formation of structured communities by monocultures and binary associations of Pseudomonas fluorescens transgenic strains and natural heterotrophic bacterial species in naphthalene-containing media with various osmotic pressures. It was shown that cells of P. fluorescens strain 5RL, harboring a recombinant construct in the chromosome, were more resistant to the combined action of the stress factors under study than P. fluorescens 82/pUTK21, harboring a recombinant construct within a plasmid. Natural P. fluorescens 1 strains, particularly Vibrio sp. 14, were more viable at high osmotic pressures and naphthalene concentrations. Experiments with the combined introduction of transgenic and natural bacterial strains at high osmotic pressures demonstrated the stable coexistence of bacterial associations in biofilms, independent of naphthalene concentration. Strains considered for introduction into the environment for bioremediation should be assessed with regard to their susceptibility to the combined effect of anthropogenic and natural stress factors. The design of bacterial associations for the same purpose should take into account the effect of factors important for their survival in polluted areas.

WOS
Держатели документа:
Russian Acad Sci, Siberian Div, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Mogil'naya, O.A.; Krivomazova, E.S.; Kargatova, T.V.; Lobova, T.I.; Popova, L.Y.

Найти похожие
7.


   
    Biofilm formation by bacterial associations under various salinities and copper ion stress [Text] / O. A. Mogilnaya [et al.] // Biofouling. - 2005. - Vol. 21, Is. 05.06.2013. - P. 247-255, DOI 10.1080/08924010500445848. - Cited References: 24 . - ISSN 0892-7014
РУБ Biotechnology & Applied Microbiology + Marine & Freshwater Biology
Рубрики:
HEAVY-METAL RESISTANCE
   BACILLUS-SUBTILIS

   PROTEIN

   RISK

Кл.слова (ненормированные):
binary community -- surface films -- adhesion -- copper -- stress
Аннотация: The study addresses the effect of abiotic (medium salinity and copper ions) and biotic (interactions between populations) factors on the formation of structured communities by binary associations consisting of halotolerant bacteria (Alcaligenes sp. 1-1 or Acinetobacter sp. 1-19) and a wild-type B. subtilis 2335 strain or a transgenic strain. The results showed that 250 mg l(-1) of copper ions inhibit formation of biofilms by monocultures of the tested strains. Binary associations of the strains were more resistant to high concentrations (250 mg l(-1)) of copper ions. At the lowest NaCl concentration (0.05% and 2.5%) and in the presence of copper ions, bacilli seemed to help halotolerant bacteria survive. Under increased salinity and in the presence of copper ions, structured communities developed due to halotolerant bacteria. Coexistence under stressful conditions was beneficial for the both groups of bacteria.

WOS
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
TORINS Co, Krasnoyarsk, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Mogilnaya, O.A.; Lobova, T.I.; Kargatova, T.V.; Popova, L.Y.

Найти похожие
8.


   
    Advances in the use of molecular tools in ecological and biodiversity assessment of aquatic ecosystems / M. J. Feio, A. F. Filipe, A. Garcia-Raventos [et al.] // Limnetica. - 2020. - Vol. 39: 19th Congress of the Iberian-Association-of-Limnology (AIL) (JUN 24-29, 2018, Coimbra, PORTUGAL), Is. 1. - P419-440, DOI 10.23818/limn.39.27. - Cited References:92. - We are grateful to all participants of the special session "The use of molecular tools in ecological and biodiversity assessment of aquatic ecosystems" for the productive discussions during the AIL 2018 meeting (XIX Iberian Association of Limnology meeting in Coimbra (Portugal, June 2018). M.J. Feio is supported by MARE strategic program (UID/MAR/04292/2013); SFP Almeida is supported by GeoBioTec strategic program UID/GEO/04035/2019. R. Cordeiro was supported by a Ph.D. Grant (M3.1.a/F/017/2011) from Fundo Regional da Ciencia e Tecnologia (FRCT); A.F. Filipe and A. Garcia-Raventos were supported by FRESHING Project "Next-generation biomonitoring: freshwater bioassessment and species conservation improved with metagenomics" funded by the Portuguese Foundation for Science and Technology (FCT) and COMPETE (PTDC/AAG-MAA/2261/2014 -POCI-01-0145-FEDER-356 016824); F.M.S. Martins was supported by a FCT PhD grant (SFRH/BD/104703/2014); A.R. Calapez was supported by a grant from the FCT-PhD programme FLUVIO (PD\BD\52510\2014); A.M. Pujante acknowledges the BIOWAT-KIT_E!11892 Eurostars project; Maria Fais and Sofia Duarte were supported, respectively, by a PhD (SFRH/BD/113547/2015) and a post-doc fellowship (SFRH/BPD/109842/2015), from FCT; and C. Murria acknowledges the Fundacio Aigues de Barcelona for funding his research. . - ISSN 0213-8409. - ISSN 1989-1806
РУБ Limnology + Marine & Freshwater Biology
Рубрики:
BARCODE REFERENCE LIBRARY
   METABARCODING APPROACH

   RAPID ASSESSMENT

Кл.слова (ненормированные):
eDNA -- metabarcoding -- conservation -- ecological quality -- species -- detection -- rivers -- lakes -- thermal springs -- estuaries -- lagoons
Аннотация: Conservation and sustainable management of aquatic ecosystems is a priority in environmental programs worldwide. However, these aims are highly dependent on the efficiency, accuracy and cost of existent methods for the detection of keystone species and monitoring of biological communities. Rapid advances in eDNA, barcoding and metabarcoding promoted by high-throughput sequencing technologies are generating millions of sequences in a fast way, with a promising cost reduction, and overcoming some difficulties of the traditional taxonomic approaches. This paper provides an updated broad perspective of the current developments in this dynamic field presented in the special session (SS) "The use of molecular tools in ecological and biodiversity assessment of aquatic ecosystems" of the XIX Congress of the Iberian Association of Limnology (AIL2018), held in Coimbra, Portugal. Developments presented are mainly focused on the Iberian Peninsula (Portugal and Spain, including Atlantic Macaronesian islands) but include studies in France, Germany, Finland, Russia (Siberia) and South America. The networks within which these researchers are involved are yet even broader, profiting from existing molecular facilities, and traditional taxonomic expertise, which can be viewed as a characteristic of this new research area. It was evident in the SS that the use of molecular tools is widespread, being used to study a diversity of aquatic systems, from rivers' headwaters to estuaries and coastal lagoons, and volcanic, mountain and frozen lakes to hot springs. The organisms targeted are likewise varied and include fish, macroinvertebrates, meiofauna, microalgae such as diatoms and dinoflagellates, other protists, fungi, and bacteria (cyanobacteria and other). Some studies address the whole biodiversity (i.e., all species present independently of the taxonomic group) from environmental samples of water, biofilms and preservative solution from field samples (e.g., ethanol from macroinvertebrate samples). Great advances were acknowledged in the special session, namely in the use of metabarcoding for detecting hidden biodiversity, juvenile stages, low-abundance species, non-indigenous species and toxicity potential, and ultimately for ecological monitoring of diatoms and invertebrates. Yet, several drawbacks were highlighted and need further work, which include: taxonomic gaps in the reference databases (including gaps at species level and on intraspecific variability) or absence of public databases (e.g. for meiofauna), still high sequencing costs, the need of a substantial bioinformatics effort, difficulties in establishing the amount of environmental sample necessary for a good DNA extraction and the need for testing different genetic markers to obtain accurate results.

WOS
Держатели документа:
Marine & Environm Sci Ctr MARE, Coimbra, Portugal.
Univ Coimbra, Fac Sci & Technol, Dept Life Sci, Coimbra, Portugal.
Univ Porto, CIBIO InBio, Ctr Invest Biodiversidade & Recursos Genet, Campus Vairdo,Vila Conde, Porto, Portugal.
Univ Lisbon, Inst Super Agron, Ctr Invest Biodiversidade & Recursos Genet, CIBIO InBio, Lisbon, Portugal.
Univ Oviedo, Dept Funct Biol, C Julian Claveria S-N, E-33006 Oviedo, Spain.
Univ Lisbon, Sch Agr, Linking Landscape Environm Agr & Food LEAF, Lisbon, Portugal.
Labs Tecnol Levante SL, Avda Benjamin Franklin 16, Valencia 46980, Spain.
Univ Aveiro, Dept Biol & GeoBioTec GeoBioSci, GeoTechnol & GeoEngn Res Ctr, Campus Santiago, P-3810193 Aveiro, Portugal.
Univ Barcelona, Grup Recerca Freshwater Ecol Hydrol & Management, Avinguda Diagonal 643, E-08028 Barcelona, Spain.
Univ Barcelona, Inst Recerca Biodiversitat IRBio, Dept Biol Evolut Ecol & Ciencies Ambientals, Fac Biol, Avinguda Diagonal 643, E-08028 Barcelona, Spain.
Siberian Fed Univ, Fac Biol & Biotechnol, Dept Aquat & Terr Ecosyst, Svobodnyy 79, Krasnoyarsk 660041, Russia.
Univ Porto, Dept Biol, Fac Ciencias, Porto, Portugal.
Univ Minho, Ctr Mol & Environm Biol CBMA, Dept Biol, Campus Gualtar, P-4710057 Braga, Portugal.
Univ Cantabria, Environm Hydraul Inst, C Isabel Torres 15, Santander 39011, Spain.
Univ Acores, InBIO Lab Associado, Ctr Invest Biodiversidade & Recursos Genet, CIBIO,Fac Ciencias & Tecnol, P-9501801 Ponta Delgada, Portugal.
Univ Savoie Mt Blanc, INRA, CARRTEL, 75 Av Corzent, F-74200 Thonon Les Bains, France.
Univ Oulu, Dept Ecol & Genet, Stream Ecol Res Grp, Oulu, Finland.
CSIC, Natl Museum Nat Sci, Spanish Natl Res Council, Calle Jose Gutierrez Abascal 2, E-28006 Madrid, Spain.
Allgenetics, Edificio CICA,Campus Elvilia S-N, E-15008 La Coruna, Spain.
FAUNATICA, Kutojantie 11, Espoo, Finland.
Res Inst Ecosyst Anal & Assessment, Kackertstr 10, D-52072 Aachen, Germany.
Russian Acad Sci BI SB RAN, Biophys Inst, Siberian Branch, 50 Akad Gorodok,Str 50, Krasnoyarsk 660036, Russia.
Univ Perpignan, EPHE UPVD CNRS, 52 Ave Paul Alduy, F-66860 Perpignan, France.
CRIOBE, Lab Excellence Corail, BP 1013, Moorea, French Polynesi, France.

Доп.точки доступа:
Feio, Maria Joao; Filipe, Ana Filipa; Garcia-Raventos, Aina; Ardura, Alba; Calapez, Ana Raquel; Pujante, Ana Maria; Mortagua, Andreia; Murria, Cesc; Diaz-de-Quijano, Daniel; Martins, Filipa M. S.; Duarte, Sofia; Bariain, Marta Sainz; Cordeiro, Rita; Rivera, Sinziana F.; Vaisanen, Leif O. S.; Fonseca, Amelia; Goncalves, Vitor; Garcia-Vazquez, Eva; Rodriguez, David Vieites; Ivanova, Elena A.; Costa, Filipe O.; Barquin, Jose; Rojo, Veronica; Vierna, Joaquin; Fais, Maria; Suarez, Marcos; Nieminen, Marko; Hammers-Wirtz, Monica; Kolmakova, Olesia, V; Trusova, Maria Y.; Beja, Pedro; Gonzalez, Raquel; Planes, Serge; Almeida, Salome F. P.; MARE strategic program [UID/MAR/04292/2013]; GeoBioTec strategic program [UID/GEO/04035/2019]; Fundo Regional da Ciencia e Tecnologia (FRCT) [M3.1.a/F/017/2011]; FRESHING Project "Next-generation biomonitoring: freshwater bioassessment and species conservation improved with metagenomics" - Portuguese Foundation for Science and Technology (FCT); COMPETE [PTDC/AAG-MAA/2261/2014 -POCI-01-0145-FEDER-356 016824]; FCTPortuguese Foundation for Science and Technology [SFRH/BD/104703/2014, SFRH/BD/113547/2015, SFRH/BPD/109842/2015]; FCT-PhD programme FLUVIO [PD\BD\52510\2014]; Eurostars project [BIOWAT-KIT_E!11892]; Fundacio Aigues de Barcelona

Найти похожие
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)