Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=decomposition<.>)
Общее количество найденных документов : 28
Показаны документы с 1 по 20
 1-20    21-28 
1.


   
    Principle of the worst scenario in the modelling past and future of biosphere dynamics / S. I. Bartsev, A. G. Degermendzhi, D. V. Erokhin // Ecological Modelling. - 2008. - Vol. 216, Is. 2. - P160-171, DOI 10.1016/j.ecolmodel.2008.03.002 . - ISSN 0304-3800
Кл.слова (ненормированные):
Irreversible biosphere changes -- Minimal model of biosphere -- The worst scenario principle -- Biospherics -- agricultural land -- anthropogenic effect -- atmosphere-biosphere interaction -- carbon dioxide -- deforestation -- Little Ice Age -- numerical model -- Eurasia -- Europe
Аннотация: The "biosphere-climate" system is subjected to different influences (influx of anthropogenic CO2 and pollutants, deforestation, harmful land management, biological species depopulation, etc.). Therefore, the vital question arises: "Can these influences lead to irreversible negative changes in the climate-biosphere system or a global ecological catastrophe?" The possibility of irreversible changes may be not very high, but one cannot ignore it. So the main aim of our investigation is to evaluate possible consequences of human impact on the biosphere focusing on irreversible changes of it. Traditional mathematical complicated models describe the biosphere in great detail, but the large number of equations and parameters leads to accumulation of uncertainties in the forecast due to inevitable uncertainties of experimental estimations of model parameters. An approach based on the principle of the worst scenario was proposed. Minimization of mathematical model with respect to this principle is conducted to study limiting (but possible) versions of models in which the contribution of the possible compensatory and smoothing mechanisms is minimal. Namely the most unfavorable scenarios (corresponding to the values of parameters at the boundaries of confidence interval) have to be considered in estimating consequences of anthropogenic impact. One of the fastest CO2 releasing mechanisms, based on the positive feedback effect, was considered in the context of the worst scenario principle. The family of simple mathematical models was created for biosphere dynamics representation on different timescales. The main result of the investigation consists in confirmation of the possibility of negative and irreversible changes in the "biosphere-climate" system, caused by amplification of the positive feedback: "anthropogenic emission of CO2 - temperature increase - additional CO2 emission due to decomposition of soil organics". Crucial parameters of models, responsible for avalanche-like biosphere changes, are determined. A realizability of hypotheses on anthropogenic causes of Little Ice Age was estimated by corresponding minimal model. Model were used to show the feasibility of the mechanism describing the changing of agricultural field species into indigenous forests in Europe during the Plague, which led to CO2 decrease and temperature fall. В© 2008 Elsevier B.V. All rights reserved.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Bartsev, S.I.; Degermendzhi, A.G.; Erokhin, D.V.

Найти похожие
2.


   
    Understanding the mechanisms of blooming of phytoplankton in Lake Shira, a saline lake in Siberia (the Republic of Khakasia) / A. G. Degermendzhy, R. D. Gulati // Aquatic Ecology. - 2002. - Vol. 36, Is. 2. - P331-340 . - ISSN 1386-2588
Кл.слова (ненормированные):
Carbon budget -- Cyanobacteria -- Heterotrophic bacteria -- Hydrogen sulphide -- Mathematical models of stratification -- Meromictic lakes -- Microbial loop -- Stratification -- Trophic scheme -- algal bloom -- ecosystem modeling -- limiting factor -- nutrient availability -- phytoplankton -- saline lake -- trophic interaction -- Russian Federation -- algae -- Bacteria (microorganisms) -- Cyanobacteria -- Lyngbya -- Lyngbya contorta
Аннотация: The paper summarises the results of a three-year research study (European Union Grant: INTAS 97-0519) aimed at investigating the planktonic populations and trophic organization of the Lake Shira ecosystem - a saline lake in Khakasia, Siberia. The lake exhibits a stable summer-autumn stratification of the chemical-biological components. The mechanisms responsible for the 'blooming' of phytoplankton in the deeper layers were investigated in greater detail, using data from both field and laboratory experiments. The spectra of nutrition were examined to estimate the relationships between the specific growth rates of the hydrobionts and the influence of the limiting factors: light, nutrients. The observed heterotrophic capability of a metalimnetic phytoplankton population might help explain the development in the deeper waters of Lyngbya contorta. The scheme of trophic interactions was put up, based on the assessment of the carbon pools and carbon flows in the pelagic zone of the lake. A mathematical model of the vertical structure of the lake's plankton populations was constructed, using the ecosystem description and data of vertical turbulent diffusion. The role of light and nutrient limitations and grazing mortality in forming the vertical inhomogeneities, particularly in lowering the depth of the maximal cyanobacterial biomass, has been demonstrated. The theoretical curves for the stratification of chemical and biological parameters have been brought in conformity with the field observations, e.g. for the different patterns of the peaks, and for the biomass maxima of cyanobacteria, purple and green sulphur bacteria, oxygen, and hydrogen sulphide. The calculations revealed that for an adequate assessment of the parameters for the hydrogen sulphide zone it is necessary to introduce flows of allochthonous organic matter. Based on the form of the sulphur distribution curve, the allochthonous input of organic matter and the inflow of hydrogen sulphide from the bottom have been theoretically discriminated for the first time. It has also been ascertained that irrespective of the depth the allochthonous substances limiting bacterial growth, the bacteria are uniformly distributed over depth and can serve as an indicator of the presence of limitation (the effect of autostabilisation in space). Of indisputable interest to limnology are the specific methods developed for understanding the functioning of Lake Shira ecosystem. These include the autostabilisation of the limiting factors, the on-the-spot fluorescent method of determining the three classes of microalgae, the algal mixotrophy and the planktonic population interactions and feedbacks, and development of a more sensitive, bioluminescent method for mapping the nonhomogeneities. Owing to a balanced combination of classical approaches (field observations, in situ data on production-decomposition) and the more recent ones (satellite monitoring, biophysical methods of estimating interactions of populations, mathematical models based on the field and experimental data), many of the structural-function relationships in the ecosystem can now be explained, and the models can provide 'mutual control and mutual agreement' between the data collected using different approaches.

Scopus
Держатели документа:
Institute of Biophysics SB RAS, 660036 Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Degermendzhy, A.G.; Gulati, R.D.

Найти похожие
3.


   
    Formation of the vertical heterogeneity in the Lake Shira ecosystem: The biological mechanisms and mathematical model / A. G. Degermendzhy [et al.] // Aquatic Ecology. - 2002. - Vol. 36, Is. 2. - P271-297, DOI 10.1023/A:1015621508971 . - ISSN 1386-2588
Кл.слова (ненормированные):
Hydrogen sulphide -- Phytoplankton -- Stratification control -- Sulphate-reducing bacteria -- Sulphur cycle -- Vertical model -- biological production -- community structure -- ecosystem modeling -- nutrient cycling -- plankton -- saline lake -- seasonal variation -- vertical distribution -- Russian Federation -- algae -- Arctodiaptomus -- Bacteria (microorganisms) -- Calanoida -- Chlorophyta -- Copepoda -- Crustacea -- Cyanobacteria -- Dictyosphaerium -- Lyngbya -- Lyngbya contorta
Аннотация: Data on the seasonal changes in vertical heterogeneity of the physical-chemical and biological parameters of the thermally stratified Shira Lake ecosystem (Khakasia, Siberia) in 1996-2000 have been analyzed. The interaction mechanisms involving: (1) The plankton populations in aerobic and anaerobic zones, involving the cycling of carbon and sulphur, (2) the primary production limitation (by light and phosphorus) and inhibition (by light), and (3) the kinetic characteristics of plankton populations have been elucidated. A mathematical model of the vertical structure of the lake's plankton populations, based on the ecosystem description and on vertical turbulent diffusion of the matter, has been constructed. The green alga Dictyosphaerium tetrachotomum (Chlorophyta) and the cyanobacterium Lyngbya contorta (Cyanophyta), which dominated the phytoplankton biomass, were taken as oxygen producers. Arctodiaptomus salinus (a calanoid copepod) has been assumed as the main grazer in Shira Lake as it dominated the zooplankton biomass. Four groups of microorganisms involved in the sulphur cycle formation have been distinguished: sulphur, sulphur purple, sulphur green and SRB. H2S is oxidized to sulphate (only the green sulphur bacteria oxidize it to sulphur), and sulphate is reduced to H2S, forming neither sulphur nor its water-soluble compounds. The role of grazing, light and nutrient limitation, in forming the vertical inhomogeneities, particularly in lowering the depth of the maximal cyanobacterial biomass, has been demonstrated. When the model takes into account both light limitation and nutrient limitation of algal growth by P and consumption of algae by crustaceans: (a) in the scenario where the P is formed only by the cycling and decomposition of autochthonous organic matter, both the green algae and cyanobacteria are eliminated; (b) in the scenario involving an additional P flux in the deep water layers the peak of the cyanobacteria is at a depth of 10 m, and its amplitude is close to the one observed in the lake. The position of the peak remains stable owing to the 'double' limitation mechanism: light 'from above' and P 'from below'. Another mechanism responsible for the deep position of the peak of cyanobacteria was analyzed mathematically based on the model involving the experimentally proven assumption of the growth inhibition by light in the epilimnion and the light limitation in the hypolimnion. The main result is: the peak is positioned stable at its depth and does not change with time. The analytical and numerical calculations made for this positioning mechanism yielded the formulae relating the depth of the maximum of algal biomass, the 'width' of the peak base and the peak amplitude and a number of parameters (algae elimination, turbulent diffusion coefficient, sedimentation rate, light extinction coefficient and light intensity). The theoretical curves for the stratification of chemical and biological parameters have been brought in conformity with field observations, e.g. for the different patterns for the peaks, and the biomass maxima of cyanobacteria, purple and green sulphur bacteria, oxygen, and hydrogen sulphide. The calculations revealed that for an adequate assessment of the parameters for the hydrogen sulphide zone it is necessary to introduce flows of allochthonous organic matter. For the first time, theoretically, based on the form of the sulphur distribution curve, the allochthonous input of organic matter and the inflow of hydrogen sulphide from the bottom have been discriminated. The theoretical limit for the depth up to which the hydrogen-sulphide zone can ascend under the impact of allochthonous organic loading, has been determined.

Scopus
Держатели документа:
Institute of Biophysics of SB RAS, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Degermendzhy, A.G.; Belolipetsky, V.M.; Zotina, T.A.; Gulati, R.D.

Найти похожие
4.


   
    Physicochemical properties of multicomponent poly(hydroxyalkanoates) / T. G. Volova, P. V. Mironov, A. D. Vasil'ev // Biophysics. - 2007. - Vol. 52, Is. 3. - P293-297, DOI 10.1134/S0006350907030062 . - ISSN 0006-3509
Кл.слова (ненормированные):
Hydroxyhexanoate -- Hydroxyvalerate -- Poly(hydroxybutyrate) -- Bacteria (microorganisms) -- Cupriavidus necator -- Insectivora
Аннотация: The properties of new five-component poly(hydroxyalkanoates) (PHA) formed by short-and medium-chain monomers synthesized by the bacterium Wautersia eutropha B5786 were studied by X-ray diffraction, IR spectroscopy, differential thermal analysis, and viscometry. The degree of crystallinity of PHA decreased from 72 to 57% as the molar fraction of hydroxyhexanoate increased from 2.5 to 18.0 mol%. The melting temperature (T m) and decomposition temperature (T d) of the multicomponent PHA are lower than those for poly(hydroxybutyrate), whose T m and T d are 168-170 and 260-265В°C, respectively. Both parameters of the multicomponent PHA decrease to 156 and 252В°C, respectively, as the hydroxyhexanoate mole fraction is raised. The effect of hydroxyhexanoate on the physicochemical properties of the PHA is similar to that of hydroxyvalerate observed previously. В© 2007 Pleiades Publishing, Inc.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
Siberian State Technological University, Krasnoyarsk 660049, Russian Federation
Kirenskii Institute of Physics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.G.; Mironov, P.V.; Vasil'ev, A.D.

Найти похожие
5.


   
    A hybrid PHB-hydroxyapatite composite for biomedical application: Production, in vitro and in vivo investigation / E. I. Shishatskaya, I. A. Khlusov, T. G. Volova // Journal of Biomaterials Science, Polymer Edition. - 2006. - Vol. 17, Is. 5. - P481-498, DOI 10.1163/156856206776986242 . - ISSN 0920-5063
Кл.слова (ненормированные):
Biocompatibility -- Hydroxyapatite (HA) -- PHB-hydroxyapatite composite -- Polyhydroxyalkanoate (PHA) -- Polyhydroxybutyrate (P(3HB)) -- Properties -- Biocompatibility -- Differential thermal analysis -- Electron microscopy -- Free energy -- Interfacial energy -- Physical properties -- Surface properties -- X ray analysis -- Biomedical application -- Physicochemical properties -- Polyhydroxyalkanoate (PHA) -- Polyhydroxybutyrate (PHB) -- Hydroxyapatite -- hydroxyapatite -- poly(3 hydroxybutyric acid) -- polymer -- biomaterial -- hydroxybutyric acid -- adhesion -- animal cell -- animal tissue -- article -- biomedicine -- bone marrow cell -- cell differentiation -- cell growth -- chemical structure -- composite material -- controlled study -- crystallization -- decomposition -- electron microscopy -- in vitro study -- in vivo study -- melting point -- mouse -- nonhuman -- ossification -- osteoblast -- physical chemistry -- priority journal -- rat -- strength -- structure analysis -- surface property -- synthesis -- temperature measurement -- thermal analysis -- tissue engineering -- wettability -- animal -- biomechanics -- bioremediation -- bone prosthesis -- cattle -- cell culture -- chemistry -- cytology -- differential scanning calorimetry -- drug effect -- human -- materials testing -- prostheses and orthoses -- scanning electron microscopy -- standard -- Wistar rat -- Murinae -- Animals -- Biocompatible Materials -- Biodegradation, Environmental -- Biomechanics -- Bone Substitutes -- Cattle -- Cells, Cultured -- Differential Thermal Analysis -- Durapatite -- Humans -- Hydroxybutyrates -- Materials Testing -- Microscopy, Electron, Scanning -- Osteoblasts -- Prostheses and Implants -- Rats -- Rats, Wistar -- Surface Properties
Аннотация: Samples of a hybrid composite of polyhydroxybutyrate (PHB), a biodegradable polyester, and hydroxyapatite (HA), with different PHB/HA ratios, have been prepared using mechanical-physical method. Electron microscopy, X-ray structure analysis and differential thermal analysis have been used to investigate the structure and physicochemical properties of the composite, depending on the PHB/HA ratio. The properties of the surface of the HA-loaded composite are significantly different from those of the pure polymer. As the HA percentage in the composite increases, free interface energy, the cohesive force, i.e., the strength of the adhesive bond between the composite surface and the water phase, and surface wettability increase. The HA percentage of the composite does not influence its melting temperature, but affects the temperature for the onset of decomposition: as the HA content increases from 0 to 10% (w/w), Td decreases from 260В°C to 225В°C. The degree of crystallinity of PHB/HA increases from 77% to 89% with an increase in the HA fraction from 10% to 50%. Functional properties of the composites have been investigated in vitro and in vivo. The best parameters of growth and differentiation of murine marrow osteoblasts are registered on PHB/HA samples containing 10% and 20% HA. In ectopic bone formation assay it has been proven that the hybrid PHB/HA composites can function as scaffolds and that bone tissue develops on their surface and in pores. В© VSP 2006.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 60036, Russian Federation
Tomsk State University, Tomsk 634021, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Shishatskaya, E.I.; Khlusov, I.A.; Volova, T.G.

Найти похожие
6.


   
    Physicochemical properties of two-component polyhydroxyalkanoates, 3-hydroxybutyrate-3-hydroxyvalerate copolymers / T. G. Volova [et al.] // Biophysics. - 2004. - Vol. 49, Is. 6. - P934-942 . - ISSN 0006-3509
Кл.слова (ненормированные):
Hydroxybutyrate-hydroxyvalerate copolymers -- Physicochemical properties -- Polyhydroxyalkanoates -- Structure -- Bacteria (microorganisms) -- Cupriavidus necator
Аннотация: A series of two-component polyhydroxyalkanoates composed of hydroxybutyrate-hydroxyvalerate copolymers with different monomer ratio was obtained with the use of bacteria Ralstonia eutropha B5786. The properties of the polyhydroxyalkanoates in comparison with the homopolymer of hydroxybutyric acid were studied by X-ray diffraction analysis, IR spectroscopy, differential thermal analysis, and viscometry. The ratio of crystalline to amorphous phase in the copolymers tends to unity with increasing hydroxyvalerate content. This is accompanied by a decrease in the degree of crystallinity of the copolymers from 70-80 to 45-50%, the dependence is virtually linear within the range, of hydroxyvalerate mole fraction from several to 25-30 mol%. Thermal characteristics, melting temperature (Tm) and decomposition temperature (Td), of the polyhydroxyalkanoate copolymers are lower than those for polyhydroxybutyrate, whose Tm and Td are 168-170 and 260-265В°C, respectively. Both parameters decrease to 150-160 and 200-220В°C, respectively, when the hydroxyvalerate mole fraction is raised. No distinct correlation between polymer composition and molecular weight has been revealed. Copyright В© 2004 by MAIK "Nauka/Interperiodica".

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Siberian State Technological University, Krasnoyarsk, 660049, Russian Federation
Kirenskii Institute of Physics, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.G.; Plotnikov, V.F.; Shishatskaya, E.I.; Mironov, P.V.; Vasil'ev, A.D.

Найти похожие
7.


   
    Biological and physicochemical methods for utilization of plant wastes and human exometabolites for increasing internal cycling and closure of life support systems / I. G. Zolotukhin [et al.] // Advances in Space Research. - 2005. - Vol. 35, Is. 9 SPEC. ISS. - P1559-1562, DOI 10.1016/j.asr.2005.01.006 . - ISSN 0273-1177
Кл.слова (ненормированные):
BLSS -- Desalting -- Higher plants -- NaCl utilization -- SLS -- Biomass -- Crops -- Decomposition -- Electrodialysis -- Harvesting -- Metabolites -- Soils -- Wastes -- BLSS -- Higher plants -- NaCl utilization -- SLS -- Plants (botany) -- Biomass -- Decay -- Deionization -- Harvesting -- Plants -- Soil -- Wastes -- Wheat -- sodium chloride -- article -- biomass -- bioremediation -- culture medium -- feces -- growth, development and aging -- human -- metabolism -- methodology -- microbiology -- microclimate -- urine -- waste management -- wheat -- Biodegradation, Environmental -- Biomass -- Culture Media -- Ecological Systems, Closed -- Feces -- Humans -- Life Support Systems -- Sodium Chloride -- Soil Microbiology -- Triticum -- Urine -- Waste Management
Аннотация: Wheat was cultivated on soil-like substrate (SLS) produced by the action of worms and microflora from the inedible biomass of wheat. After the growth of the wheat crop, the inedible biomass was restored in SLS and exposed to decomposition ("biological" combustion) and its mineral compounds were assimilated by plants. Grain was returned to the SLS in the amount equivalent to human solid waste produced by consumption of the grain. Human wastes (urine and feces) after physicochemical processing turned into mineralized form (mineralized urine and mineralized feces) and entered the plants' nutrient solution amounts equal to average daily production. Periodically (once every 60-70 days) the nutrient solution was partly (up to 50%) desalinated by electrodialysis. Due to this NaCl concentration in the nutrient solution was sustained at a fixed level of about 0.26%. The salt concentrate obtained could be used in the human nutrition through NaCl extraction and the residuary elements were returned through the mineralized human liquid wastes into matter turnover. The control wheat cultivation was carried out on peat with use of the Knop nutrient solution. Serial cultivation of several wheat vegetations within 280 days was conducted during the experiment. Grain output varied and yield/harvest depended, in large part, upon the amount of inedible biomass returned to SLS and the speed of its decomposition. After achieving a stationary regime, (when the quantity of wheat inedible biomass utilized during vegetation in SLS is equal to the quantity of biomass introduced into SLS before vegetation) grain harvest in comparison with the control was at most 30% less, and in some cases was comparable to the control harvest values. The investigations carried out on the wheat example demonstrated in principle the possibility of long-term functioning of the LSS photosynthesizing link based on optimizations of biological and physicochemical methods of utilization of the human and plants wastes. The possibilities for the use of these technologies for the creation integrated biological-physicochemical LSS with high closure degree of internal matter turnover are discussed in this paper. В© 2005 Published by Elsevier Ltd on behalf of COSPAR.

Scopus
Держатели документа:
Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Akademgorodok, Krasnoyarsk 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Zolotukhin, I.G.; Tikhomirov, A.A.; Kudenko, Yu.A.; Gribovskaya, I.V.

Найти похожие
8.


   
    The possible way of introducing mineral elements of liquid human wastes into the material cycle in biological life support systems / A. A. Tikhomirov [et al.] // International Astronautical Federation - 55th International Astronautical Congress 2004. - 2004. - Vol. 3: International Astronautical Federation - 55th International Astronautical Congress 2004 (4 October 2004 through 8 October 2004, Vancouver) Conference code: 69653. - P1442-1448
Кл.слова (ненормированные):
Biomass -- Body fluids -- Hydrogen peroxide -- Life support systems (spacecraft) -- Solid wastes -- Biological life support systems -- Intrasystem material cycle -- Liquid human wastes -- Plant biomass -- Waste management
Аннотация: Along with the atmosphere, water and food regeneration processes in biological life support systems it is important to provide units and links responsible for utilization of unused plant biomass, human wastes and returning, if possible, the most of wastes into the intrasystem material cycle. The experience on construction of biological life support systems (BLSS) gained by the Institute of Biophysics SB RAS (Krasnoyarsk, Russia) allows us to suggest constructing an integrated biological-physical-chemical life support system with the biological unit predominating. It is possibly to partially mineralize urine and solid wastes by "wet incineration" by hydrogen peroxide in electric field. We suggest decomposing urea by a urease-enzymatic method using soybean or canavalia flour containing sufficient amount of urease. Consumption of 1.5 g of flour for decomposition of urea in daily urine and the possibility of producing flour from soybeans and canavalia grown inside the system make this method of urea decomposition rather prospective. Further ammonia distillation using the nitrification unit and evaporation of solution would make possible to return nitrogen and water back into the intrasystem cycle. Probably, in long-duration space expeditions the utilization of urine would be confined only by extraction of nitrogen and water from urine with further removal of dry residue to the stock, as the problem of returning sodium chloride into the intrasystem cycling has not been solved yet. As all biogenic elements contained in urine (except nitrogen) get lost at that, the solution of the problem with introducing NaCl and mineral elements into the cycle with the help of halophyte plants Salicornia europaea are of sufficient interest. This work presents the experimental results of growing Salicornia europaea on model solutions containing biogenic elements in the amounts equivalent to their content in urine and on urine, which undergone physically-chemically treatment by peroxide and ammonia distillation after urease-enzymatic decomposition. Taking into consideration that the mineral elements content in urine can vary, 2 variants of model solutions were used. In the first variant the content of P was 8-fold, S - 7-fold, K - 8-fold higher than in Knop's solution; the content of Ca and Mg almost complied with that in Knop's solution. In the variant P was 12-fold, S - 17-fold, K - 17-fold, Ca - 6-fold and Mg was 8-fold higher than in Knop's solution. The content of N and NaCl in both variants was the same and constituted 0.18 g/l and 10 g/l respectively. The results of carried experiments showed that growing plants on urine treated in the above-mentioned way is possible; though the productivity of plants would be less than on model solutions. The reasons of plant productivity drop and the possible ways of their removal have been discussed.

Scopus
Держатели документа:
Institute of Biophysics, SB, RAS, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tikhomirov, A.A.; Gitelson, J.I.; Ushakova, S.A.; Kovaleva, N.P.; Tikhomirova, N.A.; Gribovskaya, I.V.

Найти похожие
9.


   
    Experimental and mathematical models for small aqueous closed ecosystems with spatially separated components / T. I. Pisman [et al.] // Advances in Space Research. - 1999. - Vol. 24, Is. 3. - P361-366, DOI 10.1016/S0273-1177(99)00486-X . - ISSN 0273-1177
Кл.слова (ненормированные):
carbon dioxide -- nitrogen -- oxygen -- quaternary ammonium derivative -- aquatic environment -- artificial ecosystem -- ecological modeling -- trophic interaction -- animal -- article -- biological model -- Candida -- Chlorella -- fermentation -- mathematics -- metabolism -- microclimate -- Paramecium -- photosynthesis -- Animals -- Candida -- Carbon Dioxide -- Chlorella -- Ecological Systems, Closed -- Fermentation -- Mathematics -- Models, Biological -- Nitrogen -- Oxygen -- Paramecium -- Photosynthesis -- Quaternary Ammonium Compounds
Аннотация: Experimental and theoretical models of closed 'autotroph-heteretroph' (chlorella-yeast, chlorella- protozoa) ecosystems with spatially separated components have been created and studied. The chart of flows and interaction of components of gas-closed 'chlorella-yeast' system have formed the basis describe mathematically the functioning of the given system, experimental results have been found to agree with computer solution of the problem in terms of quality. Investigation of the experimental model of the 'producer-consumer' trophic chain demonstrated the role of protozoa in nitrogen turnover. 'Production-decomposition' and 'production-grazing-decomposition' cycle models has been theoretically analyzed and compared. The predator has been shown to be a more intensive mineralizer than the reducer component.

Scopus
Держатели документа:
Institute of Biophysics (Russian Academy of Sciences, Siberian Branch), Krasnoyarsk 6600036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Pisman, T.I.; Pechurkin, N.S.; Babkin, A.V.; Somova, L.A.; Sarangova, A.B.

Найти похожие
10.


   
    Microbial processes of the carbon and sulfur cycles in Lake Shira (Khakasia) / N. V. Pimenov [и др.] // Mikrobiologiya. - 2003. - Vol. 72, Is. 2. - С. 259-267 . - ISSN 0026-3656
Кл.слова (ненормированные):
Anoxygenic photosynthesis -- Lake Shira -- Production and oxidation of methane -- Purple sulfur bacteria -- Sulfate reduction -- Bacteria (microorganisms) -- Chromatiaceae -- Lamprocystis -- Proteobacteria -- Thiocapsa -- carbon -- fresh water -- methane -- sulfate -- sulfur -- article -- Chromatiaceae -- comparative study -- metabolism -- microbiology -- oxidation reduction reaction -- photosynthesis -- Russian Federation -- Carbon -- Chromatiaceae -- Fresh Water -- Methane -- Oxidation-Reduction -- Photosynthesis -- Russia -- Sulfates -- Sulfur
Аннотация: Microbiological and biogeochemical studies of the meromictic saline Lake Shira (Khakasia) were conducted. In the upper part of the hydrogen-sulfide zone, at a depth of 13.5-14 m, there was a pale pink layer of water due to the development of purple bacteria (6 ? 10 5 cells/ml), which were assigned by their morphological and spectral characteristics to Lamprocystis purpureus (formerly Amoebobacter purpurea). In August, the production of organic matter (OM) in Lake Shira was estimated to be 943 mg C/(m 2 day). The contribution of anoxygenic photosynthesis was insignificant (about 7% of the total OM production). The share of bacterial chemosynthesis was still less (no more than 2%). In the anaerobic zone, the community of sulfate-reducing bacteria played a decisive role in the terminal decomposition of OM. The maximal rates of sulfate reduction were observed in the near-bottom water (114 ?g S/(1 day)) and in the surface layer of bottom sediments (901 ?g S/(dm 3 day)). The daily expenditure of C org for sulfate reduction was 73% of C org formed daily in the processes of oxygenic and anoxygenic photosynthesis and bacterial chemosynthesis. The profile of methane distribution in the water column and bottom sediments was typical of meromictic reservoirs. The methane content in the water column increased beginning with the thermocline (7-8 m), and reached maximum values in the near-bottom water (17 ?l/l). In bottom sediments, the greatest methane concentrations (57 ?l/l) were observed in the surface layer (0-3 cm). The integral rate of methane formation in the water column and bottom sediments was almost an order of magnitude higher than the rate of its oxidation by aerobic and anaerobic methanotrophic microorganisms.

Scopus
Держатели документа:
Institute of Microbiology, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7, k. 2, Moscow, 117312, Russian Federation
Tomsk State University, Tomsk, Russian Federation
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Pimenov, N.V.; Rusanov, I.I.; Karnachuk, O.V.; Rogozin, D.Yu.; Bryantseva, I.A.; Lunina, O.N.; Yusupov, S.K.; Parnachev, V.P.; Ivanov, M.V.

Найти похожие
11.


   
    Microbial processes of the carbon and sulfur cycles in Lake Shira (Khakasia) / N. V. Pimenov [et al.] // Microbiology. - 2003. - Vol. 72, Is. 2. - P221-229, DOI 10.1023/A:1023228316838 . - ISSN 0026-2617
Кл.слова (ненормированные):
Anoxygenic photosynthesis -- Lake Shira -- Production and oxidation of methane -- Purple sulfur bacteria -- Sulfate reduction -- Bacteria (microorganisms) -- Chromatiaceae -- Lamprocystis purpurea -- Proteobacteria -- Thiocapsa
Аннотация: Microbiological and biogeochemical studies of the meromictic saline Lake Shira (Khakasia) were conducted. In the upper part of the hydrogen-sulfide zone, at a depth of 13.5-14 m, there was a pale pink layer of water due to the development of purple bacteria (6 ? 105 cells/ml), which were assigned by their morphological and spectral characteristics to Lamprocystis purpurea (formerly Amoebobacter purpureus). In August, the production of organic matter (OM) in Lake Shira was estimated to be 943 mg C/(m2 day). The contribution of anoxygenic photosynthesis was insignificant (about 7% of the total OM production). The share of bacterial chemosynthesis was still less (no more than 2%). In the anaerobic zone, the community of sulfate-reducing bacteria played a decisive role in the terminal decomposition of OM. The maximal rates of sulfate reduction were observed in the near-bottom water (114 ?g S/(1 day)) and in the surface layer of bottom sediments (901 ?g S/(dm3 day)). The daily expenditure of Corg for sulfate reduction was 73% of Corg formed daily in the processes of oxygenic and anoxygenic photosynthesis and bacterial chemosynthesis. The profile of methane distribution in the water column and bottom sediments was typical of meromictic reservoirs. The methane content in the water column increased beginning with the thermocline (7-8 m) and reached maximum values in the near-bottom water (17 ?l/l). In bottom sediments, the greatest methane concentrations (57 ?l/l) were observed in the surface layer (0-3 cm). The integral rate of methane formation in the water column and bottom sediments was almost an order of magnitude higher than the rate of its oxidation by aerobic and anaerobic methanotrophic microorganisms.

Scopus
Держатели документа:
Institute of Microbiology, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7, k. 2, Moscow, 117312, Russian Federation
Tomsk State University, Tomsk, Russian Federation
Institute of Biophysics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Pimenov, N.V.; Rusanov, I.I.; Karnachuk, O.V.; Rogozin, D.Yu.; Bryantseva, I.A.; Lunina, O.N.; Yusupov, S.K.; Parnachev, V.P.; Ivanov, M.V.

Найти похожие
12.


   
    A glucose-utilizing strain, cupriavidus euthrophus B-10646: Growth kinetics, characterization and synthesis of multicomponent PHAs / T. Volova [et al.] // PLoS ONE. - 2014. - Vol. 9, Is. 2, DOI 10.1371/journal.pone.0087551 . - ISSN 1932-6203
Кл.слова (ненормированные):
3 hydroxybutyrate 3 hydroxyhexanoate 3 hydroxyvalerate copolymer -- 3 hydroxybutyrate 4 hydroxybutyrate 3 hydroxyvalerate copolymer -- copolymer -- gamma butyrolactone -- glucose -- hexanoic acid -- poly(3 hydroxybutyric acid) -- polyhydroxyalkanoic acid -- polystyrene -- propionic acid -- unclassified drug -- valeric acid -- animal cell -- article -- bacterial growth -- bacterium culture -- cell adhesion -- cell proliferation -- crystal structure -- culture optimization -- Cupriavidus -- Cupriavidus euthrophus -- decomposition -- elasticity -- film -- glucose utilization -- kinetics -- mechanics -- melting point -- mouse -- nonhuman -- nucleotide sequence -- physical chemistry -- polymerization -- strength -- synthesis
Аннотация: This study investigates kinetic and production parameters of a glucose-utilizing bacterial strain, C. eutrophus B-10646, and its ability to synthesize PHA terpolymers. Optimization of a number of parameters of bacterial culture (cell concentration in the inoculum, physiological activity of the inoculum, determined by the initial intracellular polymer content, and glucose concentration in the culture medium during cultivation) provided cell concentrations and PHA yields reaching 110 g/L and 80%, respectively, under two-stage batch culture conditions. Addition of precursor substrates (valerate, hexanoate, propionate, ?-butyrolactone) to the culture medium enabled synthesis of PHA terpolymers, P(3HB/3HV/4HB) and P(3HB/ 3HV/3HHx), with different composition and different molar fractions of 3HB, 3HV, 4HB, and 3HHx. Different types of PHA terpolymers synthesized by C. eutrophus B-10646 were used to prepare films, whose physicochemical and physical-mechanical properties were investigated. The properties of PHA terpolymers were significantly different from those of the P3HB homopolymer: they had much lower degrees of crystallinity and lower melting points and thermal decomposition temperatures, with the difference between these temperatures remaining practically unchanged. Films prepared from all PHA terpolymers had higher mechanical strength and elasticity than P3HB films. In spite of dissimilar surface structures, all films prepared from PHA terpolymers facilitated attachment and proliferation of mouse fibroblast NIH 3T3 cells more effectively than polystyrene and the highly crystalline P3HB. Copyright: © 2014 Volova et al.

Scopus
Держатели документа:
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Moscow, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T.; Kiselev, E.; Vinogradova, O.; Nikolaeva, E.; Chistyakov, A.; Sukovatiy, A.; Shishatskaya, E.

Найти похожие
13.


   
    Zooplankton carcasses and non-predatory mortality in freshwater and inland sea environments [Text] / K. W. Tang [et al.] // J. Plankton Res. - 2014. - Vol. 36, Is. 3. - P597-612, DOI 10.1093/plankt/fbu014. - Cited References: 168. - This work was supported by the Humboldt Foundation (Fellowship for Experienced Researchers to K. W. T.); Siberian Branch of Russian Academy of Science (Partner Project No. 8 to M. I. G. and O.P.D.); Federal Tasks of Ministry of Education and Science of Russian Federation (project B-15 of Siberian Federal University to M. I. G.); the Leibniz-Association (SAW-2011-IGB-2 to G. K.); and the German Science foundation (KI-853/7-1 to G. K., GR1540/20-1 to H. P. G.). The manuscript benefited from the constructive comments from three reviewers. . - ISSN 0142-7873. - ISSN 1464-3774
РУБ Marine & Freshwater Biology + Oceanography
Рубрики:
SMALL-SCALE TURBULENCE
   NON-CALANOID COPEPODS

   AGGREGATES LAKE SNOW

   DAPHNIA-GALEATA

   MIDSUMMER DECLINE

   NONCONSUMPTIVE MORTALITY

   CRUSTACEAN ZOOPLANKTON

   CLIMATE-CHANGE

   VERTICAL-DISTRIBUTION

   POPULATION-GROWTH

Кл.слова (ненормированные):
carbon flux -- inland waters -- lakes -- live -- dead sorting -- non-predatory mortality -- zooplankton carcasses
Аннотация: Zooplankton carcasses are ubiquitous in marine and freshwater systems, implicating the importance of non-predatory mortality, but both are often overlooked in ecological studies compared with predatory mortality. The development of several microscopic methods allows the distinction between live and dead zooplankton in field samples, and the reported percentages of dead zooplankton average 11.6 (minimum) to 59.8 (maximum) in marine environments, and 7.4 (minimum) to 47.6 (maximum) in fresh and inland waters. Common causes of non-predatory mortality among zooplankton include senescence, temperature change, physical and chemical stresses, parasitism and food-related factors. Carcasses resulting from non-predatory mortality may undergo decomposition leading to an increase in microbial production and a shift in microbial composition in the water column. Alternatively, sinking carcasses may contribute significantly to vertical carbon flux especially outside the phytoplankton growth seasons, and become a food source for the benthos. Global climate change is already altering freshwater ecosystems on multiple levels, and likely will have significant positive or negative effects on zooplankton non-predatory mortality. Better spatial and temporal studies of zooplankton carcasses and non-predatory mortality rates will improve our understanding of this important but under-appreciated topic.

WOS
Держатели документа:
[Tang, Kam W.] Virginia Inst Marine Sci, Coll William & Mary, Gloucester Point, VA 23062 USA
[Tang, Kam W.] Swansea Univ, Dept Biosci, Swansea SA2 8PP, W Glam, Wales
[Gladyshev, Michail I.
Dubovskaya, Olgo P.] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
[Gladyshev, Michail I.
Dubovskaya, Olgo P.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Kirillin, Georgiy] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Ecohydrol, D-12587 Berlin, Germany
[Grossart, Hans-Peter] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Expt Limmol, D-16775 Stechlin, Germany
[Grossart, Hans-Peter] Univ Potsdam, Inst Biochem & Biol, D-14469 Potsdam, Germany
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Tang, K.W.; Gladyshev, M.I.; Dubovskaya, O.P.; Kirillin, G...; Grossart, H.P.; Humboldt Foundation; Ministry of Education and Science of Russian Federation (Siberian Federal University) [B-15]; Leibniz-Association [SAW-2011-IGB-2]; German Science foundation [KI-853/7-1, GR1540/20-1]

Найти похожие
14.


   
    A Glucose-Utilizing Strain, Cupriavidus euthrophus B-10646: Growth Kinetics, Characterization and Synthesis of Multicomponent PHAs [Text] / T. . Volova [et al.] // PLoS One. - 2014. - Vol. 9, Is. 2. - Ст. e87551, DOI 10.1371/journal.pone.0087551. - Cited References: 64. - This study was financially supported by Project "Biotechnologies of novel biomaterials: Innovative Biopolymers and Biomedicine Devices" (Agreement No. 11.G34.31.0013 with Amendment No. 1 of 15 February 2013) in accordance with Resolution No. 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning." The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. . - ISSN 1932-6203
РУБ Multidisciplinary Sciences
Рубрики:
RALSTONIA-EUTROPHA
   BIODEGRADABLE POLYHYDROXYALKANOATES

   AEROMONAS-HYDROPHILA

   ESCHERICHIA-COLI

   MOLECULAR-WEIGHT

   SURFACE-ENERGY

   NORTH PACIFIC

   TERPOLYESTER

   BIOSYNTHESIS

   POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE-CO-3-HYDROXYHEXANOATE)

Аннотация: This study investigates kinetic and production parameters of a glucose-utilizing bacterial strain, C. eutrophus B-10646, and its ability to synthesize PHA terpolymers. Optimization of a number of parameters of bacterial culture (cell concentration in the inoculum, physiological activity of the inoculum, determined by the initial intracellular polymer content, and glucose concentration in the culture medium during cultivation) provided cell concentrations and PHA yields reaching 110 g/L and 80%, respectively, under two-stage batch culture conditions. Addition of precursor substrates (valerate, hexanoate, propionate, c-butyrolactone) to the culture medium enabled synthesis of PHA terpolymers, P(3HB/3HV/4HB) and P(3HB/3HV/3HHx), with different composition and different molar fractions of 3HB, 3HV, 4HB, and 3HHx. Different types of PHA terpolymers synthesized by C. eutrophus B-10646 were used to prepare films, whose physicochemical and physicalmechanical properties were investigated. The properties of PHA terpolymers were significantly different from those of the P3HB homopolymer: they had much lower degrees of crystallinity and lower melting points and thermal decomposition temperatures, with the difference between these temperatures remaining practically unchanged. Films prepared from all PHA terpolymers had higher mechanical strength and elasticity than P3HB films. In spite of dissimilar surface structures, all films prepared from PHA terpolymers facilitated attachment and proliferation of mouse fibroblast NIH 3T3 cells more effectively than polystyrene and the highly crystalline P3HB.

WOS
Держатели документа:
[Volova, Tatiana
Kiselev, Evgeniy
Nikolaeva, Elena
Sukovatiy, Aleksey
Shishatskaya, Ekaterina] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia
[Volova, Tatiana
Vinogradova, Olga
Shishatskaya, Ekaterina] Siberian Fed Univ, Krasnoyarsk, Russia
[Chistyakov, Anton] Russian Acad Sci, Shemyakin Ovchinnikov Inst Bioorgan Chem, Moscow, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Volova, T...; Kiselev, E...; Vinogradova, O...; Nikolaeva, E...; Chistyakov, A...; Sukovatiy, A...; Shishatskaya, E...; Project "Biotechnologies of novel biomaterials: Innovative Biopolymers and Biomedicine Devices" [11.G34.31.0013]

Найти похожие
15.


   
    Structures of the Ca2+-regulated photoprotein obelin Y138F mutant before and after bioluminescence support the catalytic function of a water molecule in the reaction [Text] / P. V. Natashin [et al.] // Acta Crystallogr. Sect. D-Biol. Crystallogr. - 2014. - Vol. 70. - P720-732, DOI 10.1107/S1399004713032434. - Cited References: 71. - We acknowledge the use of beamline BL17U1 at the Shanghai Synchrotron Radiation Facility, China. This work was supported by RFBR grants 12-04-91153, 12-04-00131 and the China-Russia International Collaboration grant from the Chinese Academy of Sciences and NSFC, by the Programs of the Government of the Russian Federation 'Measures to Attract Leading Scientists to Russian Educational Institutions' (grant 11.G34.31.0058) and 'Molecular and Cellular Biology' of the RAS, the President of the Russian Federation 'Leading Science School' (grant 3951.2012.4). PVN and EVE were supported by RFBR grant 14-04-31092. . - ISSN 0907-4449. - ISSN 1399-0047
РУБ Biochemical Research Methods + Biochemistry & Molecular Biology + Biophysics + Crystallography
Рубрики:
AEQUORIN BIOLUMINESCENCE
   SEQUENCE-ANALYSIS

   CRYSTAL-STRUCTURE

   CA2+-BINDING PHOTOPROTEIN

   VIOLET BIOLUMINESCENCE

   CALCIUM CONCENTRATION

   ANGSTROM RESOLUTION

   RECOMBINANT OBELIN

   MNEMIOPSIS-LEIDYI

   EXCITED-STATES

Аннотация: Ca2+-regulated photoproteins, which are responsible for light emission in a variety of marine coelenterates, are a highly valuable tool for measuring Ca2+ inside living cells. All of the photoproteins are a single-chain polypeptide to which a 2-hydroperoxycoelenterazine molecule is tightly but noncovalently bound. Bioluminescence results from the oxidative decarboxylation of 2-hydroperoxycoelenterazine, generating protein-bound coelenteramide in an excited state. Here, the crystal structures of the Y138F obelin mutant before and after bioluminescence are reported at 1.72 and 1.30 angstrom resolution, respectively. The comparison of the spatial structures of the conformational states of Y138F obelin with those of wild-type obelin gives clear evidence that the substitution of Tyr by Phe does not affect the overall structure of both Y138F obelin and its product following Ca2+ discharge compared with the corresponding conformational states of wild-type obelin. Despite the similarity of the overall structures and internal cavities of Y138F and wild-type obelins, there is a substantial difference: in the cavity of Y138F obelin a water molecule corresponding to W2 in wild-type obelin is not found. However, in Ca2+-discharged Y138F obelin this water molecule now appears in the same location. This finding, together with the observed much slower kinetics of Y138F obelin, clearly supports the hypothesis that the function of a water molecule in this location is to catalyze the 2-hydroperoxycoelenterazine decarboxylation reaction by protonation of a dioxetanone anion before its decomposition into the excited-state product. Although obelin differs from other hydromedusan Ca2+-regulated photoproteins in some of its properties, they are believed to share a common mechanism.

wos
Держатели документа:
[Natashin, Pavel V.
Ding, Wei
Liu, Zhi-Jie] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100080, Peoples R China
[Natashin, Pavel V.
Eremeeva, Elena V.
Markova, Svetlana V.
Vysotski, Eugene S.] Russian Acad Sci, Inst Biophys, Photobiol Lab, Siberian Branch, Krasnoyarsk, Russia
[Natashin, Pavel V.
Eremeeva, Elena V.
Markova, Svetlana V.
Vysotski, Eugene S.] Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Lab Bioluminescence Biotechnol, Chair Biophys, Krasnoyarsk, Russia
[Ding, Wei] Chinese Acad Sci, Inst Biophys, Ctr Biol Imaging, Beijing 100080, Peoples R China
[Lee, John] Univ Georgia, Dept Biochem Mol Biol, Athens, GA 30602 USA
[Liu, Zhi-Jie] Shanghai Tech Univ, Human Inst, Shanghai, Peoples R China
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Natashin, P.V.; Ding, W...; Eremeeva, E.V.; Markova, S.V.; Lee, J...; Vysotski, E.S.; Liu, Z.J.; RFBR [12-04-91153, 12-04-00131, 14-04-31092]; Chinese Academy of Sciences; NSFC; Programs of the Government of the Russian Federation 'Measures to Attract Leading Scientists to Russian Educational Institutions' [11.G34.31.0058]; RAS; Russian Federation 'Leading Science School' [3951.2012.4]

Найти похожие
16.


   
    Microbial processes of the carbon and sulfur cycles in Lake Shira (Khakasia) [Text] / N. V. Pimenov [et al.] // Microbiology. - 2003. - Vol. 72, Is. 2. - P. 221-229, DOI 10.1023/A:1023228316838. - Cited References: 17 . - ISSN 0026-2617
РУБ Microbiology
Рубрики:
BACTERIA
   NOV

Кл.слова (ненормированные):
Lake Shira -- anoxygenic photosynthesis -- purple sulfur bacteria -- sulfate reduction -- production and oxidation of methane
Аннотация: Microbiological and biogeochemical studies of the meromictic saline Lake Shira (Khakasia) were conducted. In the upper part of the hydrogen-sulfide zone, at a depth of 13.5-14 m, there was a pale pink layer of water due to the development of purple bacteria (6 x 10(5) cells/ml), which were assigned by their morphological and spectral characteristics to Lamprocystis purpurea (formerly Amoebobacter purpureus). In August, the production of organic matter (OM) in Lake Shira was estimated to be 943 mg C/(m(2) day). The contribution of anoxygenic photosynthesis was insignificant (about 7% of the total OM production). The share of bacterial chemosynthesis was still less (no more than 2%). In the anaerobic zone, the community of sulfate-reducing bacteria played a decisive role in the terminal decomposition of OM. The maximal rates of sulfate reduction were observed in the near-bottom water (114 mug S/(1 day)) and in the surface layer of bottom sediments (901 mug S/(dm(3) day)). The daily expenditure of C-org for sulfate reduction was 73% of C-org formed daily in the processes of oxygenic and anoxygenic photosynthesis and bacterial chemosynthesis. The profile of methane distribution in the water column and bottom sediments was typical of meromictic reservoirs. The methane content in the water column increased beginning with the thermocline (7-8 m) and reached maximum values in the near-bottom water (17 mul/l). In bottom sediments, the greatest methane concentrations (57 mul/l) were observed in the surface layer (0-3 cm). The integral rate of methane formation in the water column and bottom sediments was almost an order of magnitude higher than the rate of its oxidation by aerobic and anaerobic methanotrophic microorganisms.

WOS
Держатели документа:
Russian Acad Sci, Inst Microbiol, Moscow 117312, Russia
Tomsk VV Kuibyshev State Univ, Tomsk, Russia
Russian Acad Sci, Siberian Div, Inst Biophys, Krasnoyarsk 660036, Russia
ИБФ СО РАН : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Pimenov, N.V.; Rusanov, I.I.; Karnachuk, O.V.; Rogozin, D.Y.; Bryantseva, I.A.; Lunina, O.N.; Yusupov, S.K.; Parnachev, V.P.; Ivanov, M.V.

Найти похожие
17.


   
    A continual model of soil organic matter transformations based on a scale of transformation rate [Text] / S. I. Bartsev, A. A. Pochekutov // Ecol. Model. - 2015. - Vol. 302. - P25-28, DOI 10.1016/j.ecolmodel.2015.01.030. - Cited References:18. - This work is supported by Basic Research Program of the Presidium of RAS Project No. 12 and Integration Project of SB RAS No. 21. . - ISSN 0304-3800. - ISSN 1872-7026
РУБ Ecology
Рубрики:
CARBON
   DECOMPOSITION

   DYNAMICS

   NITROGEN

   DECAY

Кл.слова (ненормированные):
Soil organic matter -- Continual model of soil -- Soil formation
Аннотация: The study proposes a model of transformation and decomposition of soil organic matter, based on using the rate of matter transformation as a continual scale of its transformation degree. The model is represented by one partial derivative differential equation that has an analytical solution. This model has only two adjustable parameters, while the number of experimentally determined parameters depends on how detailed the description of the plant litter is supposed to be. The model has been tested, and model parameters have been evaluated by comparing model predictions with the literature data on the stock of soil organic matter in different types of ecosystems. (C) 2015 Elsevier B.V. All rights reserved.

WOS,
Scopus
Держатели документа:
Inst Biophys SB RAS, Krasnoyarsk, Russia
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Krasnoyarsk, Russia

Доп.точки доступа:
Bartsev, Sergey I.; Pochekutov, Aleksei A.; Basic Research Program of the Presidium of RAS Project [12]; Integration Project of SB RAS [21]

Найти похожие
18.


   
    Estimating In Situ Zooplankton Non-Predation Mortality in an Oligo-Mesotrophic Lake from Sediment Trap Data: Caveats and Reality Check [Text] / O. P. Dubovskaya [et al.] // PLoS One. - 2015. - Vol. 10, Is. 7. - Ст. e0131431, DOI 10.1371/journal.pone.0131431. - Cited References:60. - This work was supported by joint projects of Russian Foundation for Basic Research and Belarusian Republican Foundation for Fundamental Research (No 14-05-90005-Bel-a to O.P.D and A.P.T., and No B14R-066 to Zh.B.). K.W.T. was supported by a Humboldt Fellowship for Experienced Researchers (Germany), M.I.G. was supported by Russian Federal Tasks of Fundamental Research (project No. 51.1.1), H.P.G. and G.K. were supported by grants from the German Science Foundation (GR 1540/20-1 and KI-853/8-1). . - ISSN 1932-6203
РУБ Multidisciplinary Sciences
Рубрики:
FRESH-WATER
   NONCONSUMPTIVE MORTALITY

   NONPREDATORY MORTALITY

Аннотация: Background Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass mortality of zooplankton has been reported repeatedly. One way to estimate non-predation mortality rate is to measure the removal rate of carcasses, for which sinking is the primary removal mechanism especially in quiescent shallow water bodies. Objectives and Results We used sediment traps to quantify in situ carcass sinking velocity and non-predation mortality rate on eight consecutive days in 2013 for the cladoceran Bosmina longirostris in the oligo-mesotrophic Lake Stechlin; the outcomes were compared against estimates derived from in vitro carcass sinking velocity measurements and an empirical model correcting in vitro sinking velocity for turbulence resuspension and microbial decomposition of carcasses. Our results show that the latter two approaches produced unrealistically high mortality rates of 0.58-1.04 d(-1), whereas the sediment trap approach, when used properly, yielded a mortality rate estimate of 0.015 d(-1), which is more consistent with concurrent population abundance data and comparable to physiological death rate from the literature. Ecological implications Zooplankton carcasses may be exposed to water column microbes for days before entering the benthos; therefore, non-predation mortality affects not only zooplankton population dynamics but also microbial and benthic food webs. This would be particularly important for carbon and nitrogen cycles in systems where recurring mid-summer decline of zooplankton population due to non-predation mortality is observed.

WOS,
Scopus
Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Swansea Univ, Dept Biosci, Swansea SA2 8PP, W Glam, Wales.
Swansea Univ, Ctr Sustainable Aquat Res, Swansea SA2 8PP, W Glam, Wales.
MU, Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Ecohydrol, D-12587 Berlin, Germany.
Natl Acad Sci Belarus Bioresources, Sci & Pract Ctr, Minsk 220072, Byelarus.
Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Expt Limnol, D-16775 Neuglobsow, Germany.
Univ Potsdam, Inst Biochem & Biol, D-14469 Potsdam, Germany.

Доп.точки доступа:
Dubovskaya, Olga P.; Tang, Kam W.; Gladyshev, Michail I.; Kirillin, Georgiy; Buseva, Zhanna; Kasprzak, Peter; Tolomeev, Aleksandr P.; Grossart, Hans-Peter; Russian Foundation for Basic Research; Belarusian Republican Foundation for Fundamental Research [14-05-90005-Bel-a, B14R-066]; Humboldt Fellowship for Experienced Researchers (Germany); Russian Federal Tasks of Fundamental Research [51.1.1]; German Science Foundation [GR 1540/20-1, KI-853/8-1]

Найти похожие
19.


   
    Properties of a novel quaterpolymer P(3HB/4HB/3HV/3HHx) / T. G. Volova [et al.] // Polymer. - 2016. - Vol. 101. - P67-74, DOI 10.1016/j.polymer.2016.08.048 . - ISSN 0032-3861
Кл.слова (ненормированные):
Physicochemical and mechanical properties -- Polyhydroxyalkanoates -- Quaterpolymers -- Biocompatibility -- Cell culture -- Chain length -- Chains -- Decomposition -- 3-Hydroxyhexanoate -- Degrees of crystallinity -- Elongation at break -- Physico-chemical and mechanical properties -- Polyhydroxyalkanoates -- Quaterpolymers -- Short chain lengths -- Thermal decomposition temperature -- Film preparation
Аннотация: Cupriavidus eutrophus В10646 was used to synthesize a series of polyhydroxyalkanoate (PHA) quaterpolymers composed of the short-chain-length 3-hydroxybutyrate (3HB), 4-hydroxybutyrate (4HB), and 3-hydroxyvalerate (3HV) and the medium-chain-length 3-hydroxyhexanoate (3HHx). The molar fraction of 3HB in the quaterpolymers varied between 63.5 and 93.1 mol.%, 3HV – between 1.1 and 24.6 mol.%, 4HB – between 2.4 and 15.6 mol.%, and 3HHx – between 0.4 and 4.8 mol.%. The properties of PHA quaterpolymers were significantly different from those of the P(3HB) homopolymer: they had much lower degrees of crystallinity (up to 30–45%), and lower melting points and thermal decomposition temperatures, with the interval between these temperatures remaining practically unchanged. Films prepared from PHA quaterpolymers were rougher and more porous than P(3HB) films; they showed higher values of elongation at break (up to 6–113%), i.e. were more elastic. Films prepared from PHA quaterpolymers were biocompatible and had no toxic effect on mouse fibroblast NIH 3T3 cells. © 2016 Elsevier Ltd

Scopus,
Смотреть статью,
WOS
Держатели документа:
Siberian Federal University, 79 Svobodnyi Avenue, Krasnoyarsk, Russian Federation
Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
Institute of Chemistry and Chemical Technology of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
L.V. Kirensky Institute of Physics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T. G.; Vinogradova, O. N.; Zhila, N. O.; Peterson, I. V.; Kiselev, E. G.; Vasiliev, A. D.; Sukovatiy, A. G.; Shishatskaya, E. I.

Найти похожие
20.


   
    Quantitative description of vertical organic matter distribution in real soil profiles by means a simple continuous model / S. I. Bartsev, A. A. Pochekutov // Ecol. Model. - 2017. - Vol. 360. - P219-222, DOI 10.1016/j.ecolmodel.2017.06.016 . - ISSN 0304-3800
Кл.слова (ненормированные):
Continuous model of soil -- Soil organic matter -- Soil profile -- Vertical soil organic matter distribution -- Biogeochemistry -- Biological materials -- Decay (organic) -- Organic compounds -- Continuous modeling -- Different soils -- Partial decomposition -- Quantitative correspondence -- Quantitative description -- Soil organic matters -- Soil profiles -- Vertical distributions -- Soils
Аннотация: Previously we have proposed a continuous model of soil organic matter (SOM) transformation which was based on describing only the most general notions of this process – a gradual increase in SOM stability toward transformation, occurring concurrently with partial decomposition of SOM. The model provided qualitative description of vertical SOM distributions in different soils. In the present study this model has been modified to make the description more realistic. The study demonstrates quantitative correspondence between the calculated and averaged observed vertical distributions of SOM for different biomes. © 2017 Elsevier B.V.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation
Institute of Fundamental Biology and Biotechnology of Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Bartsev, S. I.; Pochekutov, A. A.

Найти похожие
 1-20    21-28 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)