Главная
Авторизация
Фамилия
Пароль
 

Базы данных


Труды сотрудников ИБФ СО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=formulations<.>)
Общее количество найденных документов : 33
Показаны документы с 1 по 20
 1-20    21-33 
1.


   
    Microbial polymers as a degradable carrier for pesticide delivery / O. N. Voinova [et al.] // Applied Biochemistry and Microbiology. - 2009. - Vol. 45, Is. 4. - P384-388, DOI 10.1134/S0003683809040061 . - ISSN 0003-6838
Аннотация: The possibility of use of polyhydroxyalkanoates (PHAs), biodegradable microbial polyesters, as a carrier for pesticides (?-hexachlorcyclohexane and lindane) for targeted and controlled delivery of these compounds to soil was investigated. The kinetics of polymer degradation and the dynamics of pesticide release from the extended-release formulations was studied. It is shown that pesticides embedded in a degradable polymer (PHA) carrier are released gradually and slowly, without surges, as the polymer is degraded by the soil micro-flora. The microbial soil component actively responded to the addition of the polymer as an additional nutrient substrate: the latter was degraded and then utilized. The rate of the pesticide release to the soil can be regulated by varying the polymer-pesticide ratio. В© 2009 Pleiades Publishing, Ltd.

Scopus
Держатели документа:
Institute of Biophysics, Siberian Branch Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Institute of Forestry, Siberian Branch Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Voinova, O.N.; Kalacheva, G.S.; Grodnitskaya, I.D.; Volova, T.G.

Найти похожие
2.


   
    Degradable Polyhydroxyalkanoates as Herbicide Carriers [Text] / S. V. Prudnikova [et al.] // J. Polym. Environ. - 2013. - Vol. 21, Is. 3. - P675-682, DOI 10.1007/s10924-012-0561-z. - Cited References: 31. - We thank Dr. Christopher Brigham for critical review of the manuscript prior to submission. The study was supported by the project initiated by the Government of the Russian Federation for governmental support of scientific research conducted under the guidance of leading scientists at Russian institutions of higher learning (Agreement No. 11.G34.31.0013). . - 8. - ISSN 1566-2543
РУБ Engineering, Environmental + Polymer Science
Рубрики:
CONTROLLED-RELEASE
   SOIL

   BIODEGRADATION

   POLYESTERS

   PESTICIDE

   POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE)

   MICROSPHERES

   BACTERIA

Кл.слова (ненормированные):
Herbicide -- Haloxyfop-P-methyl -- Zellek Super -- Sustained-release formulations -- Polyhydroxyalkanoates -- Plant growth suppression
Аннотация: The biodegradable polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) has been used to design experimental sustained-release formulations of the herbicide Zellek Super in the form of films and microgranules. The kinetics of polymer degradation and the dynamics of herbicide release show that the rate and extent of herbicide release from the polymer matrix into the soil depends on the geometry of the carrier and the proportion of the pesticide loaded into it (polymer/pesticide mass ratio). Experiments with the creeping bentgrass (Agrostis stolonifera L.) show that the formulations of the herbicide Zellek Super constructed as microgranules and films can be successfully used to suppress the growth of grasses. This study is the first to demonstrate that biodegradable polyhydroxyalkanoates can be used effectively to construct environmentally friendly sustained-release PHA-herbicide systems that can be placed into the soil together with seeds.

Держатели документа:
[Prudnikova, S. V.
Sinskey, A. J.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Boyandin, A. N.
Kalacheva, G. S.] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia
[Sinskey, A. J.] MIT, Cambridge, MA 02139 USA : 660036, Красноярск, Академгородок, д. 50, стр. 50

Доп.точки доступа:
Prudnikova, S.V.; Boyandin, A.N.; Kalacheva, G.S.; Sinskey, A.J.; Government of the Russian Federation [11.G34.31.0013]

Найти похожие
3.


   
    Constructing herbicide metribuzin sustained-release formulations based on the natural polymer poly-3-hydroxybutyrate as a degradable matrix / T. G. Volova [et al.] // J. Environ. Sci. Health Part B Pestic. Food Contamin. Agric. Wastes. - 2016. - Vol. 51, Is. 2. - P113-125, DOI 10.1080/03601234.2015.1092833 . - ISSN 0360-1234
Кл.слова (ненормированные):
controlled release -- embedding -- metribuzin -- Poly(3-hydroxybutyrate) -- slow-release formulations -- Granulation -- Pelletizing -- Weed control -- Controlled release -- embedding -- Metribuzin -- Poly-3-hydroxybutyrate -- Slow release -- Herbicides
Аннотация: Polymer poly(3-hydroxybutyrate) [P(3HB)] has been used as a matrix in slow-release formulations of the herbicide metribuzin (MET). Physical P(3HB)/MET mixtures in the form of solutions, powders, and emulsions were used to construct different metribuzin formulations (films, granules, pellets, and microparticles). SEM, X-Ray, and DSC proved the stability of these formulations incubated in sterile water in vitro for long periods of time (up to 49 days). Metribuzin release from the polymer matrix has been also studied. By varying the shape of formulations (microparticles, granules, films, and pellets), we were able to control the release time of metribuzin, increasing or decreasing it. © 2016 Taylor & Francis Group, LLC.

Scopus,
WOS
Держатели документа:
Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T. G.; Zhila, N. O.; Vinogradova, O. N.; Nikolaeva, E. D.; Kiselev, E. G.; Shumilova, A. A.; Shershneva, A. M.; Shishatskaya, E. I.
Свободных экз. нет
Найти похожие
4.


   
    Characterization of biodegradable poly-3-hydroxybutyrate films and pellets loaded with the fungicide tebuconazole [Text] / T. Volova [et al.] // Environ. Sci. Pollut. Res. - 2016. - Vol. 23, Is. 6. - P5243-5254, DOI 10.1007/s11356-015-5739-1. - Cited References:33. - This study was supported by the Russian Science Foundation (grant no. 14-26-00039). . - ISSN 0944-1344. - ISSN 1614-7499
РУБ Environmental Sciences
Рубрики:
CONTROLLED-RELEASE
   MICROBIAL-DEGRADATION

   BRASSICA-NAPUS

   OILSEED RAPE

Кл.слова (ненормированные):
Poly(3-hydroxybutyrate) -- Tebuconazole -- Slow-release formulations -- Controlled release -- Antifungal activity
Аннотация: Biodegradable polymer poly(3-hydroxybutyrate) (P3HB) has been used as a matrix to construct slow-release formulations of the fungicide tebuconazole (TEB). P3HB/TEB systems constructed as films and pellets have been studied using differential scanning calorimetry, X-ray structure analysis, and Fourier transform infrared spectroscopy. TEB release from the experimental formulations has been studied in aqueous and soil laboratory systems. In the soil with known composition of microbial community, polymer was degraded, and TEB release after 35 days reached 60 and 36 % from films and pellets, respectively. That was 1.23 and 1.8 times more than the amount released to the water after 60 days in a sterile aqueous system. Incubation of P3HB/TEB films and pellets in the soil stimulated development of P3HB-degrading microorganisms of the genera Pseudomonas, Stenotrophomonas, Variovorax, and Streptomyces. Experiments with phytopathogenic fungi F. moniliforme and F. solani showed that the experimental P3HB/TEB formulations had antifungal activity comparable with that of free TEB.

WOS
Держатели документа:
RAS, SB, Inst Biophys, 50-50 Akad Gorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Volova, Tatiana; Zhila, Natalia; Vinogradova, Olga; Shumilova, Anna; Prudnikova, Svetlana; Shishatskaya, Ekaterina; Russian Science Foundation [14-26-00039]

Найти похожие
5.


   
    Constructing Slow-Release Formulations of Metribuzin Based on Degradable Poly(3-hydroxybutyrate) / A. N. Boyandin [et al.] // J. Agric. Food Chem. - 2016. - Vol. 64, Is. 28. - P5625-5632, DOI 10.1021/acs.jafc.5b05896 . - ISSN 0021-8561
Кл.слова (ненормированные):
controlled release -- degradable poly(3-hydroxybutyrate) -- herbicide -- metribuzin -- release kinetics -- Polyethylene glycols -- Weed control -- Controlled release -- Environmental release -- Herbicide release -- Laboratory system -- Matrix formulation -- Metribuzin -- Poly-3-hydroxybutyrate -- Release kinetics -- Herbicides
Аннотация: Experimental formulations of herbicide metribuzin embedded in matrices of degradable natural polymer poly(3-hydroxybutyrate) (P3HB) and its composites with poly(ethylene glycol) (PEG), poly-?-caprolactone (PCL), and wood powder have been prepared in the form of pressed pellets containing 75% polymeric basis (pure P3HB or its composite with a second component at a ratio of 7:3) and 25% metribuzin. Incubation of formulations in soil laboratory systems led to the degradation of the matrix and herbicide release. The most active release of metribuzin (about 60% of the embedded herbicide over 35 days) was detected for the P3HB/PEG carrier compared to the P3HB, P3HB/wood, and P3HB/PCL forms (30-40%). Thus, the study shows that herbicide release can be controlled by the matrix formulation. Metribuzin formulations exerted a significant herbicidal effect on the plant Agrostis stolonifera, used as a weed plant model. Application of these long-term formulations will make it possible to reduce environmental release of chemicals, which will restrict the rate of their accumulation in trophic chains of ecosystems and abate their adverse effects on the biosphere. © 2016 American Chemical Society.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Boyandin, A. N.; Zhila, N. O.; Kiselev, E. G.; Volova, T. G.

Найти похожие
6.


   
    Biodegradable poly-3-hydroxybutyrate as a fertiliser carrier / T. G. Volova, S. V. Prudnikova, A. N. Boyandin // J. Sci. Food Agric. - 2016. - P4183-4193, DOI 10.1002/jsfa.7621 . - ISSN 0022-5142
Кл.слова (ненормированные):
biodegradable polymers -- controlled delivery systems -- fertilisers -- polyhydroxyakanoates
Аннотация: BACKGROUND: Increasing use of mineral fertilisers can lead to accumulation of fertilisers in soil, water and foodstuffs. One of the approaches to preventing these problems is to develop controlled release forms of fertilisers. RESULTS: Experimental formulations of the nitrogen fertiliser urea loaded in a degradable matrix of the natural polymer poly-3-hydroxybutyrate (P3HB) in the form of films, pellets and coated granules were constructed and investigated. Nitrogen release into soil occurred as the polymer was degraded, and it was dependent on the geometry of the carrier and the amount of nitrogen loaded in it, showing that nitrogen release can last for 30 days or longer and that release rates can be controlled by varying the fabrication technique employed. P3HB/urea formulations have a favourable effect on the soil microbial community. The use of embedded urea has a beneficial influence on the growth of creeping bentgrass (Agrostis stolonifera) and lettuce (Latuca sativa) and reduces removal of nitrogen with drain water. CONCLUSION: The slow-release nitrogen formulations developed in this study can be buried in soil together with seeds preventing nitrogen deficiency. The use of such slow-release formulations can decrease the amounts of chemicals in the environment and prevent their adverse effects on the biosphere. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry

Scopus,
Смотреть статью,
WOS
Держатели документа:
Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T. G.; Prudnikova, S. V.; Boyandin, A. N.

Найти похожие
7.


   
    Poly(3-hydroxybutyrate)/metribuzin formulations: characterization, controlled release properties, herbicidal activity, and effect on soil microorganisms / T. Volova [et al.] // Environ. Sci. Pollut. Res. - 2016. - Vol. 23, Is. 23. - P23936-23950, DOI 10.1007/s11356-016-7636-7. - Cited References:41. - This study was supported by the Russian Science Foundation (grant no. 14-26-00039). . - ISSN 0944-1344. - ISSN 1614-7499
РУБ Environmental Sciences
Рубрики:
METRIBUZIN RELEASE
   POLYHYDROXYALKANOATES

   POLYMER

   MATRIX

   PESTICIDES

Кл.слова (ненормированные):
Metribuzin -- Degradable poly-3-hydroxybutyrate -- Slow-release P(3HB)/MET -- formulations -- Release kinetics -- Agrostis stolonifera -- Setaria -- macrocheata
Аннотация: Slow-release formulations of the herbicide metribuzin (MET) embedded in the polymer matrix of degradable poly-3-hydroxybutyrate [P(3HB)] in the form of microparticles, films, microgranules, and pellets were developed and tested. The kinetics of polymer degradation, MET release, and accumulation in soil were studied in laboratory soil microecosystems with higher plants. The study shows that MET release can be controlled by using different techniques of constructing formulations and by varying MET loading. MET accumulation in soil occurs gradually, as the polymer is degraded. The average P(3HB) degradation rates were determined by the geometry of the formulation, reaching 0.17, 0.12, 0.04, and 0.05 mg/day after 60 days for microparticles, films, microgranules, and pellets, respectively. The herbicidal activities of P(3HB)/MET formulations and commercial formulation Sencor Ultra were tested on the Agrostis stolonifera and Setaria macrocheata plants. The parameters used to evaluate the herbicidal activity were plant density and the weight of fresh green biomass measured at days 10, 20, and 30 after sowing. All P(3HB)/MET formulations had pronounced herbicidal activity, which varied depending on MET loading and the stage of the experiment. In the early phases of the experiment, the herbicidal effect of P(3HB)/MET formulations with the lowest MET loading (10 %) was comparable with that of the commercial formulation. The herbicidal effect of P(3HB)/MET formulations with higher MET loadings (25 and 50 %) at later stages of the experiment were stronger than the effect of Sencor Ultra.

WOS,
Смотреть статью
Держатели документа:
Russian Acad Sci, Inst Biopshys, Siberian Branch, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, 79 Svobodny Ave, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Volova, Tatiana; Zhila, Natalia; Kiselev, Evgeniy; Prudnikova, Svetlana; Vinogradova, Olga; Nikolaeva, Elena; Shumilova, Anna; Shershneva, Anna; Shishatskaya, Ekaterina; Russian Science Foundation [14-26-00039]

Найти похожие
8.


   
    Efficacy of tebuconazole embedded in biodegradable poly-3-hydroxybutyrate to inhibit the development of Fusarium moniliforme in soil microecosystems / T. G. Volova [et al.] // Pest Manag. Sci. - 2017. - Vol. 73, Is. 5. - P925-935, DOI 10.1002/ps.4367. - Cited References:43. - This study was supported by the Russian Science Foundation (grant number 14-26-00039). The authors declare no competing financial interest. . - ISSN 1526-498X. - ISSN 1526-4998
РУБ Agronomy + Entomology
Рубрики:
CONTROLLED-RELEASE
   FUNGICIDE TEBUCONAZOLE

   BRASSICA-NAPUS

   OILSEED

Кл.слова (ненормированные):
tebuconazole -- poly-3-hydroxybutyrate -- degradation -- embedding -- tebuconazole release -- fungicidal effect
Аннотация: BACKGROUND: An important line of research is the development of a new generation of formulations with targeted and controlled release of the pesticide, using matrices made from biodegradable materials. In this study, slow-release formulations of the fungicide tebuconazole (TEB) have been prepared by embedding it into the matrix of poly-3-hydroxybutyrate (P3HB) in the form of films, microgranules and pellets. RESULTS: The average rates of P3HB degradation were determined by the geometry of the formulation, reaching, for 63 days, 0.095-0.116, 0.081-0.083 and 0.030-0.055 mg day(-1) for films, microgranules and pellets respectively. The fungicidal activity of P3HB/TEB against the plant pathogen Fusarium moniliforme was compared with that of the commercial formulation Raxil Ultra. A pronounced fungicidal effect of the experimental P3HB/TEB formulations was observed in 2-4 weeks after application, and it was retained for 8 weeks, without affecting significantly the development of soil aboriginal microflora. CONCLUSION: TEB release can be regulated by the process employed to fabricate the formulation and the fungicide loading, and the TEB accumulates in the soil gradually, as the polymer is degraded. The experimental forms of TEB embedded in the slowly degraded P3HB can be used as a basis for developing slow-release fungicide formulations. (c) 2016 Society of Chemical Industry

WOS,
Смотреть статью
Держатели документа:
Russian Acad Sci, Inst Biophys, Siberian Sect, 50-50 Akademgorodok, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.

Доп.точки доступа:
Volova, Tatiana G.; Prudnikova, Svetlana V.; Zhila, Natalia O.; Vinogradova, Olga N.; Shumilova, Anna A.; Nikolaeva, Elena D.; Kiselev, Evgeniy G.; Shishatskaya, Ekaterina I.; Russian Science Foundation [14-26-00039]

Найти похожие
9.


   
    Constructing Slow-Release Formulations of Ammonium Nitrate Fertilizer Based on Degradable Poly(3-hydroxybutyrate) / A. N. Boyandin [et al.] // J. Agric. Food Chem. - 2017. - Vol. 65, Is. 32. - P6745-6752, DOI 10.1021/acs.jafc.7b01217 . - ISSN 0021-8561
Кл.слова (ненормированные):
ammonium nitrate -- degradable poly-3-hydroxybutyrate -- embedding -- fillers -- nitrogen fertilizers -- tablets -- Chemical contamination -- Ecology -- Ecosystems -- Fertilizers -- Fillers -- Nitrates -- Plastic coatings -- Ammonium nitrate -- Ammonium nitrate fertilizers -- embedding -- In-laboratory experiments -- Poly-3-hydroxybutyrate -- Slow release fertilizers -- tablets -- Wheat (Triticum aestivum L.) -- Nitrogen fertilizers
Аннотация: The present study describes construction and investigation of experimental formulations of ammonium nitrate embedded in a matrix of degradable natural polymer poly-3-hydroxybutyrate [P(3HB)] and P(3HB) blended with wood flour shaped as tablets, some of them coated with P(3HB). Kinetics of ammonium release into soil as dependent on the composition of the polymer matrix was investigated in laboratory experiments. The rates of fertilizer release from formulations coated with a biopolymer layer were considerably (two months or longer) slower than the rates of fertilizer release from uncoated formulations, while release from polymer and composite (polymer/wood flour) formulations occurred with comparable rates. The use of the experimental formulations in laboratory ecosystems with wheat (Triticum aestivum L.) was more effective than application of free ammonium nitrate. The advantage of the slow-release fertilizer formulations is that they are buried in soil together with the seeds, and the fertilizer remains effective over the first three months of plant growth. The use of such slow-release formulations will reduce the amounts of chemicals released into the environment, which will curb their accumulation in food chains of ecosystems and mitigate their adverse effects on the biosphere. © 2017 American Chemical Society.

Scopus,
Смотреть статью
Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Federal Research Center, Krasnoyarsk Science Center SB RAS, 50/50 Akademgorodok, Krasnoyarsk, Russian Federation
Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, Russian Federation

Доп.точки доступа:
Boyandin, A. N.; Kazantseva, E. A.; Varygina, D. E.; Volova, T. G.

Найти похожие
10.


   
    Herbicidal activity of slow-release herbicide formulations in wheat stands infested by weeds / N. Zhila [et al.] // J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes. - 2017. - Vol. 52, Is. 10. - P729-735, DOI 10.1080/03601234.2017.1356668. - Cited References:23. - The research was supported by the state budget allocated to the fundamental research at the Russian Academy of Sciences (project no. AAAA-A17-117013050028-8). . - ISSN 0360-1234. - ISSN 1532-4109
РУБ Environmental Sciences + Public, Environmental & Occupational Health
Рубрики:
POLYHYDROXYALKANOATES
   POLY-3-HYDROXYBUTYRATE

   FILMS

Кл.слова (ненормированные):
Metribuzin -- tribenuron-methyl -- poly-3-hydroxybutyrate -- slow-release -- formulations -- herbicidal activity -- wheat -- weeds
Аннотация: The present study reports the herbicidal activity of metribuzin and tribenuron-methyl embedded in the degradable matrix of natural poly-3-hydroxybutyrate [P(3HB)/MET and P(3HB)/TBM]. The developed formulations were constructed as films and microgranules, which were tested against the weeds such as white sweet clover Melilotus albus and lamb's quarters Chenopodium album in the presence of soft spring wheat (Triticum aestivum, cv. Altaiskaya 70) as the subject crop for investigation. The activity was measured in laboratory scale experiments by determining the density and weight of the vegetative organs of weeds. The study was also aimed at testing the effect of the experimental formulation on the growth of wheat crop as dependent on the method of herbicide delivery. The experimental MET and TBM formulations showed pronounced herbicidal activity against the weed species used in the study. The effectiveness of the experimental formulations in inhibiting weed growth was comparable to and, sometimes, higher than that of the commercial formulations (positive control). The amount of the biomass of the wheat treated with the experimental herbicide formulations was significantly greater than that of the wheat treated with commercial formulations.

WOS,
Смотреть статью
Держатели документа:
Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.

Доп.точки доступа:
Zhila, Natalia; Murueva, Anastasiya; Shershneva, Anna; Shishatskaya, Ekaterina; Volova, Tatiana; Russian Academy of Sciences [AAAA-A17-117013050028-8]

Найти похожие
11.


   
    Fungicidal activity of slow-release P(3HB)/TEB formulations in wheat plant communities infected by Fusarium moniliforme / T. Volova, S. Prudnikova, N. Zhila // Environ. Sci. Pollut. Res. - 2018. - Vol. 25, Is. 1. - P552-561, DOI 10.1007/s11356-017-0466-4. - Cited References:28. - The research was supported by the state budget allocated to the fundamental research at the Russian Academy of Sciences (project no AAA-A17-117013050028-8). . - ISSN 0944-1344. - ISSN 1614-7499
РУБ Environmental Sciences
Рубрики:
BIODEGRADABLE POLY-3-HYDROXYBUTYRATE
   TEBUCONAZOLE

Кл.слова (ненормированные):
Tebuconazole -- Poly-3-hydroxybutyrate -- Fungicidal effect -- Fusariummoniliforme -- Wheat plant communities -- Root rot
Аннотация: Fungicidal activity of experimental tebuconazole (TEB) formulations was investigated in laboratory soil ecosystems in wheat plant communities infected by Fusarium moniliforme. TEB was embedded in the matrix of poly-3-hydroxybutyrate, shaped as films and microgranules. These formulations were buried in the soil with wheat plants, and their efficacy was compared with that of commercial formulation Raxil and with the effect of pre-sowing treatment of seeds. In the experiment with the initially infected seeds and a relatively low level of natural soil infection caused by Fusarium fungi, the effects of the experimental P(3HB)/TEB formulations and Raxil were comparable. However, when the level of soil infection was increased by adding F. moniliforme spores, P(3HB)/TEB granules and films reduced the total counts of fungi and the abundance of F. moniliforme more effectively than Raxil. Seed treatment or soil treatment with Raxil solution showed an increase in the percentage of rot-damaged roots in the later stages of the experiment. In the early stage (between days 10 and 20), the percentage of rot-damaged roots in the soil with TEB embedded in the slowly degraded P(3HB) matrix was similar to that in the soil with Raxil. However, the efficacy of P(3HB)/TEB formulations lasted longer, and in later stages (between days 20 and 30), the percentage of rot-damaged roots in that group did not grow. In experiments with different TEB formulations and, hence, different fungicidal activities, the increase in plant biomass was 15-17 to 40-60% higher than in the groups where TEB was applied by using conventional techniques.

WOS,
Смотреть статью
Держатели документа:
Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.
RAS, Krasnoyarsk Sci Ctr, Fed Res Ctr, Inst Biophys SB,Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Volova, Tatiana G.; Prudnikova, Svetlana V.; Zhila, Natalia O.; Russian Academy of Sciences [AAA-A17-117013050028-8]

Найти похожие
12.


   
    Effects of water column processes on the use of sediment traps to measure zooplankton non-predatory mortality: a mathematical and empirical assessment / O. P. Dubovskaya [et al.] // J. Plankton Res. - 2018. - Vol. 40, Is. 1. - P91-106, DOI 10.1093/plankt/fbx066. - Cited References:49. - This work was a part of the joint German-Russian Project "Mortality of Zooplankton in lake ecosystems and its potential contribution to carbon mineralization in pelagic zone" supported by the German Research Foundation (DFG no. GR-1540/29-1) and the Russian Foundation for Basic Research (RFBR no. 16-54-12048). The work also was partly supported by Russian Federal Tasks of Fundamental Research (project no. 51.1.1) and by grant (no. 9249.2016.5) from the RF President Council on Grants for leading RF scientific schools. . - ISSN 0142-7873. - ISSN 1464-3774
РУБ Marine & Freshwater Biology + Oceanography
Рубрики:
NONCONSUMPTIVE MORTALITY
   CRUSTACEAN ZOOPLANKTON

   VERTICAL-DISTRIBUTION

Кл.слова (ненормированные):
zooplankton -- Arctodiaptomus salinus -- non-predatory mortality -- sediment -- trap -- carcasses -- stratified lake
Аннотация: Zooplankton populations can at times suffer mass mortality due to non-predatory mortality (NPM) factors, and the resulting carcasses can be captured by sediment traps to estimate NPM rate. This approach assumes sinking to be the primary process in removing carcasses, but in reality, carcasses can also be removed by ingestion, turbulent mixing and microbial degradation in the water column. We present mathematical formulations to calculate NPM from sediment trap data by accounting for carcass removal by processes in addition to sinking, and demonstrate their application in a study in Lake Shira, Russia. Carcass abundance of the major calanoid copepod Arctodiaptomus salinus decreased with depth, indicating the effect of carcass removal from the water column. The estimated NPM values (0.0003-0.103 d(-1)) were comparable with previously reported physiological death rates. We further used independent data to partition carcass removal due to detritivory, turbulent mixing and microbial degradation. Estimated ingestion by the amphipod Gammarus lacustris could account for the disappearance of copepod carcasses above the traps. Wind-driven turbulence could also extend the carcass exposure time to microbial degradation. Collectively, these water column processes would facilitate the remineralization of carcasses in the water column, and diminish the carcass carbon flux to the benthos.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Inst Biophys,Fed Res Ctr,Dept Expt Hydroecol, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, 79 Svobodny Ave, Krasnoyarsk 660041, Russia.
Leibniz Inst Freshwater Ecol & Inland Fisherie, Dept Ecohydrol, Muggelseedamm 310, D-12587 Berlin, Germany.
Natl Acad Sci Belarus Bioresources, Pract Ctr, Dept Hydrobiol, 27 Acad Skaya St, Minsk 220072, Byelarus.
Swansea Univ, Dept Biosci, Singleton Pk, Swansea SA2 8PP, W Glam, Wales.

Доп.точки доступа:
Dubovskaya, Olga P.; Tolomeev, Aleksandr P.; Kirillin, Georgiy; Buseva, Zhanna; Tang, Kam W.; Gladyshev, Michail I.; German Research Foundation (DFG) [GR-1540/29-1]; Russian Foundation for Basic Research (RFBR) [16-54-12048]; Russian Federal Tasks of Fundamental Research [51.1.1]; RF President Council on Grants for leading RF scientific schools [9249.2016.5]

Найти похожие
13.


   
    Antifungal activity of P3HB microparticles containing tebuconazole / A. M. Shershneva [et al.] // J. Environ. Sci. Health Part B Pestic. Food Contamin. Agric. Wastes. - 2019, DOI 10.1080/03601234.2018.1550299 . - Article in press. - ISSN 0360-1234
Кл.слова (ненормированные):
Antifungal activity -- encapsulation -- microparticles -- poly-3-hydroxybutyrate -- tebuconazole -- Agricultural chemicals -- Emulsification -- Encapsulation -- Fungicides -- Anti-fungal activity -- Average diameter -- Encapsulation efficiency -- Fusarium moniliforme -- Micro-particles -- Phytopathogenic fungi -- Poly-3-hydroxybutyrate -- Tebuconazole -- Fungi
Аннотация: In this study, tebuconazole (TEB)-loaded poly-3-hydroxybutyrate (P3HB)-based microparticles were developed and comprehensively characterized. TEB-loaded microparticles with the initial loading amounts of the fungicide of 10, 25, and 50% of the polymer mass (TEB 10, TEB 25, and TEB 50%) were prepared using emulsion technique. Encapsulation efficiency of TEB varied from 59 to 86%. As the loading amount was increased, the average diameter of microparticles increased too, from 41.3 to 71.7 µm, while zeta potential was not influenced by TEB loading, varying between –32.6 and –35.7 mV. TEB was gradually released from the microparticles to the model medium, and after 60 d, from 25 to 43% of TEB was released depending on the content of the encapsulated fungicide. The data obtained from in vitro TEB release were fitted to different mathematical models. It was shown that the release profiles of TEB could be best explained by the Zero-order, Higuchi, and Hixson–Crowell models. The antifungal activity of the P3HB/TEB microparticles against phytopathogenic fungi Fusarium moniliforme and Fusarium solani was demonstrated by in vitro tests conducted in Petri dishes. Thus, hydrophobic agrochemicals (TEB) can be effectively encapsulated into P3HB microparticles to construct slow-release formulations. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.

Scopus,
Смотреть статью,
WOS
Держатели документа:
Siberian Federal University, Institute of Fundamental Biology and Biotechnology, Krasnoyarsk, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Shershneva, A. M.; Murueva, A. V.; Zhila, N. O.; Volova, T. G.

Найти похожие
14.


   
    Constructing Slow-Release Fungicide Formulations Based on Poly(3-hydroxybutyrate) and Natural Materials as a Degradable Matrix / T. Volova [et al.] // J. Agric. Food Chem. - 2019. - Vol. 67, Is. 33. - P9220-9231, DOI 10.1021/acs.jafc.9b01634. - Cited References:52. - This study was financially supported by Project "Agro-preparations of the New Generation: A Strategy of Construction and Realization" (Agreement 074-02-2018-328) in accordance with Resolution 220 of the Government of the Russian Federation of April 9, 2010, "On Measures Designed To Attract Leading Scientists to the Russian Institutions of Higher Learning". . - ISSN 0021-8561. - ISSN 1520-5118
РУБ Agriculture, Multidisciplinary + Chemistry, Applied + Food Science &
Рубрики:
BIODEGRADABLE POLY-3-HYDROXYBUTYRATE
   CHITOSAN NANOPARTICLES

Кл.слова (ненормированные):
poly(3-hydroxybutyrate) -- fungicides -- slow-release formulations -- antifungal activity -- degradation -- fungicide release
Аннотация: Slow-release fungicide formulations (azoxystrobin, epoxiconazole, and tebuconazole) shaped as pellets and granules in a matrix of biodegradable poly(3-hydroxybutyrate) and natural fillers (clay, wood flour, and peat) were constructed. Infrared spectroscopy showed no formation of chemical bonds between components in the experimental formulations. The formulations of pesticides had antifungal activity against Fusarium verticillioides in vitro. A study of biodegradation of the experimental fungicide formulations in the soil showed that the degradation process was mainly influenced by the type of formulation without significant influence of the type of filler. More active destruction of the granules led to a more rapid accumulation of fungicides in the soil. The content of fungicides present in the soil as a result of degradation of the formulations and fungicide release was determined by their solubility. Thus, all formulations are able to function in the soil for a long time, ensuring gradual and sustained delivery of fungicides.

WOS,
Смотреть статью,
Scopus
Держатели документа:
Siberian Fed Univ, 79 Svobodnyi Ave, Krasnoyarsk 660041, Russia.
SB RAS, Inst Biophys, Fed Res Ctr Krasnoyarsk Sci Ctr SB RAS, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Mahatma Gandhi Univ, Int & Inter Univ Ctr Nanosci & Nanotechnol, Priyadarshini Hills, Kottayam 686560, Kerala, India.

Доп.точки доступа:
Volova, Tatiana; Prudnikova, Svetlana; Boyandin, Anatoly; Zhila, Natalia; Kiselev, Evgeniy; Shumilova, Anna; Baranovskiy, Sergey; Demidenko, Aleksey; Shishatskaya, Ekaterina; Thomas, Sabu; Project "Agro-preparations of the New Generation: A Strategy of Construction and Realization" [074-02-2018-328]; Resolution 220 of the Government of the Russian Federation of April 9, 2010, "On Measures Designed To Attract Leading Scientists to the Russian Institutions of Higher Learning"

Найти похожие
15.


   
    Constructing sustained-release herbicide formulations based on poly-3-hydroxybutyrate and natural materials as a degradable matrix / E. G. Kiselev, A. N. Boyandin, N. O. Zhila [et al.] // Pest Manag. Sci., DOI 10.1002/ps.5702. - Cited References:83. - This study was financially supported by the project 'Agropreparations of the new generation: a strategy of construction and realization' (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, 'On measures designed to attract leading scientists to the Russian institutions of higher learning'. . - ISSN 1526-498X. - ISSN 1526-4998
РУБ Agronomy + Entomology
Рубрики:
SOIL MICROBIAL COMMUNITY
   FENOXAPROP-P-ETHYL

   SLOW-RELEASE

   METRIBUZIN

Кл.слова (ненормированные):
degradation in soil -- fenoxaprop-P-ethyl -- herbicide release -- metribuzin -- physicochemical properties -- tribenuron-methyl
Аннотация: BACKGROUND The purpose of the present study was to develop ecofriendly herbicide formulations. Its main aim was to develop and investigate slow-release formulations of herbicides (metribuzin, tribenuron-methyl, and fenoxaprop-P-ethyl) of different structure, solubility, and specificity, which were loaded into a degradable matrix of poly-3-hydroxybutyrate (P(3HB)) blended with available natural materials (peat, clay, and wood flour). RESULTS Differences in the structure and physicochemical properties of the formulations were studied depending on the type of the matrix. Herbicide release and accumulation in soil were associated with the solubility of the herbicide. Fourier-transform infrared spectroscopy showed that no chemical bonds were formed between the components in the experimental formulations. Degradation of the formulations in agro-transformed soil in laboratory conditions was chiefly influenced by the shape of the specimens (granules or pellets) while the effect of the type of filler (peat, clay, or wood flour) was insignificant. The use of granules enabled more rapid accumulation of the herbicides in soil: their peak concentrations were reached after 3 weeks of incubation while the concentrations of the herbicides released from the pellets were the highest after 5-7 weeks. Loading of the herbicides into the polymer matrix composed of the slowly degraded P(3HB) and natural materials enabled both sustained function of the formulations in soil (lasting between 1.5 and >= 3 months) and stable activity of the otherwise rapidly inactivated herbicides such as tribenuron-methyl and fenoxaprop-P-ethyl. CONCLUSION The experimental herbicide formulations enabled slow release of the active ingredients to soil. (c) 2019 Society of Chemical Industry

WOS
Держатели документа:
Siberian Fed Univ, Sch Fundamental Biol & Biotechnol, Krasnoyarsk, Russia.
Inst Biophys SB RAS, Krasnoyarsk Sci Ctr SB RAS, Fed Res Ctr, Krasnoyarsk, Russia.
Mahatma Gandhi Univ, Int & Interuniv Ctr Nano Sci & Nano Technol, Kottayam, Kerala, India.

Доп.точки доступа:
Kiselev, Evgeniy G.; Boyandin, Anatoly N.; Zhila, Natalia O.; Prudnikova, Svetlana, V; Shumilova, Anna A.; Baranovskiy, Sergey, V; Shishatskaya, Ekaterina, I; Thomas, Sabu; Volova, Tatiana G.; Kiselev, Evgeniy; Boyandin, Anatoly; Government of the Russian Federation [074-02-2018-328, 220]

Найти похожие
16.


   
    Constructing sustained-release herbicide formulations based on poly-3-hydroxybutyrate and natural materials as a degradable matrix / E. G. Kiselev, A. N. Boyandin, N. O. Zhila [et al.] // Pest Manage. Sci. - 2019, DOI 10.1002/ps.5702 . - Article in press. - ISSN 1526-498X
Кл.слова (ненормированные):
degradation in soil -- fenoxaprop-P-ethyl -- herbicide release -- metribuzin -- physicochemical properties -- tribenuron-methyl
Аннотация: BACKGROUND: The purpose of the present study was to develop ecofriendly herbicide formulations. Its main aim was to develop and investigate slow-release formulations of herbicides (metribuzin, tribenuron-methyl, and fenoxaprop-P-ethyl) of different structure, solubility, and specificity, which were loaded into a degradable matrix of poly-3-hydroxybutyrate (P(3HB)) blended with available natural materials (peat, clay, and wood flour). RESULTS: Differences in the structure and physicochemical properties of the formulations were studied depending on the type of the matrix. Herbicide release and accumulation in soil were associated with the solubility of the herbicide. Fourier-transform infrared spectroscopy showed that no chemical bonds were formed between the components in the experimental formulations. Degradation of the formulations in agro-transformed soil in laboratory conditions was chiefly influenced by the shape of the specimens (granules or pellets) while the effect of the type of filler (peat, clay, or wood flour) was insignificant. The use of granules enabled more rapid accumulation of the herbicides in soil: their peak concentrations were reached after 3 weeks of incubation while the concentrations of the herbicides released from the pellets were the highest after 5–7 weeks. Loading of the herbicides into the polymer matrix composed of the slowly degraded P(3HB) and natural materials enabled both sustained function of the formulations in soil (lasting between 1.5 and ?3 months) and stable activity of the otherwise rapidly inactivated herbicides such as tribenuron-methyl and fenoxaprop-P-ethyl. CONCLUSION: The experimental herbicide formulations enabled slow release of the active ingredients to soil. © 2019 Society of Chemical Industry. © 2019 Society of Chemical Industry

Scopus
Держатели документа:
School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russian Federation
Federal Research Center “Krasnoyarsk Science Center SB RAS”, Institute of Biophysics SB RAS, Krasnoyarsk, Russian Federation
International and Interuniversity Centre for Nano Science and Nano Technology, Mahatma Gandhi University, Kottayam, Kerala, India

Доп.точки доступа:
Kiselev, E. G.; Boyandin, A. N.; Zhila, N. O.; Prudnikova, S. V.; Shumilova, A. A.; Baranovskiy, S. V.; Shishatskaya, E. I.; Thomas, S.; Volova, T. G.

Найти похожие
17.


   
    Thermal, mechanical and biodegradation studies of biofiller based poly-3-hydroxybutyrate biocomposites / S. Thomas, A. A. Shumilova, E. G. Kiselev [et al.] // Int. J. Biol. Macromol. - 2020. - Vol. 155. - P1373-1384, DOI 10.1016/j.ijbiomac.2019.11.112. - Cited References:38. - This studywas financially supported by Project "Agropreparations of the new generation: a strategy of construction and realization" (Agreement No 074-02-2018-328) in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning".; The surface of the samples was investigated using a scanning electron microscope Hitachi TM-3000 in the Joint Instrument Use Center at the Krasnoyarsk Scientific Center of Siberian Branch of Russian Academy of Sciences. . - ISSN 0141-8130. - ISSN 1879-0003
РУБ Biochemistry & Molecular Biology + Chemistry, Applied + Polymer Science
Рубрики:
FORMULATIONS
   POLYHYDROXYALKANOATES

   POLYHYDROXYBUTYRATE

   SOIL

Кл.слова (ненормированные):
Poly-3-hydroxybutyrate -- Biocomposite -- Physical properties -- Environmental -- degradation
Аннотация: Biodegradable poly-3-hydroxybutyrate [P(3HB)] and natural fillers - clay, peat, and birch wood flour - were used to prepare powdered composites to form pellets and granules. Pellets were produced by cold pressing of polymer and filler powder whereas granules were produced from the powders wetted with ethanol. Characterization techniques like IR spectroscopy, differential scanning calorimetry, X-ray analysis, mechanical analysis and electron microscopy were employed to study the properties of the initial P(3HB) and fillers and the composites. Analysis of the IR spectra of the composites showed the absence of chemical bonds between the components, i.e. the composites were physical mixtures. Young's moduli of the pellets prepared from initial materials varied considerably, and the highest value was obtained for P(3HB) pellets (350 MPa). Studies of biodegradation of composite pellets and granules in the soil for 35 days showed that the residual mass of the pellets had decreased to 68% for P (3HB); 56.4% for P(3HB)/peat; 67% for P(3HB)/wood flour, and 64% for P(3HB)/clay; granules exhibited a similar mass loss, residual mass of the granules of P(3HB) was 68.4%, P(3HB)/peat 46.4%; P(3HB)/wood flour 77%, and P (3HB)/clay 74%. This shows the significance of the material as an eco-friendly composite without sacrificing its mechanical properties. (C) 2019 Published by Elsevier B.V.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodnyi Av, Krasnoyarsk 660041, Russia.
Int & Interuniv Ctr Nano Sci & Nano Technol, Kottayam, Kerala, India.
Krasnoyarsk Sci Ctr SB RAS, Inst Biophys SB RAS, Fed Res Ctr, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Krasnoyarsk Sci Ctr SB RAS, LV Kirensky Inst Phys SB RAS, Fed Res Ctr, 43-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Fed Res Ctr, 50 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Thomas, Sabu; Shumilova, A. A.; Kiselev, E. G.; Baranovsky, S., V; Vasiliev, A. D.; Nemtsev, I., V; Kuzmin, Andrei Petrovich; Sukovatyi, A. G.; Avinash, R. Pai; Volova, T. G.; Nemtsev, Ivan; Government of the Russian Federation [220]; Project "Agropreparations of the new generation: a strategy of construction and realization" [074-02-2018-328]

Найти похожие
18.


   
    Grape seed extract-soluplus dispersion and its antioxidant activity / R. Rajakumari, T. Volova, O. S. Oluwafemi [et al.] // Drug Dev. Ind. Pharm. - 2020. - P1-11, DOI 10.1080/03639045.2020.1788059 . - Article in press. - ISSN 0363-9045
Кл.слова (ненормированные):
antioxidant -- dispersion -- freeze-drying -- Grape seed extract -- proanthocyanidins -- soluplus
Аннотация: Objective: The main objective of this work was to formulate a nanodispersion containing grape seed extract and analyzed its release profile, antioxidant potential of the prepared formulations. Methods: The grape seed extract (GSE) containing proanthocyanidins (PC’s) has been dispersed in polymer matrix soluplus (SOLU) by the freeze-drying method. The morphological analysis was carried out using atomic force microscopy (AFM), scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The in-vitro release of the nanodispersion formulations was evaluated by simulated intestinal fluid (SIF). The antioxidant activity of GSE and the formulation were evaluated by employing various in-vitro assays such as 2, 2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2, 2-diphenyl-1- picrylhydrazyl (DPPH), Ferric reducing antioxidant power (FRAP) and peroxidation inhibiting activity. Results: The formulation FIII (1:5) resulted in a stable formulation with a higher loading efficiency of 95.36%, a particle size of 69.90 nm, a polydispersity index of 0.154 and a zeta potential value of ?82.10 mV. The antioxidant efficiency of GSE-SOLU evaluated by DPPH was found to be 96.7%. The ABTS and FRAP model exhibited a dose-dependent scavenging activity. Linoleic model of FIII formulation and GSE exhibited a 66.14 and 86.58% inhibition respectively at 200 µg/l. Conclusions: The main reason for excellent scavenging activity of the formulations can be attributed to the presence of monomeric, dimeric, oligomeric procyanidins and the phenolic group. The present work denotes that GSE constitutes a good source of PC’s and will be useful in the prevention and treatment of free radical related diseases. © 2020, © 2020 Informa UK Limited, trading as Taylor & Francis Group.

Scopus
Держатели документа:
International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, India
Institute of Biophysics, Siberian Federal University, Krasnoyarsk, Russian Federation
Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
Centre for Nanomaterials Sciences Research, University of Johannesburg, Johannesburg, South Africa
Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India
School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, India

Доп.точки доступа:
Rajakumari, R.; Volova, T.; Oluwafemi, O. S.; Rajesh Kumar, S.; Thomas, S.; Kalarikkal, N.

Найти похожие
19.


   
    Efficacy of embedded metribuzin and tribenuron-methyl herbicides in field-grown vegetable crops infested by weeds / T. Volova, A. Demidenko, N. Kurachenko [et al.] // Environ. Sci. Pollut. Res. - 2020, DOI 10.1007/s11356-020-10359-1. - Cited References:35. - This work was supported by Project "Agropreparations of the new generation: a strategy of construction and realization" [Agreement No 074-02-2018-328] in accordance with Resolution No 220 of the Government of the Russian Federation of April 9, 2010, "On measures designed to attract leading scientists to the Russian institutions of higher learning". . - Article in press. - ISSN 0944-1344. - ISSN 1614-7499
РУБ Environmental Sciences
Рубрики:
DEFICIT IRRIGATION
   CONTROLLED-RELEASE

   YIELD

   TOMATO

   FORMULATIONS

Кл.слова (ненормированные):
Metribuzin -- Tribenuron-methyl -- Embedding -- Degradable P(3HB) -- Weed growth -- inhibition -- Quality of tomato fruits and beet roots
Аннотация: The purpose of the present study was to investigate the efficacy of the experimental formulations of the metribuzin (MET) and tribenuron-methyl (TBM) herbicides embedded in the matrix of degradable poly-3-hydroxybutyrate blended with wood flour in field-grown tomato and beet crops infested by weeds. There is a necessity to develop environmentally friendly and effective means to protect plants because of the shortcomings of the free herbicide forms such as the environmentally unsafe spray application of solutions and suspensions of the widespread metribuzin and tribenuron-methyl herbicides, removal from soil during watering events and rains, and transport to natural aquatic environments, where the herbicides accumulate in the trophic chains of biota. Free TBM is also rapidly inactivated in soil and metabolized to nontoxic products in plants. The efficacy of experimental formulations of metribuzin and tribenuron-methyl embedded in the matrix of degradable poly-3-hydroxybutyrate blended with wood flour was tested in field-grown tomato and beet crops infested with weeds. Application of metribuzin resulted in the highest productivity of tomatoes (2.3 kg/m(2)) and table beet (3.4 kg/m(2)), improved biometric parameters of tomato fruits and beet roots, and caused reduction in nitrate nitrogen concentrations in them. The mode of herbicide delivery did not affect sugar contents, but application of both metribuzin and tribenuron-methyl induced a 1.7-fold and 1.4-fold, respectively, increase in vitamin C concentrations in tomato fruits and beet roots relative to the vegetables grown on the subplots treated with free herbicides and the intact plants. Embedded herbicides can be used as preemergence herbicides in the field.

WOS
Держатели документа:
Siberian Fed Univ, 79 Svobodnyi Av, Krasnoyarsk 660041, Russia.
SB RAS, Inst Biophys, Fed Res Ctr, Krasnoyarsk Sci Ctr, 50-50 Akademgorodok, Krasnoyarsk 660036, Russia.
Krasnoyarsk State Agr Univ, 90 Mir Av, Krasnoyarsk 660049, Russia.

Доп.точки доступа:
Volova, Tatyana; Demidenko, Alexey; Kurachenko, Natalia; Baranovsky, Sergey; Petrovskaya, Olga; Shumilova, Anna; Project "Agropreparations of the new generation: a strategy of construction and realization" of the Government of the Russian Federation [074-02-2018-328]

Найти похожие
20.


   
    The effect of the pesticide delivery method on the microbial community of field soil / S. Prudnikova, N. Streltsova, T. Volova // Environ. Sci. Pollut. Res. - 2020, DOI 10.1007/s11356-020-11228-7 . - Article in press. - ISSN 0944-1344
Кл.слова (ненормированные):
Biodegradable polymer -- P(3HB)-degrading microorganisms -- Pesticides -- Poly-3-hydroxybutyrate -- Slow release formulations -- Soil microorganisms
Аннотация: The study deals with the effects of herbicides (metribuzin, tribenuron-methyl, fenoxaprop-P-ethyl) and fungicides (tebuconazole, epoxiconazole, azoxystrobin) applied to soil as free pesticides or as slow release formulations embedded in a biodegradable composite matrix on the structure of the soil microbial community. The matrix consisted of a natural biopolymer poly-3-hydroxybutyrate [P(3HB)] and a filler—one of the natural materials (peat, clay, and wood flour). The soil microbial community was characterized, including the major eco-trophic groups of bacteria, dominant taxa of bacteria and fungi, and primary P(3HB)-degrading microorganisms, such as Pseudomonas, Bacillus, Pseudarthrobacter, Streptomyces, Penicillium, and Talaromyces. The addition of free pesticides adversely affected the abundance of soil microorganisms; the decrease varied from 1.4 to 56.0 times for different types of pesticides. The slow release pesticide formulations, in contrast to the free pesticides, exerted a much weaker effect on soil microorganisms, no significant inhibition in the abundance of saprotrophic bacteria was observed, partly due to the positive effects of the composite matrix (polymer/natural material), which was a supplementary substrate for microorganisms. The slow release fungicide formulations, like the free fungicides, reduced the total abundance of fungi and inhibited the development of the phytopathogens Fusarium and Alternaria. Thus, slow release formulations of pesticides preserve the bioremediation potential of soil microorganisms, which are the main factor of removing xenobiotics from the biosphere. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.

Scopus
Держатели документа:
Siberian Federal University, 79 Svobodny pr, Krasnoyarsk, 660041, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Prudnikova, S.; Streltsova, N.; Volova, T.

Найти похожие
 1-20    21-33 
 

Другие библиотеки

© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)